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Abstract 
 

The rapid rise of artificial intelligence and the 

increasing availability of open Earth Observation 

(EO) data present new opportunities to address 

important global problems such as the proliferation of 

agricultural systems which endanger ecological 

sustainability. Despite the plethora of satellite images 

describing a given location on earth every year, very 

few deep learning-based solutions have harnessed the 

temporal and sequential dynamics of land use to map 

agricultural practices. This paper compares different 

approaches to classify agricultural land use exploiting 

the temporal and spectral dimensions of EO data. The 

results show greater efficiency of the presented deep 

learning-based algorithms compared to state-of-the-

art approaches when mapping agricultural classes.  

 

1. Introduction 

 
Ecological agriculture practices such as 

intercropping, double cropping, crop rotations and the 

use of cover crops have shown to increase agriculture 

sustainability. The increasing tendency among 

farmers, decision-makers, and society in general to 

establish cropping systems that allow, not only the 

maximization of crop yield but also the provision of 

ecosystem benefits [1] is expected to rapidly increase 

the demand for spatial information about agricultural 

practices [2].  The 17 United Nation’s Sustainable 

Development Goals (SDG) also tackle this issue. 

These goals present a list of indicators to help assess 

the progress made. For instance, indicators 2.4.1, 

15.1.1, and 15.3.1 relate to land use and land cover 

data. To this end, the literature suggests that remote 

sensing has been an effective tool for monitoring the 

land surface properties resulting from human 

practices, and can greatly contribute to measuring 

these indicators in a cost-effective way [3]. Despite 

significant progress made in the area of remote sensing 

and agriculture, an extensive literature review shows that 

only 9% of the total publications in the domain focus on 

cropping practices [4]. Moreover, due to the wide variety 

of agricultural practices and the difficulty and complexity 

in providing descriptions for large areas using satellite 

data, studies have been mostly limited to case studies [5]. 

Despite the fact that the earth is continuously monitored 

by satellites, drones and different types of sensors, most 

recent AI models or classifiers used in operational 

mapping generally use only single date spectral data for 

classification [6]. In this paper, we address the research 

gap identified in the literature by comparing different 

deep learning approaches to classify agricultural land use 

and practices and harnessing the temporal and spectral 

dimensions of earth observation data. More specifically, 

we address the following research questions: i) How 

much can agricultural classification performance be 

enhanced by considering the temporal dimension and not 

only the spectral dimension?; ii) Can a deep learning 

architecture outperform the state of the art algorithms 

used in the remote sensing domain?; iii) What structure 

will this architecture have, and which parameters should 

be used? iv) Can vegetation indices help improve the 

classification performance? 

 

2. Background 
 

The application of Deep Learning (DL) has shown 

outstanding results in many fields including remote 

sensing. Harnessing the ability of DL models to learn 

feature representations exclusively from raw data without 

the need of domain-specific knowledge, Deep Neural 

Networks (DNNs) have been used in tasks including 

image classification, object detection, semantic 

segmentation, classification from time series and 

anomaly detection [7] in remotely sensed imagery. 

Previous works in this domain used rule-based 

classification algorithms, like decision trees, and 

multitemporal vegetation indexes derived from spectral 

satellite data to classify vegetation cover [8], [9]. 
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However, these approaches are oblivious to the 

temporal dimension because they do not consider the 

sequential relationship of multitemporal observations. 

Other studies have extracted temporal features or 

phenological metrics from the time series and reported 

better accuracy results when compared to using raw 

time-series data [10].  Although many approaches to 

manually extracting temporal features are described in 

the literature, they face significant problems which are 

listed by Zhong et al. [11]: i) human experience and 

domain knowledge is required to manually design 

models and extract features. Moreover, features from 

a general model might not be suitable for a more 

specific problem; ii) manual feature engineering is 

time-consuming since human supervision is required 

when environmental and weather conditions change, 

and iii) fixed predefined models and mathematical 

constraints limit the ability to handle disparate 

patterns. To identify temporal patterns, humans do not 

make their decisions based on a single mathematical 

model or a group of them, and they struggle to list all 

the rules they apply during the process [12]. In this 

context, DL has shown to be able to discover complex 

data structures in high-dimensional data, making this 

technology applicable to many domains of science, 

business and government [13]. In remote sensing, DL 

and specifically Convolutional Neural Networks 

(CNNs), have been applied in different ways in the 

context of remote sensing. Two-dimensional CNNs 

have been widely adopted to extract 2-dimensional  

spatial features from the width and height dimensions 

of satellite imagery, pushing forward the state of the 

art in areas such as semantic segmentation [14], land 

use classification [15], and object detection [16]. W. 

Hu et al. [17] and Guidici et al. [18] utilized one-

dimensional convolutions in the spectral dimension, 

whereas Y. Li et al. [19] used 3-dimensional 

convolutions on the spectral and spatial domains. 

Thus, convolutions in literature are mostly applied to 

the spectral and spatial dimensions, but rarely to the 

temporal dimension of remotely sensed time series. 

 

3. Data Preparation  
3.1. Context  

 
The setting of the study, as the consequence of our 

ground truth data choices, is a surface of 4466 km2 or 

1724 square miles in Sacramento County, in the west 

part of the United States of America and encompasses 

a one-year period ranging from January 2015 to 

December 2015. The area is fully covered by the data 

of Paths 44, 43, and Rows 34, 33 in the Worldwide 

Reference System-2 (WRS-2).  

 

 

3.2. Data sources 
 

In the search for data sources, we considered the 

metadata quality, distribution format, and costs 

concluding that California Land Use Survey was the 

dataset that best met our needs. This dataset is free to use 

and describes the land use in detail. Moreover, it presents 

data for 87 different agricultural classes in California, 

together with metadata about irrigation and agricultural 

practices, such as intercropping, double cropping, triple 

cropping, and mixed land use.  Additionally, more than 

95% of the land surveyed was visited during the process. 

Since different satellites have been launched at different 

dates, a match between the ground truth data and the 

availability of remotely sensed data represents a strong 

limitation at the time of selecting a satellite product.  

Considering that the land use survey described before is 

based on the agricultural fields for the year 2015, a 

combination of Landsat-7 and Landsat-8 was deemed as 

the best option. Among the available Landsat products, 

Landsat Level 2 is a research-quality, application-ready 

science product derived from Landsat Level 1 data [20]. 

A total of 178 Surface Reflectance image products were 

downloaded for the region of interest delimited in Fig. 1 

for the year 2015. From this set, 88 images correspond to 

Landsat-8 and a total of 90 images correspond to 

Landsat-7. In terms of spectral data, six bands were 

selected for the application of this study. The blue band 

was only used during EVI computation and spectral 

indices evaluation. Despite the spectral ranges of the 

different bands are slightly different between Landsat-7 

and Landsat-8, these differences have been studied in 

[21] suggesting that their impact on a model depends on 

the sensitivity of the model in question. Studies have 

shown the insignificant impact of these differences on 

classification models [11], [22]. 

 

3.3. Pre-processing 
 

Two main approaches have been proposed in the 

literature to classify remotely sensed images: a pixel-

based and an object-based approach [23]. In the first, the 

classification algorithms exploit the spectral differences 

between classes to classify a pixel [24]. On the other hand, 

an object-based approach also exploits the spatial and 

textural information of a group of pixels grouped in a 

meaningful way, relying heavily on a previous accurate 

segmentation process [23]. Despite an object-based 

approach might be a valid option for a single year land use 

classification, where the agricultural fields are well 

defined [25], the segmentation process depends on the 

assumption that agricultural fields will hold the same 

practices over the time period and that their boundaries 

will not change. This is not particularly true since the 

farmers can decide, for example, to grow corn two times 
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in the year, but when sowing for the second time, to 

leave a portion of that field idle. Thus, we decided that 

a pixel-based approach will be better in our case. We 

used the pipeline proposed in our previous contribution 

[26] to preprocess the data, creating a 2-day temporal 

grid and using linear interpolation to fill the gaps. The 

process artificially increased the observations from 46 

to 176. 

 

3.4. Datasets Created 
 

The first dataset created, from now on referred to 

as “Dataset 1”, consists of 32 different agricultural 

land use classes. During the confection of this dataset, 

we focused on different crops that were grown in a 

“Single Cropping” approach. The rotation of crops 

across different years often leads to better yields due 

to soil fertility improvements [27], while also reducing 

the external dependency on agrochemicals [28], [29]. 

Following the data manual documentation from the 

California Land Use Survey, we first filtered the 

ground truth data removing all the classes that did not 

represent an agricultural field. From a list of 47 

different classes, we removed the ones that contained 

equal or less than 10 polygons in total. Thus, the final 

dataset is composed of the 32 best-represented classes. 

Class imbalances are present in our dataset, with the 

highest number of pixels for “Mixed Pasture” class, 

and the lowest number of pixels for “Bush berries” 

class. For each pixel, a multivariate time-series was 

created using 6 different spectral bands (Near Infrared, 

Red, Blue, Green, SWIR-1 and SWIR-2). Normalized 

Difference Vegetation Index (NDVI) and Enhanced 

Vegetation Index (EVI) were also calculated. Table 1 

presents the total amount of polygons and the total 

amount of pixels sampled. Figure 1 presents a corn 

time series profile using NIR, Red, Green, SWIR-1 

and SWIR-2 bands. 

 

Table 1. Dataset 1 Metadata 
Code Label Polygons No. Pixels No. 

0 Miscellaneous grain and hay 26 2246 

1 Safflower 65 7051 

2 Corn 774 90804 

3 Grain Sorghum 17 2065 

4 Sudan 35 4587 

5 Beans 25 2775 

6 Sunflowers 14 1285 

7 Alfalfa 523 62949 

8 Clover 38 4576 

9 Mixed Pasture 1338 101675 

10 Native Pasture 26 478 

11 Miscellaneous grasses 13 914 

12 Melons, squash, and cucumbers 50 2678 

13 Potatoes 16 2854 

14 Tomatoes 102 18203 

15 Flowers, nursery and Christmas tree farms 41 2485 

16 Mixed 4+ 221 2758 

17 Miscellaneous truck 113 1099 

18 Bush berries 11 118 

19 Strawberries 97 492 

20 Apples 13 1031 

21 Cherries 85 5258 

22 Peaches and nectarines 11 135 

23 Pears 418 23511 

24 Miscellaneous deciduous 111 1760 

25 Mixed deciduous 89 527 

26 Almonds 17 1371 

27 Walnuts 57 4812 

28 Pistachios 13 2339 

29 Olives 46 691 

30 Eucalyptus 77 5169 

31 Idle 1 233 11489 

Total 4715 370185 

 

 
Figure 1. Corn Time Series Profile 

 
The second dataset created, from now on referred to as 

“Dataset 2”, characterizes two agricultural practices: 

single cropping and double cropping, within the same 

year. Double cropping practice is an important sustainable 

practice that aims at reducing the fallow periods of the 

land, exploiting solar energy to enhance the quality of the 

soil and preventing soil erosion [30]. During the dataset 

confection, we first filtered the ground truth data 

removing classes that were not representing agricultural 

fields. Then we identified the fields where double 

cropping practice and single cropping practice took place 

during the year. Table 2 presents the total amount of 

polygons and the total amount of pixels sampled. In this 

case, as the double-cropping class was under-represented, 

we selected the total amount of double cropping pixels as 

the limit to be sampled from the single cropping polygons. 

The sampling was done randomly, maximizing the 

diversity of single cropping polygons and not exceeding 

the limit of 29596 pixels. In the end, the total number of 

pixels sampled was 29596 for both classes. 

 

Table 2. Dataset 2 Metadata 
Code Label Polygons No. Pixels No. 

0 Double 256 29596 

1 Single 6784 29596 

Total 7040 59192 
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4. Approach 

 

4.1. Methodology 
 

Our methodology focuses on experimentation 

aimed at comparing the performance of a popular 

algorithm used in remote sensing classification with 

new approaches in temporal deep learning 

classification. We study the performance impact of 

data availability constraints, spectral indices 

calculation, as well as the impact of architectural 

designs, main parameters settings, and dimensionality 

reduction techniques.  

In terms of research infrastructure setup, the 

models for all the experiments were trained using the 

Azure cloud infrastructure provided by Microsoft AI 

for Earth grant program. The virtual machine uses an 

NVIDIA Tesla K80 GPU card. Each dataset used was 

partitioned in three sets: 60% training set, 30% testing 

set and 10% validation set. The training set was used 

to train each classifier. The validation set was used to 

monitor loss and accuracy avoiding overfitting, and 

the testing set was used to evaluate the final results. 

This partitioning was randomly done 30 times, and the 

same random partition configuration was used for all 

the experiments involving a given dataset. In the case 

of Random Forest (RF), this set was discarded. M. 

Rubwurm et al. [31] defined two principles that these 

types of subsets should follow. First, they need to be 

independent of each other. Secondly, the class 

distributions in all the datasets should be sufficiently 

similar. To respect the independence principle, the 

division of data was done at the polygon level, 

meaning that no pixels from the same polygon are in 

the training, testing or validation set at the same time.  

In all the experiments performed we applied the 

Overall Accuracy as the evaluation criterion, 

calculated as the number of the corrected classified 

pixels divided by the number of the total pixels. 

Results are then presented as an average across all 30 

shuffle configurations and multiplied by 100 ± one 

standard deviation. 

Because in practice, Neural Networks parameters 

usually exceed the number of data samples, they can 

potentially fit any training data. This leads to an 

overfitting problem, a model that performs well in the 

data that has already seen but does not generalize well 

with unseen data [32]. During our experiments with 

neural networks, we implemented an early stopping 

technique to mitigate this problem. Because stopping 

training too early may reduce variance but increment 

bias and stopping too late may reduce bias but 

increment variance [33], we utilized the validation set 

accuracy to stop the learning when the validation loss 

increases or the validation accuracy decreases over a 

number of epochs, in our case set to zero. Data 

normalization attempts to give all attributes an equal 

weight and avoid the dependence on the choice of 

measurement units [34]. Z-score normalization has been 

widely adopted in machine learning time series problems 

[35], subtracting the mean and dividing by the standard 

deviation for each time series. This approach has been 

used in remotely sensed time series, normalizing each 

feature, where each timestamp is considered a different 

feature. Pelletier et al. [36] indicated that this approach 

leads to a loss of significance in the magnitude, an 

important aspect for vegetation mapping, where certain 

classes have higher spectral values than others. Authors 

used a min-max normalization (a subtraction of the 

minimum then a division by the range maximum minus 

the minimum), but instead of using the minimum and the 

maximum values for each feature, they proposed to use a 

2% and 98% percentile, respectively. This decision was 

based on the fact that this type of normalization is very 

sensitive to extreme values. We adopted this 

normalization approach to preparing our datasets.  

 

4.2. Models and Architectures 

 

4.2.1. Random Forest 

 

Random Forest (RF) is an ensemble classification 

method, which means that uses not only one, but many 

classifiers. It consists of a combination of tree predictors 

where each one depends on the values of a random vector 

sampled independently and with the same distribution for 

all trees in the forest [37].  Random Forest uses a 

combination of k binary CART trees (Classification and 

Regression Trees). These trees are built without pruning, 

and at each node, a subset of randomly selected variables 

is used as input reducing the computational complexity 

of the algorithm and the correlation between the trees. 

One common value for splitting each RF node is the 

square root of the number of input variables (denoted by 

m) [38]. This recursive process is repeated on each 

derived subset until a maximum depth (max_depth) is 

reached or when the number of samples at a node is less 

than a certain threshold (min_samples) [39]. Random 

Forest has been successfully used in Remote Sensing for 

different classification tasks. Schmidt et al. [40] used 

several machine learning techniques to create maps of 

cropping activity for the period 1987-2015 using Landsat 

imagery. In this study, Random Forest performed better 

when compared with SVM, multinomial logistic 

regression, and decision-tree classifier. Tian et al. [41] 

used Random Forest to map wetland landcover using 

multiple sources of remotely sensed data. Random Forest 

accuracy surpassed SVM and Artificial Neural Networks 

by more than 10%. Chan et al. [42] compared the 

performance of Random Forest and Adaboost, both tree-
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based ensemble methods, to classify ecotopes using 

hyperspectral data. Their results show that both 

algorithms perform similarly in terms of accuracy, 

outperforming neural network classifier. However, 

Random Forest results were more stable. Due to the 

good classifications results and the capacity to handle 

high dimensionality data, RF has settled as a popular 

algorithm in the remote sensing domain [38], and we 

use it as a gold standard to compare the performance 

of the deep learning architectures studied.  

 

4.2.2. One-dimensional CNN 

 

Deep learning methods are characterized by Neural 

Networks built using more than two hidden layers. The 

composition of simple but non-linear modules allows 

DNNs to learn raw data representation at many levels. 

Starting from the raw input, each level transforms the 

representation into a more abstract level. In this way, 

many complex functions can be learned. CNNs are 

DNNs where one or more convolutional layers are 

used. Convolution can be seen as applying and sliding 

a filter over different dimensions of the data 

representation. An over-simplified supervised 

learning process consists of modifying the adjustable 

parameters (or weights) of the network architecture to 

minimize an error function. This error function can be 

thought of as a representation of the distance between 

the output score produced by a given input, and the 

desired pattern of scores [13]. This optimization is 

performed by the learning algorithm by computing a 

gradient vector, that represents for each weight, the 

positive or negative impact on the error function when 

the weight value is slightly increased. 

Scarce studies have addressed the use of deep 

learning applied to the temporal and spectral domain 

of remotely sensed imagery. Liheng et al. [11] have 

exploited the intrinsic characteristics of time-series 

data to describe seasonal patterns and sequential 

relationships for classifying summer crops. They 

developed different deep neural network architectures 

and used Enhanced Vegetation Index (EVI) calculated 

from Landsat Level 2 product imagery bands and 

ground in-situ data from California Department of 

Water Resources. Their results, based on an 

architecture that includes three one-dimensional 

convolution layers and an Inception Module (IM), 

outperformed traditional algorithms for land use 

classification including XGBoost, Random Forest, 

Support Vector Machine and Long-short Term 

Memory (LSTM) network. Pelletier et al. [36] 

proposed a temporal convolutional neural network 

constructed with three convolutional layers, a dense 

layer and finally, a SoftMax layer. Different from [11], 

the authors of this study used three spectral bands of 

the available satellite imagery. Results show that the 

proposed architecture outperformed Random Forest 

algorithm by 2 to 3 % and based on the evidence gathered 

they point out the importance of using both spectral and 

temporal dimensions when computing the convolutions. 

Cai et al. [22] developed a deep learning architecture to 

train a model able to classify corn and soybean fields. 

They used a combination of Landsat-5, Landsat-7 and 

Landsat-8 satellite images time-series covering a period 

of sixteen years. They approach consisted of averaging 

the six spectral bands used in the study at the field level, 

thus reducing missing data and improving availability. 

They report an overall accuracy of 97%. Inspired by these 

studies, we define two main general architectures to 

study. Architecture 1 is a one-dimensional CNN 

proposed by Pelletier et al. [36] based on stacking 

different numbers of Convolutional Layers. Figure 2 

depicts a general view of the architecture for three 

convolutional layers.  For simplicity, we excluded from 

the diagram the Batch Normalization, Activation, and 

Dropout layers. This sequence is followed after each 1 

Dimension Convolution and after the Dense layer, as 

well. Table 3 presents a list of parameters and values used 

for the network configuration. 

Table 3. Architecture Parameters 

 
 

 
Figure 2. General Architecture 1 

 

Architecture 2 (Figure 3) is based on stacking IM and 

Convolutional layers. As explained by Szegedy et al. 

[43], augmenting the size of a Neural Network is one of 

the simplest ways to improve its performance. However, 

increasing the width and the depth of a neural network 

derives in a larger number of parameters and the increase 

in computational resources. A large number of 

parameters makes the neural network more prone to 

overfitting [44]. To overcome these problems, Szegedy 

et al. [43] proposed to move from fully connected neural 

networks to more sparse ones. Based on this idea, they 

presented the Inception architecture based on IMs, 

characterized by the use of skip connections. To tackle 

the computational resources inefficiency and based on 

the embedding’s benefits, they added 1x1 convolutions 

before the 3x3 and 5x5 expensive convolutions to 

compute dimensionality reduction, in the context of two-

Batch size 32 Beta_1 0.9 l2 rate 1.00E-06

Epochs 20 Beta_2 0.999 Dropout rate 0.5

Optimizer Adam Loss function categorical_crossentropy Kernel/filter size 5

Learning rate 0.001 Kernel regulirizer l2 Activation ReLu 
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dimensional images classification. We adapted the 

Inception Module with dimensionality reduction to 

one-dimensional convolutions as depicted in Figure 4. 

We used strides of 1 for convolutions and max-pooling 

layers, 64 filters for convolutions and a window of size 

3 for the max-pooling layer. The dropout rate after the 

Filter Concatenation was set to 0.4. 

  

 
Figure 3. General Architecture 2 

 

 
Figure 4. 1D Inception Module with 

Dimensionality Reduction 
 

5. Evaluation  
 

5.1. Single Date Classification 

 
To measure the benefits of using multitemporal 

spectral data, we performed a classification task using 

single date acquisition data at the pixel level. We used 

RF to classify Dataset 1 using single date spectral 

information from NIR, Red, Green, SWIR-1, and 

SWIR-2. We trained 30 RF classifiers following the 

30 different dataset split configuration and we 

averaged the results. We did the same for all 176 

acquisition dates of our dataset. Accuracy results over 

time are presented in Figure 5.  

 
Figure 5. Single Date RF Classification 

 

The highest accuracy achieved by the RF classifier 

on a single date was 64.95 ± 0.82. This measure 

corresponds to measurement 96 of our dataset. If we 

translate this back to real dates, we can see that date 96 

corresponds to the 26th of July (day of the year 206). It 

can also be observed that 80% of the best 15 single date 

classification are between the days 20th of May and 27th 

of July, days of the year 140 and 207, respectively. 

 

5.2. RF vs One-dimensional CNNs 

 
To compare the performance of Random Forest and 

one-dimensional CNNs algorithms described in Section 

4.2 we conducted a series of experiments using Dataset 1 

and Dataset 2 presented in Section 3.4. Using Dataset 1 

and five spectral bands we evaluated Architecture 1 using 

a different number of Convolutional Layers and a batch 

size of 128. Table 4 presents the results for one, two, 

three, four, and five convolutional layers stacked one 

after each other.  

Table 4. Conv1D-based CNN Results 
  1 x Conv1D 2 x Conv1D 3 x Conv1D 4 x Conv1D 5 x Conv1D 

Accuracy 85.57 ± 1.11 85.78 ± 1.15 85.77 ± 0.99 85.55 ± 1.51 85.27 ± 1.24 

Test Loss 0.64 ± 0.08 0.61 ± 0.08 0.64 ± 0.08 0.66 ± 0.07 0.67 ± 0.08 
 

 

Dataset 1 was used to test different configurations of 

Inception Modules and Convolutional Layers using a 

batch size of 256. Table 5 presents the accuracy and loss 

results for a single Naïve Inception Module without 

dimensionality reduction (NI), a single IM with 

dimensionality reduction (IM), an IM followed by a 

single one-dimensional convolution layer (IM + 

Conv1D), a Conv1D followed by a single IM (Conv1D + 

IM), an IM followed by two one-dimensional 

convolution layers (IM + 2 x Conv1D) and we also 

present the results for a 3 fully connected layers 

architecture (3 x FC), for comparison.  

Table 5. Inception Modules and Convolutional 
Layers Results 

 Accuracy Test Loss 

NI 85.54 ± 1.17 0.66 ± 0.07 

IM 85.85 ± 1.11 0.67 ± 0.09 

IM + Conv1D 86.14 ± 1.34 0.62 ± 0.06 

Conv1D + IM 85.02 ± 1.33 0.65 ± 0.07 

IM + 2 x Conv1D 85.99 ± 1.01 0.62 ± 0.07 

3 x FC (256 units) 82.2 ± 1.69 0.73 ± 0.07 

3 x FC (1024 units) 82.88 ± 1.4 0.82 ± 0.1 
 

 

Rodriguez-Galiano et al. [45] demonstrated that the 

number of trees (k) in RF is directly proportional to the 

classifiers' accuracy up to the number of 100 trees. Once 

this value is reached, the generalization error converges. 

Pelletier et al. [39] studied different values of k, ranging 

from 50 to 400 and also concluded that this value can be 

set to 100 without a major accuracy loss. The m 

parameter value suggested by the literature is the square 
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root of p, where p is the number of features [46]. 

However, small values of m have shown very good 

performance due to the reduction correlation among 

individual trees [108]. Finally, the values for 

max_depth and min_samples have been less explored 

in literature. Pelletier et al. [39] used a max_depth of 

25, and a min_samples of 10 or 25, and showed that 

the accuracy impact of these parameters’ selection are 

low. Therefore, we studied the impact of parameter k 

(Table 6) on Dataset 1 using RF sklearn  python library 

with parameters m=√p, where p=n_features; 

max_depth = None, nodes are expanded until all 

leaves are pure or until all leaves contain less than 

min_samples_split samples; min_samples_split = 2. 

 

Table 6. RF Parameter k Evaluation 
k=10 k=100 k=500 

82.79 ± 1.19 85.2 ± 1.18 85.41 ± 1.16 
 

 

In Table 7 we compared the performance of the best 

configurations from Architecture 1 and Architecture 2  

with RF using a batch size of 256 and a k equals to 

100, while in Table 8 we compared both architectures 

performances using different batch sizes and five 

spectral bands. 

 

Table 7. Algorithms and Spectral Bands 
Combinations Comparison 

 Bands 3 x Conv1D IM + Conv1D RF (k=100) 

R 81.67 ± 1.35 81.96 ± 1.17 82.29 ± 1.28 

G 80.75 ± 1.38 81.36 ± 1.24 81.72 ± 1.25 

NIR 80.85 ± 1.44 81.34 ± 1.49 81.15 ± 1.24 

SWIR-1 81.27 ± 1.58 81.12 ± 1.01 80.82 ± 1.3 

SWIR-2 81.35 ± 1.62 81.46 ± 1.49 81.24 ± 1.28 

G-R-S1-S2 84.43 ± 1.19 85.72 ± 1.18 84.36 ± 1.2 

NIR-G-R-S1 84.87 ± 1.47 85.74 ± 1.16 85.07 ± 1.16 

NIR-G-R-S2 85.22 ± 1.38 85.63 ± 1.22 85.04 ± 1.19 

NIR-G-S1-S2 85.35 ± 0.97 85.72 ± 1.14 85.1 ± 1.18 

NIR-R-S1-S2 85.28 ± 1.18 85.96 ± 1.18 84.85 ± 1.18 

ALL 85.37 ± 1.16  86.14 ± 1.34 85.2 ± 1.18 
 

 

Table 8. Batch Sizes Comparison 
Batch Size Measure IM + Conv1D 3 x Conv1D 

32 
Accuracy 86.39 ± 1.13 86.02 ± 1.23 

Test Loss 0.66 ± 0.09 0.66 ± 0.08 

128 
Accuracy 86.1 ± 1.21 85.77 ± 0.99 

Test Loss 0.63 ± 0.07 0.64 ± 0.08 

256 
Accuracy 86.14 ± 1.34 85.37 ± 1.16 

Test Loss 0.62 ± 0.06 0.81 ± 0.09 
 

 

We classified Dataset 2 using the best configuration 

for Architecture 1 and Architecture 2, and RF. The 

results are presented in Table 9. 

 

Table 9. Dataset 2 Evaluation 
 3xConv1D IM+Conv1D RF (k=100) 

Batch 

Size 
32 256 32 256 - 

Acc. 
94.19 ± 

1.65 

93.76 ± 

1.68 

94.38 ± 

1.65 

93.96 ± 

1.5 
93.02 ± 1.92 

 

 

5.3. RF Dimensionality Reduction 

 
Although Random Forest classifier has proven to be 

robust to the use of high data dimensionality, some 

authors have suggested that prior features filtering can 

improve the classifier accuracy [38].  Many methods can 

be used to remove redundant, noisy and irrelevant 

features, such as Principal Component Analysis (PCA), 

Independent Component Analysis (ICA), or Minimum 

Noise Fraction (MNF) analysis [47], among others.  

However, Random Forest built-in feature importance 

identification method can be successfully used to filter 

most relevant features [48]. In this experiment, we 

analysed the performance of RF algorithm over Dataset 

1 and five spectral bands when reducing the 

dimensionality of the data using five different thresholds 

of features importance: 10%, 25%, 50%, 75% and 100%, 

as shown in Table 10. We implemented the features 

filtering using the embedded feature selection method of 

the RF classifier.  

Table 10. Dimensionality Reduction 
Percentage Dimensions Accuracy 

10% 88 84.04 ± 1.06 

25 % 220 85.21 ± 1.18 

50 % 440 85.47 ± 1.14 

75 % 660 85.33 ± 1.19 

100 % 880 85.2 ± 1.18 

We first trained the algorithm with the original 

dimensions, getting a list of features importance. This list 

was then used to filter the most important features using 

the values described before. This process was repeated 

for the thirty different partitioning configurations and the 

results were then averaged.  

 

5.4. Vegetation Indices vs. Raw Data 

 
Vegetation Indices (VIs) derived from remotely 

sensed spectral data are quite simple and effective 

algorithms for quantitative and qualitative evaluations of 

vegetation cover, vigour, and growth dynamics, among 

other applications [49]. One of the most used indices 

calculated from multispectral information is the 

Normalized Difference Vegetation Index (NDVI) [50], 

which is based on the difference between the maximum 

absorption of radiation in the red band due to chlorophyll 

pigments, and the maximum reflectance in the near-

infrared band as a result of leaf cellular structure [51]. 

The NDVI is susceptible to many errors and uncertainty 

over variable atmospheric and canopy background 

conditions [52]. Liu et al. [52] proposed a modified 
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NDVI equation based on a feedback-based approach 

that incorporates both background adjustment and 

atmospheric resistance concepts into the NDVI, the 

Enhanced Vegetation Index (EVI). The EVI has thus 

been considered a modified NDVI with improved 

sensitivity to high biomass regions and improved 

vegetation monitoring capability and a reduction in 

atmospheric influences [53].  

Table 11. Spectral Indices 
 3xConv1D IM+Conv1D RF (k=10) RF (k=100) 

NDVI 83.4 ± 1.17 83.02 ± 1.29 81.34 ± 1.34 83.59 ± 1.39 

NIR-R 85.19 ± 0.98 84.95 ± 1.2 81.98 ± 1.32 84.42 ± 1.22 

EVI 83.25 ± 1.13 83.15 ± 1.19 80.69 ± 1.42 82.97 ± 1.36 

NIR-R-B 85.19 ± 0.98 85.24 ± 1.11 82.11 ± 1.3 84.53 ± 1.22 

In this experiment, we compared the performance 

of RF and 1D-CNN for classifying Dataset 1 using the 

calculated NDVI and EVI indices as well as the results 

of performing this classification using only the raw 

bands' data involved in each index. Thus, for NDVI we 

compared the performance with NIR and Red band, 

and for EVI we used NIR, Red and Blue bands. Table 

11 presents the results obtained. 

 

6. Discussion  
 

In this study, we investigated and compared 

different deep learning approaches to classify 

agricultural land use and practices exploiting both the 

temporal and spectral dimensions of EO data. In our 

experiments, we ensured that all the results are of most 

statistical significance by running each experiment 

thirty times with different dataset splitting 

configuration. That required substantial computational 

resources, covered by Microsoft Azure grant, secured 

explicitly for this research. Therefore, we claim the 

high relevance of our results over smaller 

experimental works performed to the date. We showed 

that classification errors were largely reduced when 

introducing temporal information at the pixel level. 

The best accuracy obtained by RF with single date 

information was almost 65%, whereas more than 85% 

accuracy was obtained when temporal information 

was included. Architecture 1 performs better when 

utilizing two and three convolutional layers. We chose 

three layers to ensure better stability of the results. We 

show that the addition of dimensionality reduction in 

the IM positively impacts the performance. For the 

different configurations’ options, we tried for 

Architecture 2, placing the IM in the first place seems 

to have a significant, positive impact on the 

performance. The results were already better when 

using the IM alone, and are improved with the addition 

of a convolutional layer. Switching the order of these 

two, or adding an extra convolutional layer does not 

improve accuracy. When comparing the results of the 

three fully connected layers architecture with the rest, we 

can see the importance of using convolutions as features 

extractors in the network. Even though a big part of our 

datasets consists of synthetic data created during the 

linear interpolation process to fill the gaps, RF seems to 

handle high dimensionality of data efficiently. The best 

result was obtained when using the best 50% features, but 

the difference is not significant compared with the 

performance when using the entire features set.  Table 7 

shows that no significant performance differences exist 

between RF and CNNs when utilizing single spectral 

bands information. However, when combining them, 

CNNs, and specially IM+Conv1D, outperformed RF 

significantly, with specific combinations having 

differences over 1%. Moreover, when comparing to the 

values obtained with RF using k equals to 500, or when 

applying dimensionality reduction, RF could not reach 

CNN's performance. Parameter k has a big impact on RF 

performance. However, for values over 100, the 

difference is not significant while training cost increases 

accordingly. Spectral indices calculation does not 

improve classification performance, as shown in Table 

11. Furthermore, using raw spectral data, improves the 

accuracy in all the algorithms, with CNN's taking further 

advantage of them than RF. The selection of batch sizes 

has an impact on the model’s performance. We presented 

in Table 8 the results of training Architecture 1 and 

Architecture 2 optimizations with three different batch 

sizes: 32, 128, and 256. We showed that both 

architectures performed better when using a batch size of 

32 and both exhibit a similar test loss for the small batch 

size, with IM+Conv1D outperforming. The major 

limitation of the work relates to transferability of the 

models created since our datasets are specific to 

California and the mentioned satellites. The results 

presented demonstrate the efficiency of the algorithms 

described when compared to state-of-the-art approaches 

and showcase the potential of these algorithms for 

mapping sustainable agricultural practices. Therefore, 

this work makes a substantial step forward in addressing 

the adoption of deep learning for agriculture in the remote 

sensing domain. Comparing our experiments with other 

related studies, ours have made use of publicly available 

satellite imagery, making a transfer learning approach 

that would make the process of fitting the models for 

other geographical locations, viable. While some studies 

have only focused on the classification of a few 

agricultural types, we have trained a superior single 

model that can classify 32 agricultural classes with more 

than 86% accuracy. None of the studies analyzed before 

had classified pure temporal characteristics, as we did 

with Dataset 2 with more than 94% accuracy. Future 

work includes performing two and three-dimensional 

convolutions over the spectral, temporal and spatial 

dimensions. 
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7. Conclusions 
 

In this paper, we evaluated the performance of 

different one-dimensional CNNs architectures and 

Random Forest for agricultural land use and 

agricultural practices classification over more than 

400 thousand multispectral remotely-sensed time 

series. To answer our first research question, we 

demonstrated that inclusion of temporal information to 

RF-based classification boosted the accuracy from 

65% to 85% and allowed more than 86% accuracy for 

CNN-based architecture over Dataset 1. That result 

also answers our second research question by showing 

that deep learning architecture (CNN) indeed can 

outperform the state of the art algorithm in the domain 

(RF). In particular, to answer our third question, we 

showed that specific one-dimensional CNNs 

significantly outperformed the established RF-based 

approach when utilizing multispectral data, even when 

applying RF dimensionality reduction. Finally, to 

answer question four, our results show that the 

calculation of spectral indices does not improve 

classification performance. 
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