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ABSTRACT
Service computing has gained great success because it de-
couples service providers and consumers. Because of this
decoupling, it is possible to reuse software applications with-
out knowing their implementation details. However, busi-
ness applications consuming complex events (and complex
event processing systems in general) are not maximising the
full benefits from service computing. Current service mod-
els are not suitable for describing complex events and the
requirements for enabling pattern-based complex event ser-
vice composition are not fully addressed. In this paper, we
propose a complex event service description model that ex-
tends OWL-S and captures the exact semantics of complex
events, including their patterns and attributes. We propose
algorithms to create event service compositions based on
event patterns. These algorithms are capable of selecting
the composition plans with lowest estimated data traffic de-
mands over the service network. Moreover, we show how to
improve the efficiency of event service composition by index-
ing event patterns.

1. INTRODUCTION
In the context of Business Process Management (BPM),
business processes are typically interested in complex events
with business values rather than primitive events represent-
ing simple changes of states. For example, a supermarket
manger may be interested in of the sales for a certain prod-
uct during the past season rather than a barcode scan event
at a counter; a bank is interested in detecting fraud use of
credit cards by identifying a set of unusual purchase events
rather than a single payment transaction. That said, a busi-
ness/complex event is typically detected based on the occur-
rence of a primitive event sequence. The term Event Pat-
tern is widely used in research and industry to describe how
a complex event can be detected from a set of correlated
events called its member events. Event patterns can be for-
mally described with Event Pattern Languages (EPL), e.g.,
RAPIDE[11], and event engines will subscribe to the primi-

tive event streams specified in the patterns and then evaluate
the rules and constraints upon real-time event data streams.

Despite the extensive research efforts spent on Complex Event
Processing (CEP), providing CEP applications as reusable
services that allow the composition of complex event ser-
vices based on event patterns efficiently is still a challenging
task. Many existing event service description and discovery
mechanisms are topic or content based, which is sufficient
for reusing primitive/simple event services. However, it is
impossible to reuse a complex event without knowing its
exact semantics expressed in the pattern.

Providing events, especially complex events through services
has many benefits. First, the loose-coupling nature of service
computing helps to automate the process of business event
implementation, which is a non-trivial task in BPM. Typ-
ically, to implement a business event, a developer needs to
write middleware to prepare event streams for event engines
using the data coming from event sources. Then a busi-
ness analyst/expert must familiarize themselves with the
specific data formats and encoding of the event streams pro-
vided by event middleware as well as the syntax of platform-
dependent event pattern languages, so that they can specify
the event patterns accordingly. With the ability of event
service description and discovery, event publishers can ad-
vertise their event semantics and data formats publicly and
event consumers can specify their request (including event
patterns) in a platform-independent way.

A second important advantage of providing event services is
that the CEP capability can be reused. By reusing business
event services instead of subscribing directly to primitive
event streams, the amount of events delivered through the
network can be greatly reduced. This is important for CEP
applications in general because it reduces the use of band-
width and CPU, resulting in more efficient and in-time event
detection. For example, if a user is interested in detecting
heating system failures, he might specify an event pattern
as below:

If the heater is on, and 3 temperature drop
events happened in 5 mins, alert the technician
to check the heating system.

Suppose there are two sensors deployed in the same room: a
temperature sensor reporting current temperature readings



and a heater monitor reporting the status of the heater. If a
complex event subscribes to these two sensor event streams
directly, to detect a heater failure situation at least 5 events
will be consumed: 4 temperature readings to detect 3 consec-
utive temperature drops, and 1 heater status report. If there
exists already a temperature drop monitor that is reporting
3 temperature drops during the past 5 minutes, with the
event service discovery and reuse mechanism the complex
event can subscribe to this event stream instead of temper-
ature reading events. As a result, the detection of the situa-
tion may consume just 2 events at least. The above scenario
is a simplest demonstration of the benefits of reusing event
services. In large-scale systems, e.g., smart city applications,
the number of event notifications reduced by reusing existing
event services can be significant.

To provide business/complex events as reusable services and
facilitate more efficient event processing systems, the follow-
ing sequence of questions needs to be answered.

1. How to describe event services properly so that event
service matchmaking based on event patterns and event
attributes can be realized?

2. How to determine if two event patterns are function-
ally equivalent (i.e., produce the same complex event
notifications), provided that different event patterns
may have identical meanings?

3. How to choose optimal event service composition plans
that consumes the least amount of input event data?

4. How to derive event service compositions efficiently
for very complicated event patterns (i.e., with a lot
of event rules) and in a large scale event marketplace?

This paper provides answers to the above questions. The
remainder of the paper is organized as follows. Section 2 dis-
cusses related work; Section 3 answers the first question by
proposing an event service model. Section 4 answers the sec-
ond question by presenting the abstract syntax of event pat-
terns, and then it describes the operations and algorithms
to reduce event patterns into canonical forms so that they
can be compared. Section 5 answers the third and fourth
questions, it first provides the definition of Structurally Opti-
mized event service compositions based on Estimated Traffic
Demand (ETD) of compositions, and provide way to calcu-
late the ETD. Then it presents two composition algorithms
creating structurally optimized event service compositions:
a slow algorithm based on event substitution and a fast al-
gorithm based on the reusability index of event patterns.
Section 6 demonstrates the performance of the proposed al-
gorithms with prototype experiments. Section 7 concludes
the paper and discusses some possible future work.

2. RELATED WORK
Complex event service composition can be seen as a variant
of service composition. However, current planning based
service composition [13] only consider the matching of in-
put/output message types and the evaluation of logical for-
mulas in preconditions/effects. In complex event service
composition, it not straightforward to define preconditions
and effects for event detection tasks, nor is it enough to

create composition plans based on matchmakings between
event types. Rather, comparing event patterns/queries in
event service descriptions/requests is essential to determine
the reusability. In database systems, various techniques
including query subsumption [4], multiple query optimiza-
tion[15] and y-filter[5] etc. are developed to share and reuse
partial results among similar queries in static databases.
Our approach is inspired by query subsumption: we identify
the subsumption (reusable) relationships between canonical
event patterns.

Reusing event queries/subscriptons is also discussed in many
other event based systems, including content-based event
overlay networks [2, 3, 8, 7, 10, 6, 12] and CEP query opti-
mization[1, 14]. In [6] and [3] reusability of event queries are
evaluated based on the similarity between event attribute
types and values, no event patterns are considered. In [2]
and [7] only simple attribute filters and sequential event pat-
terns can be reused by defining a subscription covering rela-
tion. In [8] and [10], brokers are equipped with event engines
which makes them capable of processing more event opera-
tors, however, the decomposition of event subscriptions fol-
lows a top-down traversal on the query tree, until all prim-
itive events identify their sources. Similarly in [1] and [14],
two event queries are considered equivalent when their query
trees are isomorphic. However, in our work, we prove that
tree isomorphism is a sufficient but unnecessary condition
for determining the equivalency of event patterns. More-
over, we also prove that it is not very efficient to perform
a top-down traversing on query trees to decompose event
patterns when we take combinations of sub-patterns into
consideration.

E-Cube [9] is comparable to our approach, in the sense that
it also analyzes the reusability between event patterns and
organize them into a hierarchy. The main differences to
our approach are 1) E-Cube only supports sequence and
negation operators, whereas we support sequence, conjunc-
tion, disjunction and repetetion operators, 2) E-Cube has
different rules in determining reusable relation between se-
quence patterns, e.g.: the event sequence (e1, e3) is reusable
to (e1, e2, e3) in E-Cube but not so in our approach, and 3)
we provide an evaluation on the different performances of the
hierarchy or non-hierarchy based composition algorithms.

3. SEMANTIC EVENT SERVICE MODEL
In this section we present a semantic event service model
describing both event patterns and event attributes. This
model allows (complex) event services to be discovered and
composed based on event patterns and attributes. A high
level overview of the event service model is shown in Figure
1. The event service model can be seen as an extension
to OWL-S1, which is a standard ontology for semantic web
services, it can be integrated into the OWL-S model with
concepts from an event ontology.

3.1 Service Model
We consider an event service should be described with a
Event Grounding and a set of Event Profiles. The concept
of Event Grounding is similar to Service Grounding in OWL-

1OWL-S: standardized semantic service description frame-
work, http://www.w3.org/Submission/OWL-S/
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Figure 1: Overview of event service model

S, it tells a event consumer how to access the event service
by providing information on service protocol, message for-
mats etc. An Event Profile is comparable to the Service
Profile in OWL-S, which describes the events transmitted
by the service. Event profiles are key documents used for
event service discovery. When an event service can produce
different types of events, each type should be described by
an event profile.

An event profile describes a type of event with four di-
mensions: Pattern, Payload, Context and Non-Functional
Properties (NFP). Pattern refers to the member event cor-
relations. An event pattern may have other patterns or
(primitive) event services as components. An event pro-
file without Pattern is considered a primitive event service,
otherwise a complex event service. Payload refers to the
type information for the event message and data. Context
refers to the social and physical context of the event, e.g., by
whom or at which location the event was produced. Non-
Functional Properties refers to the Quality-of-Information
(QoI) or Quality-of-Service (QoS) measures, e.g., precision,
reliability, cost and etc. When the service model is used to
formulate event service requests, Constraints can be spec-
ified by users to declare their requirements/preferences on
the event payload, context or NFPs. We do not provide a
dedicated Service Model as they do in OWL-S to describe
the service composition details, because this information is
specified already in event patterns.

3.2 Pattern Model
Since we are focusing on pattern-based event service dis-
covery in this paper, we show more details on the Pattern
models in Figure 2. The temporal relationships captured
by an event pattern has three basic types: sequence, par-
allel conjunction and parallel alternation. If two events (or
event patterns) are correlated by a sequence pattern, one
should occur before the other, in parallel conjunction, both
should occur and in parallel alternation, at least one should
occur. Hence we define three types of patterns respectively:
Sequence, And and Or. A special case of Sequence is that
the sequence repeats itself for more than once, in this case
the sequence can be modeled by a Repetition pattern, with
a cardinality indicating the number of repetition.

Besides the temporal relationships, event pattern may also
specify data constraints with Filters and Aggregations, also,
a sliding window may be specified to indicate how many
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Figure 2: Event pattern model

events should the event engine keep in its memory at run-
time. In the next section, we provide the abstract syntax of
event patterns and elaborate in detail the semantics of the
temporal and data constraints specified by event patterns.

4. ABSTACT SYNTAX OF COMPLEX
EVENT PATTERNS

Using the semantic event service model, an event service
provider can describe event services and store these service
descriptions in a service repository; an event service con-
sumer can formulate a event service query to specify his re-
quirement on event services. These descriptions and queries
are the key documents of the discovery and composition of
event services. The discovery and composition of process
break down to the matchmakings between event patterns
and event attributes (i.e., NFPs and context) specified in
event queries and descriptions. In this paper we focus on the
matchmaking of event patterns, existing service matchmak-
ing algorithms can be easily adapted for event attributes.
To discuss the composition of event patterns, we need to de-
scribe them formally. In the following we give formal seman-
tics for the event patterns described with our event service
model.

An event can be described at two levels. The basic informa-
tion required to reuse the event can be described at a surface
level, it is sufficient to reuse primitive events using such ba-
sic information. The detailed information on the semantics
of complex events can be described at a deeper level. With-
out such detailed semantics it is impossible to reuse complex
events.

An Event Declaration describes the surface of a (complex)
event without considering the event context and NFPs. It is
a tuple ed = (src, t, ep,D) where src is the service location
where the events described by ed are hosted, t is the domain
specific event type, ep is the event pattern for ed and D is
its data payload.

An Event Pattern describes the detailed semantics of a com-



plex event. It is a tuple ep = (w,ED,OP,E, S, F ) where

• w is a sliding window specified for p, we only consider
w as a duration of time;

• ED is a set of member event declarations, we denote
D′ as the payload of ed′ ∈ ED;

• OP is a set of operators, op ∈ OP = (top, r) where
top ∈ {Seq,Or,And,Rep} is the type of operator, r ∈
N+ is the cardinality of repetition, r > 1 for repetition
operators, and r = 1 otherwise;

• E ⊂ (OP×(OP∪ED)) is a set of asymmetric relations
on operators and member events, it captures the prove-
nance (i.e., causal) relation within ep, ∀(op, n) ∈ E,
the execution of operator op relies on the execution re-
sult of n when n ∈ OP , or the occurrence of n when
n ∈ ED;

• S ⊂ (OP ∪ ED) × (OP ∪ ED) is a set of asymmet-
ric relations on operators and member events, it gives
the temporal order within ep, ∀(n1, n2) ∈ S,∃n ∈
OP ∧ (n, n1), (n, n2) ∈ E ∧ n.top = (Seq|Rep), also,
the occurrence of n1 (if n1 ∈ ED) or the last member
event instance that completes the execution of n1 (if
n1 ∈ OP ) should happen before that of n2;

• F ⊂ (D ∪ D)′ × (D ∪ D′ ∪ V ) is a set of filters rep-
resenting binary relations (e.g., >,<,=) between two
data payloads or payloads and values (V ).

An event pattern defined according to the above semantics
can be organized into a tree structure to have a more in-
tuitive representation, called an event syntax tree. In the
following sections we elaborate how event patterns can be
mapped to a syntax tree, and then derive the canonical form
of syntax trees, so that we can determine if two event pat-
terns are semantically equivalent (in order to discover event
patterns) by comparing their canonical syntax trees.

4.1 Syntax Tree of Complex Event Pattern
An event syntax tree describes an event pattern with a
tree. More formally, for an event pattern ep, a syntax tree
T (v) = (V,E), where V = (OP ∪ ED) is the set of vertices
representing operators and member events, v ∈ V is the
root node, typically an operator, and E is the set of directed
edges representing the provenance relation. If (v1, v2) ∈ E,
v2 is called a child node of v1, and the event syntax tree
represented by T (v2) is a direct sub-tree (DST) of T (v1).
If (v1, v2) ∈ S, then v1 is to the left of v2. Each node in
V is labeled with its type, repetition cardinality (omitted if
r = 1) and data payload (if any). A filter on a single pay-
load is attached to the node labeled by the payload. A filter
on two payloads is attached to the lowest common ancestor
(LCA).

In a syntax tree, the depth of a node is the number of edges
connecting the node to the root, the height of a tree is the
maximum depth of its leaves, the degree of a node is the
number of its child nodes. An example of using a syntax
tree to capture event semantics for a complex event is shown
in Figure 3.

temp 
drop

heat
er 
on

AND

REP 
x3

Event textual description:

If the heater is on in a room, 
and 3 temperature drop 

events happened in 5 mins, 
alert the technician to check 

the heating system.

Figure 3: Example of a syntax tree

4.2 Complete Syntax Tree
Event declarations (leaf nodes) in a syntax tree can expand
into syntax trees to reveal the event patterns of their own.
An event syntax tree is complete if all its leave nodes are
primitive events. By checking recursively the event pattern
definitions of the member event profiles, it is trivial to build
the complete syntax tree for a complex event. A complete
event syntax tree gives complete information on the logical
rules specified for a complex event, as well as how the event
is implemented over the event service network. We define a
fcomplete function that creates the complete syntax tree as
follows.

Definition 1 fcomplete : P −→ T , P is a set of event
patterns and T is a set of event syntax trees. p ∈ P, t ∈
T ∧ t = fcomplete(p) ⇐⇒ t is the complete syntax tree
derived from p.

4.3 Irreducible Syntax Tree
Complete syntax trees are not sufficient for event pattern
discovery and composition, because an event pattern can use
different complete syntax trees to express its semantics. As
such, we need to have a unique representation for each event
pattern. An event syntax tree is irreducible if it contains the
least number of nodes and edges while carrying the same
semantics.

We consider two major types of syntax tree reducing opera-
tions: lift and merge. Lifting removes the redundant event
operators, resulting in a lower height of the tree. Merg-
ing removes overlapping member event nodes, resulting in
a less degree of the nodes in the tree2. Different rules ap-
ply when performing lift and merge operations on different
types of nodes. Examples of lifting and merging operations
are shown in Figure 4.

• Sequential Lift: when a node and its child are both
sequence operators, the child node can be removed.
Incoming edges on the child node are removed while all
outgoing edges will attach their sources to the parent
node. The payload and filters attached to the removed
node are merged with the parent.

2The sequential and repetition merge exemplified in Figure 4
do not decrease the total number of nodes in the tree because
they only merge two nodes, for conformance reasons we still
consider such merging necessary to create irreducible trees.
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Figure 4: Examples of syntax tree reduction operations

• Sequential Merge: when a node is a sequence op-
erator and there is a repeating sequence in its child
nodes (recurring primitive event or DST sequences), a
repetition node is inserted as a child node of the se-
quence operator. Repeated sequences are merged into
one and relocated under the inserted repetition node.
The cardinality of the repetition node is determined
by the number of occurrences of the sequence.

• Parallel Lift: when a node and its child are the same
type of parallel operator (conjunction or alternation),
the child node can be removed (as the sequential lift).

• Parallel Merge: when child nodes of a parallel op-
erator has duplicates (recurring primitive events or
DSTs), duplications are removed. When the only dif-
ferences of two child nodes n1, n2 (or DSTs T (n1), T (n2))
are the filters attached, and each filter in n1 (or T (n1))
is covered3 by the corresponding filter in n2 (or T (n2)),
then these two nodes (or DSTs) can be merged. For
conjunction operators in this case, n1 (T (n1)) is kept,
for alternation operators, n2 (T (n2)) is kept. Addi-
tionally, there is a special case for conjunctional merge:
when a conjunction operator has two repetition DSTs
with only different cardinalities, the DST with less car-
dinality is removed.

• Repetitional Lift: when a node is a repetition op-
erator (with cardinality n), and it has only one child
node which is also a repetition (with cardinality m),
the child node is removed and the cardinality of the
parent node is changed into n ×m. Otherwise, if the
child node is a sequence operator, the child node is
removed.

3f1 covers f2 ⇐⇒ P (f1) ⊇ P (f2), where P (f1), P (f2) are
the notifications produced by filters f1, f2, respectively.

• Repetitional Merge: merging operation for repeti-
tion nodes is the same as a sequential merge.

• Special Lift: when a sequence or parallel operator
has only one child, this operator is removed. Such
situations only happen during the reduction process.

4.4 Syntax Tree Reduction Algorithm
The algorithm to create irreducible syntax trees is shown in
Algorithm 1. The algorithm traverses a syntax tree from
the bottom to the top. The algorithm starts with lifting the
whole tree to remove redundant operators. Then, it tries to
merge sub-trees on the maximum depth, i.e., sub-trees whose
root depths are equal to the height of the whole tree minus
one. If these sub-trees are merged, we check if they can be
lifted again because merging could create further redundant
operators. After merging and lifting all sub-trees on same
depth, we decrease the depth and repeat the merging and
lifting process until the whole tree is merged (and possibly
lifted again).

In the algorithm, line 2 uses the method getHeight to com-
pute the height (maximum maximal depth) of a syntax tree.
Line 9 uses the method getSubTreesByDepth to retrieve all
sub-trees within a syntax tree whose root is of a certain
depth. The merge method used in Line 11 merges the direct
sub-trees of a certain node. The liftTree method in Line 7
and 13 carries out the lifting operations on a sub-tree.

Using the above algorithm, we define freduce and fcanonical

functions as follows:

Definition 2 freduce : T −→ T , T is a set of event



Algorithm 1 Creates an irreducible syntax tree from a com-
plete syntax tree ST .

Require: Syntax Tree ST .
1: procedure reduce(ST )
2: height = getHeight(ST )
3: if height<1 then
4: exit
5: end if
6: root← getRoot(ST )
7: liftTree(root, ST )
8: for height− 1→ rootDepth→ 0 do
9: nodesToMerge ←

getNodesByDepth(ST, rootDepth)
10: for node ∈ nodesToMerge do
11: merge(node, ST )
12: if merged then
13: liftTree(node, ST )
14: end if
15: end for
16: end for
17: end procedure

syntax trees. T1, T2 ∈ T ∧ T1 = freduce(T2) ⇐⇒ T1 is
the result of executing Algorithm 1 with T2 as input.

Definition 3 fcanonical = freduce ◦ fcomplete

5. EVENT PATTERN DISCOVERY AND
COMPOSITION

With the capability of deriving canonical event patterns,
we now elaborate the mechanisms of complex event service
discovery and composition. We start with the definition of
event composition. An event composition is a process that
takes a query tree and a set of event services as inputs and
produces a set of composition plans as outputs.

A query tree is a complete syntax tree created by complex
event designer/modeler. We assume all the primitive events
in a query have user-defined event types in their event dec-
larations, but the event source locations are missing. The
mission of event composition is to find out where should
these primitive events come from. Of course, the mission
can be accomplished by simply discovering primitive event
services using the event types and then filling the source
locations for the primitive event declarations in the query,
but that will demand a lot of data traffic from the primitive
event services (as we have discussed ealier). Therefore, we
need to reuse complex event services as well.

When a complex event service is reused, we replace an ap-
propriate portion (sub-tree or part of sub-tree) of the query
tree with the event declaration of the complex event service,
which transforms the portion into a event declaration node
(a leaf node) with a complex event type and a service loca-
tion. When all the leave nodes of a query have such type and

location information, we call the query to be bound. When
the query is bound, we call it a composition plan. An exam-
ple of a composition plan created with a query and a set of
event services in shown in Figure 5. When the composition
plan is generated, it can be implemented by transforming
the plan into an event/stream query (e.g., EPL,EP-Sparql),
along with a set of service subscription commands.

e1

SEQ

e2

OR

e3

Query

e1

SEQ

e2

type= e4
loc=loc4

e3

e2e1

type= e3
loc=loc3

type= e2
loc=loc2

type= e1
loc=loc1

OR

e3

Composition Plan

e4

loc=loc4 loc=loc3

Event Service 1 Event Service 2

Event Service 3 Event Service 4

Figure 5: Example of a composition plan

The algorithms for event pattern composition have the fol-
lowing assumptions:

1. all events are instantaneous, which means each event
has only one timestamp. In a complex event, the
timestamp of the last detected member event is used
as its timestamp;

2. all events delivered by event services are error-free,
synchronized and complete;

3. all events have similar payload size;

4. in general, complex events are less frequently detected
than their member events.4

The first two assumptions draw the scope for our discussion:
we only deal with instantaneous events (while an event with
a duration can be seen as a sequence of two instantaneous
start and end events), and we do not deal with data quality
or quality-of-service issues. The third and fourth assump-
tions allow us to propose a heuristic for achieving the goal of
reusing event patterns: to minimize traffic, a complex event
service composition should contain as few as possible the
member event services, meanwhile, it should choose more
coarse-grained member events. An event composition plan
is said to be structurally optimized when it demands the
least amount of traffic over the network per unit time.

4This assumption does not hold for alternation event pat-
terns and their member events.



In the following, we first give formal definitions on struc-
turally optimized event compositions, we also give means to
select the optimized event compositions from a set of com-
position plans. Then, we present a slow algorithm which de-
rives optimized event compositions by traversing top-down
in the query tree to find substitutes for its sub-trees. Finally,
we present a fast event composition algorithm based on the
event pattern reusability index.

5.1 Structural Optimization based on Traffic
Estimation

In Section 1 we informally define the term structurally op-
timized event composition without details on how different
event compositions are evaluated and compared with regard
to their degrees of optimization. Intuitively, they should be
measured by the number of member event notifications de-
livered over the network per unit time. Ideally, if all the
member event services are up and running and they provide
statistics on the frequencies of event notifications, we can
simply sum up these frequencies and derive the traffic de-
mands for each composition. However, in realistic scenarios
we cannot assume all event services provide such frequency
monitoring operations. Even if they do, there are cases when
a user needs to deploy a batch of complex event services, in
which some services may be used in others’ compositions
and they do not have any statistics on their frequencies.
Therefore, the ability to estimate the traffic demands and
notification frequencies of complex events is necessary.

Given an event declaration ed = (src, t, ep,D) and the com-
plex syntax tree Tc(v) = (V,E) = fcomplete(ep) where v ∈ V
is the root node, we denote ν(n) as the frequency esti-
mation of the member event represented by the sub tree
Tc(n) ⊆ Tc(v). Obviously, ν(v) is the frequency estima-
tion of event described by ed. The traffic demand of ep is
denoted Traffic(ep) =

∑
ν(n) where Tc(n) is the complete

syntax tree of a member event service directly used in the
composition of ep. Given node n ∈ V , m ∈ V ′ where V ′ is
the set of child nodes of n, the relation of ν(n) and ν(m) is
given by Equation 1.

ν(n)



= freq(n) if n is a primitive event

then its frequency is given

directly by freq(n)

=
∑

ν(m) type(n) = Or

= min{ν(m)} type(n) = And

≤ min{ν(m)} type(n) = Seq

≤ min{ν(m)}
r

type(n) = Rep, r = card(n)

(1)

In the above equation, we expect the freq function to give the
frequency of a primitive event directly. The type function
identifies the operator type for a node and the card function
gives the cardinality of a repetition.

The equation allows us to calculate the maximum estimated
frequencies for a set of member event services (max{ν(n)}),
with which we can derive the maximum traffic demand esti-
mation for an event composition plan that directly consumes
these services. Then by choosing the plans with the minimal
estimation, we can determine which plans are structurally
optimized. However there is a limitation of Equation 1: fil-
ters are not considered. Indeed, filters may have a strong
impact on the frequency. Unfortunately, it is impossible to
estimate the impact without knowing beforehand the value
range of data payloads and their distributions over the range.

5.2 Event Pattern Composition based on Sub-
stitution

Based on the above unique representation of event syntax
trees and the exact semantics of event patterns, we now
give the definition for the substitute relation between event
patterns in Definition 4.

Definition 4 substitute ⊂ P × P where P is a set
of event patterns. substitute(p1, p2) holds for p1, p2 ∈
P ⇐⇒ fcanonical(p1) = fcanonical(p2).

From the above definition, if an event pattern is a substi-
tute of another, they are semantically equivalent and can be
seen as exact matches for each other during event service
discovery.

Intuitively, to create an event composition, a top-down ap-
proach that finds substitutes for the event pattern (or its
sub-patterns) is necessary. In the following we describe the
mechanisms to create event compositions based on substi-
tution, and then choose the structurally optimized compo-
sitions which demand the least amount of traffic over the
network.

5.2.1 Substitution based Event Composition Algorithm
The top-down event composition algorithm based on sub-
stitution (Algorithm 2) traverses a query tree from the root
node to the leaves to find substitutes for subtrees or different
partitions of subtrees.

The getSubstitutes method in line 2 is a key operation in Al-
gorithm 2, it retrieves the complex event declarations whose
patterns are substitutes to the query. The algorithm first
tries to find a identical tree from a list of candidate canoni-
cal trees for the whole query tree. If there is a match, it will
replace the query tree with the matching event declaration
node.

When there’s no direct match for a query, the algorithm
tries to find substitutes for sub-trees (or sub-tree partitions)
of the query. If the root node of the query is a repetition op-
erator, it will first change the cardinality of the operator to
its factors (starting from the biggest factor) and try to find
substitutes for all factors (including 1, which makes the rep-
etition a sequence), if it failed, the algorithm is recursively
invoked for each direct sub-trees (DSTs) of the root.



Algorithm 2 Creates optimal composition plans.

Require: Query Tree: ST , Candidate Trees: cand Query
Root: root.

1: procedure compose(ST , cand, root)
2: matchingED ← getSubstitutes(ST, cand)
3: if matchingED 6= ∅ then
4: replacePattern(ST,matchingED, root)
5: else if root.type = REPETITION then
6: hasReplacement← false
7: for f ∈ getFactors(root.r) ∪ 1, r > f >= 1 do
8: newRoot← createRepetition(root.r/f)
9: root.setCardinality(f)

10: matching ← getSubstitute(ST, cand)
11: if matching 6= ∅ then
12: ST ← ST.addRoot(newRoot)
13: replacePattern(ST,matching, root)
14: hasReplacement← true
15: break
16: end if
17: end for
18: if hasReplacement = false then
19: for dst ∈ getDSTs(root, ST ) do
20: compose(ST, cand, dst.getRoot())
21: end for
22: end if
23: else
24: hasMatchedPartition ←

analyzePartition(ST, cand, root)
25: if hasMatchedPartition = false then
26: for dst ∈ getDSTs(root, ST ) do
27: compose(ST, cand, dst.getRoot())
28: end for
29: end if
30: end if
31: end procedure
32:
Require: Query Tree: ST , Candidate Trees: cand Query

Root: root.
Ensure: Boolean result.
33: procedure analyzePartition(ST, cand, root)
34: partitions← getDSTPs(ST, root)
35: replacements← ∅
36: for dstp ∈ partitions do
37: replacement← getSubstitutes(dstp, cand)
38: replacements← replacements ∪ replacement
39: end for
40: if replacements 6= ∅ then
41: replacements ←

getBestReplacements(replacements)
42: replaceAll(ST, replacements, root)
43: return true
44: else
45: return false
46: end if
47: end procedure

If the root is a sequence, conjunction or alternation opera-
tor, the algorithm will create different non-overlapping parti-
tions (using the getDSTPs method in line 34, example of the
operation is illustrated in Figure 6) with its DSTs. Then,
the algorithm will try to find substitutes for each part in
each DST partitions. Once all substitutes for a partition are

found, the algorithm adds the composition plan for the par-
tition to a list. After all possible partitions are investigated,
the composition plan with the lowest traffic demand in the
list will be picked (line 41) and corresponding replacements
are made. If no partitions have complete substitutions, the
composition algorithm is invoked on each DSTs of the root
node.
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Figure 6: Example of creating DST combinations

5.2.2 Complexity Analysis
Algorithm 2 guarantees the creation of structurally opti-
mized composition plans because all sub-trees and possi-
ble partitions of sub-trees are examined. However, it comes
with the price of very high time complexity. The basic
operation of the algorithm is the getSubstitutes method,
which checks the graph isomorphism between a query and
a candidate. The getSubstitutes operation needs to be exe-
cuted for every sub-tree and sub-tree partition for the query,
comparing with every existing candidate. Given n candi-
dates, for a query with average height h and node degree
d, the time complexity of the composition algorithm w.r.t.
getSubstitutes is O((2d)hn). Clearly, the algorithm cannot
scale and we need to have a much faster way to compose
complex event services.

5.3 Event Pattern Composition based on Re-
usability Index

To accelerate the composition, a natural thought is to in-
dex the event syntax trees, so that for a certain sub-query
(sub-tree or sub-tree combination), the number of examined
candidates can be reduced. Additionally, if the index can
tell which parts of a query can reuse existing syntax trees,
the number of examined sub-queries can also be reduced.
Therefore, we propose to build a reusability index for event
syntax trees. In the following we first define the reusable
relation between syntax trees. Then we use this relation to
organize syntax trees into a hierarchy. Finally we show how
this hierarchy is used to accelerate the event composition.

5.3.1 Reusability of event patterns
An event pattern is reusable to another, if the detection of
the former can be used in the detection of the latter. We
distinguish between directly reusable and in-directly reusable
relations. An event pattern ep1 is directly reusable to ep2,
denoted Rd(ep1, ep2), iff ep1 is a sub-pattern of ep2, i.e.,
the canonical syntax tree of ep1 is a sub-tree of the canoni-
cal syntax tree of ep2. We formally define directly reusable
relation Rd in Definition 5.



Definition 5 Rd ⊂ P × P where P is a set of event
patterns. Rd(p1, p2) holds for p1, p2 ∈ P ⇐⇒ ∃T (v) ⊆
fcanonical(p2)(fcanonical(p1) = T (v)). We denote p1 is
directly reusable to p2 on node v.

An event pattern ep1 is in-directly reusable to ep2, denoted
Ri(ep1, ep2), iff ep1 is not directly reusable to ep2, but
ep1 can be transformed into ep′1 using a sequence of op-
erations on the canonical syntax tree of ep1, as a result, it
makes Rd(ep′1, ep2) hold. These operations have four types:
Ffilter : T × F −→ T attaches filters to the roots of syntax
trees; Fmultiply : T × N+ −→ T multiplies the cardinality
of repetition of the roots; Fappend : T × T −→ T adds a se-
quence of DSTs to the sequential roots as prefixes or suffices;
Fadd : T ×T −→ T adds a set of DSTs to the parallel roots.
In the above function definitions, T is a set of syntax trees,
F is a set of filters. We formally define in-directly reusable
relation Ri in Definition 6

Definition 6 Ri ⊂ P × P where P is a set of event
patterns. Given T = {the set of all syntax trees},
N+ = {positive integers}, F = {the set of all filters},
Ffilter, Fmultiply, Fappend, Fadd =
{sets of transformation functions};
Ri(p1, p2) holds for p1, p2 ∈ P ⇐⇒ ¬Rd(p1, p2)∧∃p′1 ∈
P, T ′ ⊂ T, F ′ ⊂ F, n ∈ N+, T1 = fcanonical(p1), T ′

1 =
fcanonical(p

′
1), r = {the root node of T1}, ff ∈

Ffilter, fm ∈ Fmultiply, fadd ∈ Fadd, fapp ∈
Fappend(Rd(p′1, p2)∧

T ′
1 =


ff (fm(T1, n), F ′) type(r) = Rep

ff (fm(fapp(T1, T
′), n), F ′) type(r) = Seq

ff (fm(fadd(T1, T
′), n).F ′) type(r) = And|Or

 .

Similarly, we denote p1 is in-directly reusable to p2 on
node r.

We now formally define the reusable relation on event pat-
terns R in Definition 7. An example of reusable relations is
depicted in Figure 7

Definition 7 R = (Rd ∪Ri)

5.3.2 Event Pattern Reusability Hierarchy
With the reusable relation, we can build a hierarchy of canon-
ical event syntax trees, called an Event Reusability Hierar-
chy (ERH). An ERH is a Directed-Acyclic-Graph (DAG),
denoted ERH = (T,R) where T is a set of nodes (canon-
ical trees derived from patterns) and R ⊂ T × T is a set
of edges (reusable relations) connecting nodes. Given an
ERH erh = (T,R), P is the set of event patterns of trees
in T , ∀(t1, t2) ∈ E, R(p1, p2) holds and @p3 ∈ P such that

e1

SEQ

e2

OR

e4

e3

e1

SEQ

e2 e3

SEQ

e2 e3

directly reusable in-directly reusable

in-directly reusable

Figure 7: Example of event pattern reusability

R(p1, p3)∧R(p3, p2), where p1, p2 ∈ P are event patterns of
t1, t2. According to this definition, if we build an ERH for
the three event patterns in Figure 7, the edge at the top-
right is ignored. The nodes do not reuse any other nodes
are called roots in the ERH, the nodes cannot be reused by
other nodes are leaves.

Constructing an ERH requires iteratively inserting canoni-
cal trees of event patterns into the hierarchy. If not all nodes
can be inserted into a single ERH, we obtain a set of sepa-
rated ERHs, called a Event Reusability Forest (ERF). The
algorithm that inserts a node into a given ERF is shown in
Algorithm 3.

Algorithm 3 Insert an canonical tree t to reusability forest
erf.

Require: Canonical Tree t, ERF erf .
1: procedure insert(t, erf )
2: roots← getRoots(erf ), leaves← getLeaves(erf )
3: erf .addNode(t)
4: parents← getReusable(roots, t)
5: drawEdges(parents, t)
6: childNodes← getChildNodes(parents, erf )
7: parents ∪ getReused(childNodes, t)
8: drawEdges(parents, t)
9: remove redundant edges

10: if parent is modified then
11: go to 6
12: end if
13: perform reversed operations on leaves
14: end procedure

The above algorithm takes the canonical tree t of event pat-
tern ep and an event reusability forest as inputs. As the
first step, it finds all p ∈ P where P is the set of nodes in
the forest such that R(p, t) holds, starting from the roots
(line 4). Then the algorithm draws all edges for (p, t) and
removes the redundant edges. As the second step, it draws
all necessary edges for (t, p′), where p′ ∈ P ∧ R(t, p′) holds.
During the navigation of nodes, if a tree t′ = t is found, the
algorithm terminates. This step is omitted in Algorithm 3
for brevity.

As mentioned above, finding reusable components or substi-
tutes for a certain pattern can be achieved by the first step



of the node insertion algorithm. Compared to Algorithm 2
in which all nodes may need to be compared, we can now use
Algorithm 3 to prune the irrelevant parts of the hierarchy
and reduce the number of comparisons required.

5.3.3 Event Composition Algorithm with ERF
Although we may improve the efficiency of the event com-
position by reducing the number of comparisons required,
it comes with the price of more complicated comparisons.
Reusability checking is based on subgraph isomorphism, which
is a generalization of substitute checking and is NP-complete.
Moreover, the full potentials of the reusability index are not
exploited.

In fact, once a query tree representing an event pattern is
inserted into the ERF, the components needed in the com-
position plans of the event pattern are prepared, even if no
identical syntax trees are found for the whole query. All we
need to do is to gather the parent nodes of the inserted query
and replace appropriate parts of the query with the event
declarations of these parent nodes. In cases when in-directly
reusable nodes/sub-trees are replaced, additional transfor-
mation functions are invoked. If the replacement results in
a bound query, the composition plan is derived, otherwise,
the composition fails due to the lack of required primitive
event services. The algorithm that accomplish this task is
given in Algorithm 4.

Algorithm 4 Event composition for query Q with ERF erf.

Require: Query Tree: Q, ERF erf .
Ensure: Composition Plan Q.
1: procedure composeWithIndex(Q, erf )
2: insert(Q, erf )
3: if an identical node is found then
4: EDs ← event declarations of the identical node

return getOptimal(EDs)
5: end if
6: parents← getParents(Q, erf )
7: for p ∈ parents do
8: if Rd(p,Q) then
9: directlyReplace(Q, p)

10: else
11: inDirectlyReplace(Q, p,getDSTs(p))
12: end if
13: end for
14: if Q is bound then return Q
15: end if
16: Fail
17: end procedure

The directlyReplace operation in line 9 replace the sub-tree
in Q that is identical to p with the optimal event declara-
tions of p. When Ri(p,Q) holds and p′ = F (p) is the trans-
formed pattern, according to Definition 6, fcanonical(p

′) ⊆
fcanonical(Q)∧ the set of DSTs of fcanonical(p) is a subset of
the DSTs of fcanonical(p

′). The inDirectlyReplace opera-
tion will replace all DSTs of p′ in Q which are identical to the
DSTs of p with the event declarations of p, with necessary
filter attachments and cardinality changes.

Compared to Algorithm 2 which requires O(n(2d)h) graph
isomorphism checks to find proper substitutes, Algorithm 4

only needs O(m) subgraph isomorphism checkings to find
reusable components, while m ≤ n if all input parameters
are the same. The efficiency of event composition is greatly
improved by Algorithm 4. However, Algorithm 4 does not
guarentee the results are structurally optimized, because
with in-directly reusable components it only tries to cover
the DSTs of the in-directly reused node with the candidate
components once, i.e., different partitions of candidates are
not exhausted and evaluated. Nevertheless, the algorithm
still tends to reuse more coarse grained components, which
gives relatively good composition plans.

6. EVALUATION
In this section, we evaluate the performance of the proposed
algorithms with prototypes and simulation datasets. Three
sets of experiments are conducted to evaluate the perfor-
mance of the event query reduction (Algorithm 1), event
reusability forest construction (Algorithm 3) and event com-
positions (Algorithm 2 and 4). In this section, we first
present our general experiment settings, then, we elaborate
the detailed settings for each experiment and explain the
results.

6.1 General Experiment Settings
All experiments are carried out on a Macbook Pro with a
2.53 GHz duo core cpu and 4 GB 1067 MHz memory. Pro-
totypes are developed in Java. The Java Virtual Machine is
configured with a minimal heap size of 64 MB and a maximal
heap size of 256 MB.

To have more accurate results, all results are averaged from
5 to 10 test iterations for each test setting. To ensure the
test results are unbiased, we develop an Event Pattern Gen-
erator (EPG) to create random event patterns/queries. The
EPG will choose the leaf nodes used in event patterns ran-
domly from 10 different primitive events. The event opera-
tors are also randomly created as roots or intermediate nodes
in query trees. To ensure the random event pattern creation
stops at some point, also to have some control on the size of
patterns (number of nodes in the query tree) created, EPG
receives two parameters: height and degree, specifying the
maximal tree height and degree of the output. EPG is used
to create simulated datasets in our experiments.

6.2 Performance of Event Query Reduction
Query reduction is a basic and important operation in our
prototype. To test its performance, we use EPG to generate
5000 event patterns. The query trees of these patterns have
a maximum degree and height of 5. We invoke the query
reduction algorithm on each pattern and group the execution
time by the size of patterns. In this way we can derive the
minimal, maximum and average reduction time for event
patterns of different sizes. To obtain more accurate results,
groups with less than 10 patterns are excluded from the
results. Figure 8 shows the results of the experiment.

In the results we can see that most event patterns can be
reduced to their canonical forms efficiently, in fact, 92% of
the event patterns are reduced in less than 100 ms. How-
ever several ”spikes” occur in the maximal reduction times,
2.4% event patterns took more than one second to be re-
duced, and in extreme cases it goes up to 8 seconds. After
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Figure 8: Execution time of query reduction

investigating the data set we find that these extremely long
reduction time are due to the nested repetition nodes in the
query tree. Since the repetition nodes are transformed into
sequence operators during merge operations, they may sig-
nificantly increase the total size of the pattern. As a result
the merge operation may take much more time. A partial
solution to the problem is to use faster graph isomorphism
algorithms and accelerate the merge operations. In conclu-
sion, the query reduction algorithm is efficient for most event
queries.

6.3 Performance of Event Reusability Forest
Construction

We evaluate the feasibility of ERF construction by measur-
ing the time required. The EPG is used to create 100 to
1500 random event patterns with different maximal degree
and height parameters. Then, we invoke the ERF construc-
tion algorithm on these sets of patterns and observe the time
needed. Figure 9 shows the results of the experiment.
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Figure 9: Execution time of hierarchy construction

In the above results, the lowest blue line indicates the time
needed for constructing an ERF with sets of random event
patterns with an average pattern size of 10 nodes, for 1500
event patterns, it took 58 seconds to complete the construc-
tion. Similarly, the red line in middle represents the set
of event patterns with 25 nodes in average and completes
the construction in 323 seconds. Finally, the green line rep-
resents the set of event patterns with 70 nodes in average
and took nearly a hour to construct the hierarchy. The re-
sults indicate that for event patterns with around 25 nodes,
inserting it into a 1500-node forest could take hundreds of

milliseconds. However, inserting a large and complex event
pattern with about 70 nodes into a large forest with 1500
very complicated event patterns could take more than 2 sec-
onds.

6.4 Performance of Event Composition
To evaluate the composition algorithms, we compose the
same sets of queries based on the same sets of candidate re-
placements/reusable components for both indexed and unin-
dexed algorithms and compare their results. More specifi-
cally, we use EPG to create 500 and 1000 event patterns with
an average pattern size of 25 nodes as candidates. Then we
use EPG again to create 3 sets of event patterns as queries.
There are 100 event patterns in each query set and their av-
erage pattern size are 10, 14 and 25 nodes. Figure 10 shows
the time needed for each query set against each candidate
set using indexed or unindexed composition algorithms.
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Figure 10: Execution time of composition: indexed
vs. unindexed

The results indicate that for small event patterns, the unin-
dexed approach out-performs the indexed one, but for large
event patterns the indexed algorithm is much faster. This is
aligned with our discussions in Section 5: reusability check-
ing is more complicated than graph isomorphism, but the
number of subgraphs compared is much less for reusability
checking in large graphs. In fact, we also tested with 70-
node queries, the indexed approach took 75 and 157 seconds
to complete but the unindexed algorithm terminates before
finish due to insufficient memory.

Another factor causing the slow indexed composition on
small patterns is that the shape of the forest is too ”flat”
for random patterns, i.e., very few candidate event patterns
reuse others. In fact, we observed that about 80% of the
nodes in the random forests are roots which do not reuse
other patterns. In such forests, the advantage of navigating
the forest/hierarchy to avoid unnecessary comparisons is not
significant. In real world scenarios, we have reasons to be-
lieve users may use existing event patterns as templates to
create new ones, so that the probability of reusability can be
higher than randomly created datasets. To evaluate the im-
pact, we assign a reuse probability from 10% to 90% to the
EPG and make it reuse existing patterns with the assigned
rate. Figure 11 demonstrates the impact of reuse probabil-
ity. It shows the time required for composing 100 14-node
queries on 1000 14-node candidates created with different
reuse probabilities. The results indicate that even for sim-



ple event patterns, the indexed approach is faster than the
unindexed one when the probability of reuse is above 70%.
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7. CONCLUSIONS AND FUTURE WORK
In this paper, we provide business events through services
and enable the reuse of business event rules and patterns by
providing pattern based event service discovery and com-
position. We propose an event service model to describe
event service requests and advertisements with both event
patterns and attributes. Then we provide an event pattern
reduction algorithm to reduce event patterns into canonical
forms so that they can be compared for semantic equiva-
lence. Based on the semantic equivalence checking and the
method to estimate traffic demands for pattern composition
plans, we develop a event pattern composition algorithm
that traverses the query tree in a top-down manner and
finds replacements to derive structurally optimized compo-
sitions with the least estimated traffic demand. To improve
the efficiency of composition algorithm, we propose to index
event patterns with a reusable relation and develop another
composition algorithm based the reusability index. In our
prototype experiments we demonstrate the feasibility of our
proposed approaches and prove that the indexed composi-
tion algorithm is more efficient when dealing with large event
queries and for a large number of candidate event services.

Although we focus only on pattern based matchmaking for
event services, in future we plan to take constraints on event
attributes, especially non-functional properties (NFP) into
consideration while creating event compositions. We need
to develop algorithms to delegate constraints from complex
event service to its members and propagate NFPs from mem-
ber events to complex ones. Moreover, we will consider the
means of adding more event operator (e.g.: aggregation) and
transforming event patterns into stream queries so that they
can be executed. Experiments on realistic datasets are also
on agenda.
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