
Grand Challenge: Automatic Anomaly Detection over Sliding
Windows

Tarek Zaarour
Insight Centre for Data Analytics,

NUI, Galway
tarek.zaarour@insight-centre.org

Niki Pavlopoulou
Insight Centre for Data Analytics,

NUI, Galway
niki.pavlopoulou@insight-centre.org

Souleiman Hasan
Lero - The Irish Software Research

Centre, NUI, Galway
souleiman.hasan@lero.ie

Umair ul Hassan
Insight Centre for Data Analytics,

NUI, Galway
umair.ulhassan@insight-centre.org

Edward Curry
Insight Centre for Data Analytics,

NUI, Galway
edward.curry@insight-centre.org

ABSTRACT
With the advances in the Internet of Things and rapid generation of
vast amounts of data, there is an ever growing need for leveraging
and evaluating event-based systems as a basis for building real-
time data analytics applications. The ability to detect, analyze, and
respond to abnormal patterns of events in a timelymanner is as chal-
lenging as it is important. For instance, distributed processing envi-
ronment might affect the required order of events, time-consuming
computations might fail to scale, or delays of alarms might lead
to unpredicted system behavior. The ACM DEBS Grand Challenge
2017 focuses on real-time anomaly detection for manufacturing
equipments based on the observation of a stream of measurements
generated by embedded digital and analogue sensors. In this paper,
we present our solution to the challenge leveraging the Apache
Flink stream processing framework and anomaly ordering based on
sliding windows, and evaluate the performance in terms of event
latency and throughput.

CCS CONCEPTS
• Computer systems organization → Distributed architec-
tures; • Software and its engineering → Publish-subscribe
/ event-based architectures;Message oriented middleware; • The-
ory of computation→ Parallel computing models;

KEYWORDS
event-based processing, anomaly detection, event ordering, K-means,
Markov chain model

ACM Reference format:
Tarek Zaarour, Niki Pavlopoulou, Souleiman Hasan, Umair ul Hassan,
and Edward Curry. 2017. Grand Challenge: Automatic Anomaly Detec-
tion over Sliding Windows. In Proceedings of DEBS ’17, Barcelona, Spain,
June 19-23, 2017, 5 pages.
https://doi.org/10.1145/3093742.3095105

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
DEBS ’17, June 19-23, 2017, Barcelona, Spain
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5065-5/17/06. . . $15.00
https://doi.org/10.1145/3093742.3095105

1 INTRODUCTION
Lately the Internet of Things has gained too much attention both
from academia and industry. This contributes to the ever grow-
ing real-time data analytics applications, like anomaly detection.
Real-time anomaly detection in event-based systems is used in
many fields, like cyber-attack detection, environmental and traffic
monitoring energy, and industry [10]. In a manufacturing envi-
ronment, the ability to detect errors, problems or defections using
data for equipment’s sensors and be proactive so that appropriate
actions can be taken. These actions allow for the detection and
response to issues as they happen and sustain the normal behavior
and satisfactory performance of the manufacturing process.

A manual approach to diagnosis of manufacturing anomalies
is laborious and time-consuming. Therefore, a real-time compu-
tational analysis of a stream of events is crucial, yet challenging.
Identifying the type and source of a defect could sometimes be
infeasible, because the analysis of the data might be inaccurate or
the response could be late for actions to be taken. Producing false
alarms could result in an unexpected equipment behavior and un-
necessary actions to be taken. The speed of the analysis should also
be appropriate for actions to happen on time in case of an anomaly.
Often delays might be introduced, because the analysis might not
scale well, or the events might not come in order; therefore, the
system can try to wait for a period of time and then reorder them
for the final output.

This year’s challenge [5] focuses on a real-time anomaly detec-
tion solution for streams of events that derive from sensors of fixed
or dynamic machines. These events contain values of observed
properties, such as temperature, pressure, etc., that are associated
with specific timestamps. Our solution reads these events and tem-
porarily stores them in window frames, where they are clustered
with amini-batch K-means algorithm. The state transitions between
clusters are made for training a Markov chain model. The probabil-
ity of a sequence of transitions within these window frames define
the detection of an anomaly if it is lower than a given threshold.

For example, a molding machine may have sensors collecting
indicators of its functions such as its temperature. It is normal
for temperature to fluctuate within some range. However, if the
temperature readings indicate a series with a very high and very
low value within a window of continuous readings then a real-time
analytics platform could detect that there is a malfunction that
started in a specific timestamp within this range.

310

DEBS ’17, June 19-23, 2017, Barcelona, Spain Tarek Zaarour, Niki Pavlopoulou, Souleiman Hasan, Umair ul Hassan, and Edward Curry

Figure 1: Solution architecture.

The remainder of this paper is structured as follows: Section 2
outlines the challenges associated with the problem and Section
3 presents our proposed approach. Section 4 discusses the experi-
mental results and Section 5 concludes the paper.

2 CHALLENGES AND METHODOLOGY
The graph-structured data and event grouping strategy of the DEBS
Grand Challenge 2017 poses various challenges. The first challenge
is splitting graph-structured data points into separate timestamped
events. The second challenge revolves around achieving high scala-
bility and efficient allocation of computational tasks which requires
parallelizing two operators that implement K-means clustering and
a Markov Chain model respectively. Whereas, the third challenge
is maintaining the order of events in a parallel processing environ-
ment.

• Consistent Splitting: The input stream consists of data
points that represent what is referred to as observation
groups. A data point or observation group read by the
system at a certain point in time contains up to 120 mea-
surements that are all associated with a single timestamp.
The different measurements need to be windowed and pro-
cessed independently. This requires consistent splitting
while assuring that each generated event is bound to the
timestamp of the observation group it belongs to.

• Scalability and Task Allocation: Achieving paralleliza-
tion can be approached in two ways. 1) Splitting each inde-
pendent windowed computation into multiple tasks. How-
ever, the size of the window poses a limitation because
splitting, processing, and merging a relatively low work-
load can be more time consuming than serial processing.
2) Splitting the input stream into logical keyed streams
based on the different types of measurements allows for
windowed computations to be performed in parallel. This
is a more efficient way, thus in our solution, an operator

is split into several parallel instances and each instance
performs an independent windowed computation.

• Order of Anomalies: Parallel processing might affect the
order of processed events. To resolve this issue, we added
an ordering task that buffers event notifications or anom-
alies over a sliding time window and sorts them based on
their timestamp. Yet at a high level of parallelism, an event
with an earlier timestamp than the events in the current
window might appear in the next window slide; hence, we
only forward the event holding the earliest timestamp in
the current window.

3 ANOMALY DETECTION SOLUTION
Our solution follows a parallel stream processing paradigm as we
have data coming at high injection rates requiring continuous time-
consuming analytics computations. We first give an overview of
our architecture, where we also go through operator implementa-
tion details, then we refer to the technology stack that is used for
implementation.

3.1 Overview
The proposed solution shown in Figure 1 comprises six logical oper-
ators that apply complementary transformations on the incoming
event stream resulting in a continuous workflow that follows the
paradigm of distributed stateful stream processing. The following
are the key components:

• System Adapter: As described in the challenge, a system
adapter is in place to: (1) register the system consumer and
producer with input and output queues; (2) make sure that
the benchmarking execution environment that hosts all
components is initialized and ready; and (3) send a mes-
sage on the command queue to inform the benchmarking

311

Grand Challenge: Automatic Anomaly Detection over Sliding Windows DEBS ’17, June 19-23, 2017, Barcelona, Spain

platform that it is ready to process a task or react to a
termination message.

• Event Extractor: The event extractor is in charge of read-
ing input events, extracting relevant pieces of information
and its marshalling into an appropriate format. Each data
point read by this operator represents an observation group
that is associated with a specific timestamp and contains
several observed properties. Moreover, the challenge pro-
vides a metadata file that contains the number of clusters
for each stateful observed property generated by each in-
dividual machine. The event extractor: 1) splits each obser-
vation group into individual observed properties; 2) binds
each observed property with the timestamp of the obser-
vation group it belongs to; and 3) adds relevant metadata
before pushing the newly generated event downstream.

• Central Splitter: Every data point in the stream consists
of various sensor readings that can be windowed and pro-
cessed independently. Consequently, in order to scale the
system to support data coming from more machines, this
component partitions the stream logically based on the
different observed properties. Therefore, allowing down-
stream windowed computations to be performed in paral-
lel.

• K-means Clustering Model Operator: To leverage the
large variability in observed properties, multiple instances
of this operator can run concurrently on chunks of events
assigned to overlapping sliding windows. Specifically, it
implements K-means clustering by realizing the following
functionality for each window of an observed property: (1)
finding cluster centers; (2) assigning events to the closest
cluster; (3) iterating until convergence or until it reaches
a maximum number of allowed iterations; and (4) con-
tinuously producing sequences that represent the cluster
membership of each event that belongs to the current win-
dow.

• Markov Model Operator: This component is in charge
of training the Markov chain model where each point in
the previously generated sequence represents a separate
state. The main goal of performing this computation is to
detect if the assignment of a point to a certain cluster is
unlikely to happen, or in other words if the point is an
outlier. For this to be detected the number of transitions is
calculated between all states within each window and the
combined transition probability of the last N transitions
is calculated and checked against a given threshold Td . In
case of a deviation, an anomaly is produced and bound to
the timestamp of the event that caused it.

• Ordering Operator: The stream is split into logical keyed
streams that can be processed independently by assign-
ing multiple tasks. Thus, allowing the distribution of both
the K-means and Markov Model Operators across paral-
lel workers can introduce out-of-order anomalies. This
operator is in place to reorder the generated event notifica-
tions based on their timestamps. As shown in Figure 2, the
ordering operator buffers all anomalies it receives over a
sliding time window, it then sorts all assigned anomalies on

each window and forwards the anomalies with the earliest
timestamps.

Figure 2: Sorting anomalies over sliding windows. The num-
bers represent the different timestamps and the blocks rep-
resent each window that slides by one timestamp each time.

3.2 Technology stack overview
We examined Apache Storm [12], Apache Spark [14] and Apache
Flink [1] as our stream processing framework. We decided not to
use Storm, because it did not support batching capabilities in case
we needed them. Between Spark and Flink, we decided to use Flink,
even though Spark is more mature, because it processes tasks with
lower latency due to its pipeline execution. We also used Apache
Jena [7], which is a framework for building Semantic Web and
Linked Data applications, as an RDF processing framework. Docker
[8], a platform for building, shipping and running distributed appli-
cations, was used for containerizing our software, since the eval-
uation platform consists of several containers. RabbitMQ [9], a
message queueing system, is also used on the evaluation platform
as a message bus. An overview of the different technologies is
shown in Figure 3.

Figure 3: Technology stack.

4 EVALUATION
As part of the challenge, and in order to evaluate the performance
of our system in comparison with solutions submitted by all partici-
pants, each team submitted their system to an automated evaluation

312

DEBS ’17, June 19-23, 2017, Barcelona, Spain Tarek Zaarour, Niki Pavlopoulou, Souleiman Hasan, Umair ul Hassan, and Edward Curry

Table 1: Event throughput in Mbps

Number of messages 1000 10,000 20,000
Throughput(Mbps) 20.235 30.341 30.805

cluster comprising three 8-core nodes. Solutions were ranked ac-
cording to system latency and throughput. System latencymeasures
the average time difference between submitting an event notifica-
tion to the input queue and writing the resulting anomaly to the
output stream. The experiments show how our distributed system
performs at relatively low and high injection rates. We compare the
resulting latency and throughput to that of the sequential version,
where parallelism is set to one, thus no additional event ordering
phase is needed.

Figure 4 shows the mean latency results for around 30 experi-
mental runs. As requested in the challenge description, we give the
system latency as a function of different injection rates. In Figure 5
we show how system performance varies as we change the num-
ber of machines being monitored. As input stream, we did most
of our experiments on 10,000 and 20,000 messages where a single
message read at a certain point in time contains up to 120 different
measurements (events). Table 1 depicts the performance results in
terms of average throughput in Mbps as opposed to data volume.

Figure 4: System latency as a function of injection rate.

Sequential Approach: Figure 4 shows that our sequential ap-
proach performs better at a low injection rate i.e., 10 ms. However,
injection rate gets higher as more machines join, because each ma-
chine ingests data at the same rate concurrently. Therefore, the
mean latency increases exponentially as the number of machines
goes near 1000.

Parallelized Approach: The ordering operator increased the
mean latency at low injection rates to 359 ms. As more machines

Figure 5: System latency as a function of number of ma-
chines.

join, injection rate increases causing an increase in overall system
latency. Hence, the amount of latency eliminated by applying dis-
tributed processing becomes greater than the latency introduced by
the sliding window used for sorting anomalies. This causes a notice-
able decrease in overall latency from 1.2 seconds for the sequential
approach to 850 ms for the distributed approach.

5 RELATEDWORK
Researchers have previously tackled anomaly detection over event
streams. Ye et al. [13] trained a Markov chain model from a normal
sequence of cyber activity and compared it to a new sequence. The
higher the probability of a new sequence, the more likely is the
sequence of states derived from normal activity in the network.
Goldberg et al. [4] used the augmented Markov model (AMM) for
fault detection in the behavior of a group of mobile robots. Hahsler
et al. [6] and Dunham et al. [2] extended the AMM [4] and combined
it with the nearest neighbor algorithm for clustering to examine the
spatiotemporal nature of continuously arriving data and the predic-
tion of rare events. Fernandez et al. [3] presented a scalable stateful
stream processing system for smart grids based on the SEEP stream
processing platform. The system implemented parallel processing,
stateful operators, and semantic load-shedding to reduce events to
process downstream and periodic state-check pointing. Saleh et al.
[11] addressed partitioning for scalable complex event processing
over data streams. They presented a cost-based approach for parti-
tioning dataflow graphs and patterns in complex event processing
(CEP) queries. Our approach is based on the Markov chain model
that was used in [2, 4, 6, 13]. The work in [2, 6] is very similar to
this year’s challenge, although nearest neighbor algorithm is used
for clustering instead of K-means. [3, 11] gave us an idea of how to
better approach windowing solution in streaming processes.

313

Grand Challenge: Automatic Anomaly Detection over Sliding Windows DEBS ’17, June 19-23, 2017, Barcelona, Spain

6 CONCLUSIONS
In this work, we describe a scalable solution for the DEBS Challenge
2017. The goal is to detect anomalies from RDF data generated by
multiple sensors embedded in different machines. Our approach
uses a mini-batch version of K-means and Markov chain models
by leveraging the streaming capabilities of Apache Flink. It also
reorders the anomalies according to their timestamp by using slid-
ing windows. Our results showed how the parallel version coped
with high injection rates and performed better than the sequen-
tial one in terms of latency and throughput. However, the latter
performed better at relatively low injection rates, because there
was no need for buffering and sorting out-of-order anomalies. The
limitations we faced inspire several directions for future work. We
plan to investigate better implementations for sorting out-of-order
events in stream processing and to look further into logical stream
partitioning in favor of having better task distribution and resource
allocation.

ACKNOWLEDGMENTS
This work was supported in part by Science Foundation Ireland
grants 13/RC/2094 and SFI/12/RC/2289 and in part with the Euro-
pean Union’s Horizon 2020 research programmes Transforming
Transport (TT) grant No 731932 and Big Data Value ecosystem
(BDVe) grant No 732630.

REFERENCES
[1] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,

and Kostas Tzoumas. 2015. Apache flink: Stream and batch processing in a
single engine. Bulletin of the IEEE Computer Society Technical Committee on Data
Engineering 36, 4 (2015).

[2] Margaret H Dunham, Yu Meng, and Jie Huang. 2004. Extensible markov model.
In Data Mining, 2004. ICDM’04. Fourth IEEE International Conference on. IEEE,
371–374.

[3] Raul Castro Fernandez, Matthias Weidlich, Peter Pietzuch, and Avigdor Gal. 2014.
Scalable stateful stream processing for smart grids. In Proceedings of the 8th ACM
International Conference on Distributed Event-Based Systems. ACM, 276–281.

[4] Dani Goldberg and Maja J Matarić. 1999. Coordinating mobile robot group
behavior using a model of interaction dynamics. In Proceedings of the third
annual conference on Autonomous Agents. ACM, 100–107.

[5] Vincenzo Gulisano, Zbigniew Jerzak, Roman Katerinenko, Martin Strohbach,
and Holger Ziekow. 2017. The DEBS 2017 grand challenge. In Proceedings of the
11th ACM International Conference on Distributed and Event-based Systems, DEBS
’17, Barcelona, Spain, June 19 - 23, 2017.

[6] Michael Hahsler, Margaret H Dunham, et al. 2010. remm: Extensible markov
model for data stream clustering in r. Journal of Statistical Software 35, 5 (2010),
1–31.

[7] Apache Jena. 2015. A free and open source Java framework for building Semantic
Web and Linked Data applications. Available online: jena. apache. org/(accessed
on 28 April 2015) (2015).

[8] Dirk Merkel. 2014. Docker: lightweight linux containers for consistent develop-
ment and deployment. Linux Journal 2014, 239 (2014), 2.

[9] Apache RabbitMQ. 2017. RabbitMQ - Messaging that just works. URL:
https://www.rabbitmq.com/ (2017).

[10] Sebnem Rusitschka and Edward Curry. 2016. Big Data in the Energy and Trans-
port Sectors. In New Horizons for a Data-Driven Economy. Springer, 225–244.

[11] Omran Saleh, Heiko Betz, and Kai-Uwe Sattler. 2015. Partitioning for scalable
complex event processing on data streams. In New Trends in Database and
Information Systems II. Springer, 185–197.

[12] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M
Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu, Jake Donham,
et al. 2014. Storm@ twitter. In Proceedings of the 2014 ACM SIGMOD international
conference on Management of data. ACM, 147–156.

[13] Nong Ye, Yebin Zhang, and Connie M Borror. 2004. Robustness of the Markov-
chain model for cyber-attack detection. IEEE Transactions on Reliability 53, 1
(2004), 116–123.

[14] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion
Stoica. 2010. Spark: Cluster Computing with Working Sets. (2010).

314

