
Future Generation Computer Systems 76 (2017) 561–581
Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Automated discovery and integration of semantic urban data streams:
The ACEIS middleware
Feng Gao a,b,c,∗, Muhammad Intizar Ali c, Edward Curry c, Alessandra Mileo c,d

a Department of Computer Science, Wuhan University of Science and Technology, China
b Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial System, China
c Insight Centre for Data Analytics, National University of Ireland, Galway, Ireland
d Insight Centre for Data Analytics, Dublin City University, Ireland

h i g h l i g h t s

• We present the architecture of the Automated Complex Event Implementation System.
• We introduce a Complex Event Service (CES) Ontology, and demonstrate its usage.
• We define the formal semantics of the event in CES and align it with RSP semantics.
• We implement a query transformation system to create RSP queries from CES annotations.
• We show the usage of ACEIS in Smart City and optimize its capacity for concurrent users.

a r t i c l e i n f o

Article history:
Received 15 April 2016
Received in revised form
8 December 2016
Accepted 1 March 2017
Available online 30 March 2017

Keywords:
Semantic Web
Complex events
Service computing
RDF Stream Processing

a b s t r a c t

With the growing popularity of Internet of Things (IoT) technologies and sensors deployment, more and
more cities are leaning towards smart cities solutions that can leverage this rich source of streaming
data to gather knowledge that can be used to solve domain-specific problems. A key challenge that
needs to be faced in this respect is the ability to automatically discover and integrate heterogeneous
sensor data streams on the fly for applications to use them. To provide a domain-independent platform
and take full benefits from semantic technologies, in this paper we present an Automated Complex
Event Implementation System (ACEIS), which serves as a middleware between sensor data streams and
smart city applications. ACEIS not only automatically discovers and composes IoT streams in urban
infrastructures for users’ requirements expressed as complex event requests, but also automatically
generates stream queries in order to detect the requested complex events, bridging the gap between
high-level application users and low-level information sources. We also demonstrate the use of ACEIS
in a smart travel planner scenario using real-world sensor devices and datasets.

© 2017 Published by Elsevier B.V.
1. Introduction

An increasing number of cities have started to embrace the
idea of smart cities and are in the process of building smart city
infrastructure for their citizens [1]. Such infrastructures, including
sensors, open data platforms and smart city applications, can
improve the day to day life for the citizens. A typical example of

∗ Corresponding author at: Room 301, Unit 3, Building 9; Yang Guang Xin Yuan;
JiangHan District, Wuhan City, China.

E-mail addresses: feng.gao86@wust.edu.cn (F. Gao),
ali.intizar@insight-centre.org (M.I. Ali), edward.curry@insight-centre.org
(E. Curry), alessandra.mileo@insight-centre.org (A. Mileo).

http://dx.doi.org/10.1016/j.future.2017.03.002
0167-739X/© 2017 Published by Elsevier B.V.
smart city applications is the provision of real-time tracking and
timetable information for the public transport within the city.1
The city of Aarhus provides an open data platform called ODAA,2
which contains city related information generated by various
sensors deployed within the city, e.g., traffic congestion level, air
quality and trash-bin level etc. ODAA also encourages usage of
their open data platform for building smart city applications. In
the foreseeable future, more and more urban data will be made
available. The enormous amount of data producedby sensors in our
day to day life needs to be harnessed to help smart city applications
taking smart decisions on-the-fly.

However, despite the increasing amount of infrastructures
and datasets available, the uptake of smart city applications is

1 Live bus arrivals in London: http://countdown.tfl.gov.uk/#/.
2 Open Data Aarhus: http://odaa.dk.

http://dx.doi.org/10.1016/j.future.2017.03.002
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2017.03.002&domain=pdf
mailto:feng.gao86@wust.edu.cn
mailto:ali.intizar@insight-centre.org
mailto:edward.curry@insight-centre.org
mailto:alessandra.mileo@insight-centre.org
http://countdown.tfl.gov.uk/#/
http://odaa.dk
http://dx.doi.org/10.1016/j.future.2017.03.002

562 F. Gao et al. / Future Generation Computer Systems 76 (2017) 561–581
Fig. 1. Event service life-cycle.

hindered by various issues, such as the difficulty of discovering
the capabilities of the available infrastructure and once discovered,
integrating heterogeneous data sources and extracting up-to-
date, reliable information in real-time. Complex Event Processing
(CEP) [2,3] has matured from the last few decades that aggregates
low-level data and provide abstracted high-level information.
Recently, semantic event processing and RDF Stream Processing
(RSP) [4,5] have been studied to bring semantics into CEP and
deal with the data heterogeneity. Like most CEP solutions, existing
RSP engines assume the streams used in the queries are identified
and do not address the problem of discovering proper stream
sources on-demand. Moreover, various RSP platforms have been
created but a unified RSP syntax and semantics have yet to be
established [6], and hence, collaborations between different RSP
platforms are difficult. We plan to address this issue by providing
RSP capabilities as semantically described services and aligning the
formal semantics of different RSP engines.

We choose the service-oriented paradigm for enabling a collab-
orative, on-demand and cross-platform RSP, mainly because this
waywe can decouple RSP providers and consumers. SemanticWeb
Service (SWS) have been discussed extensively in service com-
puting. SWS transcends conventional Web Services by applying
Semantic Web techniques to realise automatic service discovery
and composition [7]. However, existing SWS approaches do not
cater complex event services While existing semantic service dis-
covery and composition approaches (e.g., WSMO,3 OWL-S4) show
great potentials in service discovery and composition compared to
syntactical service discovery [7], they are based on Input, Output,
Precondition and Effect, e.g., in [8]. However, the functionalities of
event services are determined by the semantics of the events they
deliver, which is captured by the event patterns defined within an
event algebra [9]. A pattern-based composition is needed for com-
plex event services, which is not available in state-of-the-art ser-
vice compositionmechanisms. Apparently we are not the first that
try to enable service-oriented event processing. In [10] an Enter-
prise Service Bus (ESB) based architecture was proposed. We es-
sentially seek to address a similar problem as in [10], but in the
context of RSP rather than conventional CEP.

In this paper, we present the Automatic Complex Event Imple-
mentation System (ACEIS), which is an automated discovery and
integration system for urban data streams. We design a seman-
tic information model to represent complex event services (as an
extension of OWL-S ontology) and utilise this information model
for the discovery and integration of sensor data streams. ACEIS
assumes that all available sensor data streams are annotated us-
ing the Semantic Sensor Network (SSN) ontology5 and stored in a
repository. Various Quality of Service (QoS) andQuality of Informa-
tion (QoI) metrics are also annotated for each sensor data stream.

3 Web Service Modeling Ontology: http://www.wsmo.org/.
4 OWL-S ontology: http://www.w3.org/Submission/OWL-S/.
5 SSN ontology: http://www.w3.org/2005/Incubator/ssn/ssnx/ssn.
ACEIS receives an event service request described using our com-
plex event service information model and automatically discovers
and composes the most suitable data streams for the particular
event request. ACEIS then transforms the event service composi-
tion into a stream query to be deployed and executed on a stream
engine to evaluate the complex event pattern specified in the event
service request. In summary, ACEIS is a middleware for managing
the life cycle of event services, which includes themodelling, plan-
ning, implementation, execution and adaptation. Fig. 1 illustrates
the life cycle of event services (by the analogy to Web Service life
cycle). Our previous work have discussed themodelling [11], plan-
ning [12] and adaptation [13] aspects. In this paper, we present the
big picture of ACEIS to show how different parts come together,
with a focus on how the implementation is carried out for event
services, and how the execution can be optimised. The contribu-
tions of this paper can be summarised as below:

∗ We present our Automated Complex Event Implementation
System serving as a middleware between Smart City applica-
tions and sensor data streams and we provide an overview of
its components and their interactions (Section 4).

∗ We describe the formal semantics of the event patterns in CES
and compare it with the query semantics of semantic event
processing systems to ensure a correct query transformation
and evaluation (Section 6).

∗ We implement an automatic query transformation system
to formulate continuous queries over semantic sensor data
streams based on the alignment of event and query semantics
(Section 7).

∗ We demonstrate how ACEIS is used in a Smart City Application
scenario and provide evaluation and optimisation for the
capacity of ACEIS, with regard to handling concurrent user
queries (Sections 8, 9).

Structure of the paper: In Section 2 we introduce the background
of our work (including RDF Stream Processing and Semantic
Web Service) and then compare our work with the state-of-
the-art. In Section 3, we present some Smart City scenarios,
together with various types of sensor data streams that can
be used in these scenarios as well as the challenges faced by
smart city applications. We present the overall architecture of
our system (ACEIS) in Section 4. A brief description of the sensor
data streams discovery and integration is provided in Section 5.
Section 6 lays down the formal semantics of the complex events
modelled in ACEIS. Section 7 discusses our automated query
transformation algorithmbasedon the event semantics and stream
query semantics. Section 9 discusses the optimisation techniques
for handling concurrent queries in ACEIS, before concluding in
Section 10.

Before we move on to the next section, we provide the defini-
tions of the terms used in this paper in Table 1.

2. Related work

In this paper, we focus on providing on-demand, cross-
platform RSP using Service Oriented Architecture. In this section,
we first introduce RSP and SWS as the context of our work.
Publish–Subscribe Systems are also relevant for this paper, since
they also discuss how different event processing results can be

http://www.wsmo.org/
http://www.w3.org/Submission/OWL-S/
http://www.w3.org/2005/Incubator/ssn/ssnx/ssn

F. Gao et al. / Future Generation Computer Systems 76 (2017) 561–581 563
Table 1
Concepts and definitions relevant for event services.

Concepts Definitions Examples

Event ‘‘An occurrence within a particular system or domain. . . ’’—Event
Processing in Action [3].

Any arrival or non-arrival of new data, or information derived
from those data, in an information system

Primitive event ‘‘An event that is not viewed as summarizing, representing, or
denoting a set of other events.’’—EPTSa

A traffic sensor observation reporting the vehicle count and
average speed on a street segment.

Complex event ‘‘An event consisting several different event instances’’—Event
Processing in Action [3].

A traffic jam event detected from traffic sensor readings.

‘‘An event that summarises, represents, or denotes a set of other
events.’’—EPTS

Event pattern ‘‘A template containing event templates, relational operators and
variables.’’—EPTS

A set of rules specifying how the traffic jam is detected from
sensor readings, e.g., 80% of the sensors have reported high
vehicle count and low average vehicle speed during the past
30 min repeatedly.

Service ‘‘A service is a self-contained, logical representation of a
repeatable business activity that has a specified outcome’’, ‘‘is a
‘black box’ to the consumer of the service’’—The Open Groupb

A data service provided via REST APIs allowing citizens to query
real-time status of city infrastructures.

Event service An asynchronous notification service that accepts subscriptions
from event consumers and delivers events.

A service publishing city events to citizens based on their
subscriptions.

Complex Event Service (CES) An event service that delivers complex events detected by an
underlying event engine for its consumers during the
subscription, with the event pattern(s) of the complex event(s)
published as part(s) of its service description.

An event service publishing traffic jam notifications.

Primitive Event Service
(PES)

An event service not equipped with CEP capability or does not
describe the event pattern in the service description, i.e., an
event service that is not a CES.

An event service publishing directly traffic sensor readings.

Event Service Network
(ESN)

A network consisting a set of interconnecting event services. The traffic jam service, the traffic reading service, and the
network allowing the former to utilise the latter.

a Event Processing Technical Society (EPTS): http://www.ep-ts.com/, last accessed: Dec. 2015.
b Open Group’s definition for service: https://www.opengroup.org/soa/source-book/soa/soa.htm, last accessed: May, 2015.
shared among event consumers. Finally, we compare our work
with some previous efforts on on-demand RSP/CEP.

2.1. RDF Stream Processing

RDF Stream Processing (RSP) is an emerging research area
that focuses on processing semantically annotated, continuously
streaming data. The vision of RSP is to perform real-time reasoning
and analysis over data streams and facilitate online knowledge
extraction. ETALIS [14] is one of the early attempts that realises
RDF Stream Processing using Prolog as the underlying reasoning
engine. ETALIS implements a set of CEP operators such as sequence,
negation and logical conjunction. C-SPARQL is another RSP engine
that builds upon Apache Jena libraries. Both ETALIS and C-SPARQL
took a black-box approach. More recently, CQELS implements a
white-box RSP approach, which provides native operator routeing
mechanisms and optimisations. Despite current efforts, RSP still
faces many challenges, such as coping with distributed computing
environments [15] and handling complex reasoning tasks [16].
Also, some limitations regarding stability and ability to process
multiple streams have been reported in CityBench [17]. Moreover,
existing RSPplatformsuse different query languages and execution
semantics [18], which hinders them from communicating and
collaborating with each other.

2.2. Semantic Web Services

According to [19], WSDL concepts are familiar to software
engineers thus they can easily implement and access services
using WSDL. However, WSDL services are notorious for the lack of
automated support for service discovery and composition [20,21],
because of lacking the semantic description of service capabilities
and consumers’ goals as well as the reasoning ability over
the capabilities and goals. Semantic Web Service (SWS) is a
research area that brings together web service and Semantic
Web technologies. SWS enriches web services with knowledge
representations and reasoning techniques. Semantic enrichments
for service descriptions, including SAWSDL,6 WSMO and OWL-S
and others, are used to facilitate automatic service discovery and
composition. In SAWSDL, modelReference can attach to portTypes
and message data types to indicate the category of operations
and messages. Lifting and lowering schema are used to transform
input and output data. In this way, composing web services based
on the semantics of IO messages are made possible. However, it
does not go beyond providing semantics to the service interface. In
WSMO and OWL-S, the semantics of input, output, precondition
and effects are captured by using ontologies and axioms. Non-
functional properties (service profile) are also captured.

Service discovery and indexing based on semantic similarity be-
tween a service request and a service description can be found
in [22–26]. Semantic service composition based on Artificial Intel-
ligence (AI) planning and forward/backward chaining algorithms
can be found in [27–30]. The above mentioned semantic service
discovery and composition takes into account only the functional
aspects of services. QoS aware service composition and optimisa-
tion is NP-hard [31]. Various techniques, e.g., [32,31,33–35], have
proposed different heuristics to solve the problem efficiently.

2.3. Publish–subscribe systems

Reusing event queries/subscriptions is discussed in many
publish–subscribe systems, including content-based event overlay
networks [36–42] and CEP query optimisation [43,44]. In event
overlay networks, event subscriptions are reused to facilitate the
‘‘downstream replication’’ and ‘‘upstream evaluation’’ principles
(as described in [36]) and reduce the traffic over the network.
In event query rewriting and optimisation, sub-queries can be
delegated to existing event processing nodes/agents when their
patterns match, in order to reduce processing burden of event
engines.

6 Semantic Annotations for WSDL: http://www.w3.org/2002/ws/sawsdl/, last
accessed: Mar. 2015.

http://www.ep-ts.com/
https://www.opengroup.org/soa/source-book/soa/soa.htm
http://www.w3.org/2002/ws/sawsdl/

564 F. Gao et al. / Future Generation Computer Systems 76 (2017) 561–581
Although the above works in event overlay networks and
query rewriting share some objectives with our work in terms of
improving the network and event processing efficiency, this paper
is different because (1) we do not focus on routing algorithms
which are central parts of event overlay network research, all
nodes in the event service network can host both event producers
and consumers and they are visible to all other peers and (2) we
do not re-order query operators in a way such that CPU usage
and latency can be minimised, which is central to query rewriting
techniques. Instead, we develop means to create event service
compositions based on the semantic equivalence and reusability of
event patterns, and then composition plans are transformed into
a set of federated stream reasoning queries, enabling a semantic
complex event processing over distributed service networks.

2.4. On-demand/unified event stream processing

The service-oriented computing paradigm fits our need for
a platform-independent, on-demand RSP due to its capability
of hiding implementation details while exposing communication
interfaces. Early attempts at integrating event processing into
service computing can be found in [45], where an Event-
Driven Service Oriented Architecture (EDSOA) is proposed. EDSOA
leverages event processing to triggerWeb Services but they do not
address event service discovery and composition. The work in [10]
provides complex event processing as regular services on an ESB
and implements a greedy algorithm to choose event services with
lower costs. However, [10] did not address the service satisfiability
problem, that is, a pattern-based event service selection is not
realised. Moreover, although it provides an event algebra, how
exactly this algebra canmap to existing CEP systems is not detailed.

The need for a unified event algebra (or query semantics)
has been acknowledged in many recent works in semantic event
processing (or RSP) [6]. Indeed, a unified event processing language
is indispensable for a cross-platform event/stream processing.
EVA [46] builds on and extends the Zimmer/Unland model [47]
(which is also the basis of our event algebra) and provides precise
event semantics. The proposed event algebra is implemented on
A-mediAS [48]. Profile and result transformations from EVA to
different target CEP systems are described [49] but an on-demand
collaboration for these systems is not realised

There exist several on-demand CEP/RSP systems that do not
rely on SOA as well. Semantic Streams [50] is inspired by SWS
and uses a Prolog-based system to infer proper streams to
address user interests. It supports reasoning on both functional
and non-functional properties (including geospatial reasoning),
but the composition relies on the stream type specification, not
the exact processing pattern. In H2O [51] a hybrid processing
mechanism is proposed, in which persistent queries that keeps
monitoring fine-grained data (online queries) and infrequent
queries over occasional events (on-demand queries) are modelled
and processed on different levels. The online queries provide
partial results to be used by on-demand queries. The benefit of the
hybrid approach is that the on-demandqueries do not have to store
a lot of irrelevant events thus improves the efficiency. However,
this architecture limits the expressiveness and flexibility of on-
demand queries. Moreover, how to decide whether a query must
be online or on-demand is not clear. In Dyknow [52], the authors
leverage C-SPARQL as semantic event processing units. They also
annotate streams on the meta-level (same as our approach) to
facilitate on-demand streamdiscovery. However, Dyknow streams
use proprietary stream formats, which is basically a vector of
values with a timestamp and duration. Although methods are
provided to transform RDF streams from/to Dyknow streams,
this rigid format could limit the flexibility of stream content
description. Moreover, the described streammatchingmechanism
only caters for simple event streams. Table 2 summarises the
comparison of the on-demand/unified event stream processing.
3. Smart city applications

In this section, we first describe some sample scenarios in
Smart City applications, then, we discuss the different types of
sensor data streamswhich can be potentially utilised by smart city
applications. Finally, we discuss the requirements and challenges
faced by these smart city applications consuming sensor data
streams.

3.1. Sample scenarios in a smart city

In CityPulse 101 scenarios,7 different Smart City applications
are described, including traffic management and travel planning,
smart health, street lamp control, smart tourism etc. These sce-
narios are also ranked considering multiple dimensions, such as
data availability, the need for integrating the components in City-
Pulse framework, usefulness for citizens and city administration.
In this paper, we mainly consider the travel planning application.
The essence of travel planning is to gather information that helps
bring a citizen from point ‘A’ to ‘B’ in the city while considering
real-time traffic condition, environmental condition, and different
user preferences. We consider this use case not only because it is
highly ranked on 101 scenarios, but also the fact that travel plan-
ning has an inherent level of complexity and it presents many typ-
ical challenges in Smart City applications (wewill elaborate on this
in Section 3.3). Moreover, it is relevant for almost all inhabitants in
the city and could be a big problem in large cities.

3.2. Smart city data streams

Sensors are nowadays used widely in urban environments [53].
IoT technologies not only provide an infrastructure for sensor de-
ployment but also provide amechanism for better communication
among these sensors. The continuously growing amount of data
produced by these sensors opens tremendous opportunities but it
is still under-explored: in order to unlock the potential hidden in
this data deluge, there is a need to support more interoperable and
faster development of applications that can find, capture and pro-
cess it in a scalable way. Besides IoT streams, data streams from
the social media can also be utilised in Smart City Applications. Ur-
ban data streams can be categorised into three different categories:
physical sensors, mobile and wearable sensors, and social media
data streams.

3.2.1. Physical sensors
Various sensors are being deployed by city administration with

an aim to closely observe and monitor the city infrastructure.
Traffic congestion, air quality, temperature, water pressure and
trash bin level sensors are a few examples of the sensors deployed
within the modern smart cities. Additionally, various sensors
are being deployed in smart buildings to detect critical events
happened therein, according to [54]. An example of physical sensor
in travel planning is pair-wised Bluetooth sensors.8 These sensors
leverage Bluetooth connections (or detections) to the devices in
vehicles to identify when a vehicle has entered (detection at first
point) or left (detection at the second point) the street segment.

Sensors are inherently dynamic in nature and somehow
unreliable, therefore more prone to fluctuations in quality. For
example, the accuracy of a sensor might be affected by its battery
level [55], air temperature, humidity [56] etc.

7 CityPulse 101 scenarios: http://www.ict-citypulse.eu/scenarios/.
8 Traffic sensor in Aarhus: https://www.aarhus.dk/da/borger/Trafik/Projekter/

Regulering/Bluetooth.aspx.

http://www.ict-citypulse.eu/scenarios/
https://www.aarhus.dk/da/borger/Trafik/Projekter/Regulering/Bluetooth.aspx
https://www.aarhus.dk/da/borger/Trafik/Projekter/Regulering/Bluetooth.aspx
https://www.aarhus.dk/da/borger/Trafik/Projekter/Regulering/Bluetooth.aspx
https://www.aarhus.dk/da/borger/Trafik/Projekter/Regulering/Bluetooth.aspx
https://www.aarhus.dk/da/borger/Trafik/Projekter/Regulering/Bluetooth.aspx
https://www.aarhus.dk/da/borger/Trafik/Projekter/Regulering/Bluetooth.aspx
https://www.aarhus.dk/da/borger/Trafik/Projekter/Regulering/Bluetooth.aspx
https://www.aarhus.dk/da/borger/Trafik/Projekter/Regulering/Bluetooth.aspx
https://www.aarhus.dk/da/borger/Trafik/Projekter/Regulering/Bluetooth.aspx
https://www.aarhus.dk/da/borger/Trafik/Projekter/Regulering/Bluetooth.aspx
https://www.aarhus.dk/da/borger/Trafik/Projekter/Regulering/Bluetooth.aspx

F. Gao et al. / Future Generation Computer Systems 76 (2017) 561–581 565
Table 2
Comparison of on-demand event stream processing.
3.2.2. Mobile and wearable sensors
Contrary to the physical sensors deployed by city administra-

tions and organisations, sensors attached to mobile devices pro-
vide additional information about the context of their carrier,
i.e., the citizens. Nowadays, amodern smartphone, owned and car-
ried by the majority of the citizens in the smart cities is equipped
with 10–15 sensors on average, including location, temperature,
light and proximity sensors. As the example introduced above,
smartphones can coordinate with the Bluetooth sensors and indi-
rectly measure traffic conditions. Also, Google has been using GPS
sensors in smartphones to monitor traffic.9 Modern cars also con-
tain sensors to continuously monitor the performance as well as
to provide assistance to drivers. Many wearable sensors are gain-
ing popularity and many people are adopting to the use of wear-
able sensorswithwireless connectionwith smartphone appswhile
they do physical exercises.

3.2.3. Social media data streams
Due to the increasing popularity and widespread use of social

media, social media streams have become an important and
valuable source of information in a smart city infrastructure [57].
For example, information about city events, including traffic,
accidents and even natural disaster (e.g., in [58]), can become
available much earlier on Twitter feeds than on the news. Trust,
reliability andprovenance aremajor concerns over the information
arising from social media streams, but various social streams
analysis methods have already been developed to overcome these
concerns, as surveyed in [59]. In [60], the authors introduce the
concept of Human as Sensors based on social media and other Web
2.0 techniques. In this paper, we borrow this concept to have a
coherent model and integration for urban data streams. Hereafter,
the term ‘‘sensor’’ in this paper refers to physical sensors, mobile
and wearable sensors or human sensors.

9 https://googleblog.blogspot.com/2009/08/bright-side-of-sitting-in-
traffic.html.
3.3. Requirements and challenges

Smart city applications face many challenges because of highly
distributed and dynamic nature of the sensor infrastructures
deployed in the smart cities. Below we discuss few of the
requirements and challenges faced by smart city applications
based on our experience.

• R.1: Heterogeneous data streams federation.
Data Federation combines heterogeneous sets of data to pro-

vide a unified view. In the context of smart city data, data fed-
eration is a key challenge due to the dynamicity and hetero-
geneity of various sensor streams. Querying and accessing the
data in many cases will require real-time (or near-real-time)
discovery and access to the streams (and their data) and the
ability to integrate different kinds of heterogeneous stream-
ing data from various sources. Smart city frameworks should
provide mechanisms to (i) seamlessly integrate real world data
streams, (ii) automated search, discovery and federation of data
streams, and (iii) adaptive techniques to handle failovers at run-
time. In the travel planning scenario, the application developer
first need to integrate user location data with physical traffic
sensor data. Furthermore, weather data and air pollution data
may also need integration, so that an end-user can choose the
type of transportation or route based on the environmental
condition.
• R.2: Large scale data stream processing and analytics. Smart

city applications not only require efficient processing of large-
scale data streams but also need efficient methods to perform
data analytics in a dynamic environment by aggregating, sum-
marising and abstracting sensor data on demand. For example,
in a Smart City, there could be hundreds of thousands of com-
muters during peak hours. This poses a challenge for the capac-
ity of existing RSP engines. In addition, a single user may only
need to subscribe to several sensors deployed in the city, for less
than an hour, and apparently different trips may need different
sensors, hence finding appropriate sensors on-demand is more
efficient.

https://googleblog.blogspot.com/2009/08/bright-side-of-sitting-in-traffic.html
https://googleblog.blogspot.com/2009/08/bright-side-of-sitting-in-traffic.html

566 F. Gao et al. / Future Generation Computer Systems 76 (2017) 561–581
• R.3: Real-time information extraction, event detection and
stream reasoning.

Smart city applications should be able to process event
streams in real time, extract relevant information and identify
values that do not follow the general trends. Beyond the identi-
fication of relevant events, extraction of high-level knowledge
from heterogeneous, multimodal data streams is an important
feature of Smart City. When a user is travelling, high-level de-
cisions such as re-routing must be made online based on real-
time data. Also reading changes from a single sensor should not
always trigger such decision, e.g., together a twitter message
stating a congestion ahead, a pollution sensor reporting increas-
ing amount of CO2 emission and a traffic sensor showing low
vehicle speed usually indicate a major congestion, but each of
the event stand-alone could be inconclusive.
• R.4: Reliable information processing.

Data quality issues and provenance play an important role in
smart city scenarios. For example, a traffic monitoring or travel
planning application may ask for results with low latency and
high accuracy. When the quality of a sensor on the road is de-
teriorating, it may need to be replaced by another sensor, e.g., a
sensor deployed on a consecutive street segment or monitoring
a different lane (if multiple sensors are used for different lanes).
Smart city frameworks should providemethods and techniques
(i) to evaluate the accuracy, trustworthiness, and provenance
of data streams, (ii) to resolve conflicts in case of contradictory
information, and (iii) continuous monitoring and testing to dy-
namically update QoI and trustworthiness.

Aside from the above challenges, existing research also dis-
cusses other issues, e.g., privacy control regarding sharing personal
data (e.g., in [61–63]), real-time actuation based on observations
(e.g., in [64]). In this paper, we mainly focus on R.1–R.4, and while
we do not claim ACEIS provides complete solutions to these re-
quirements, we will show our efforts made so far in coping with
these four challenges.

4. Overview of ACEIS architecture

In order to address the challenges identified in Section 3.3, a
number of solutions are developed and integrated into ACEIS. We
will discuss briefly the functionalities of the components in ACEIS
as well as their interactions.

Fig. 2 illustrates the architecture view of ACEIS. The architecture
consists of four main components, i.e., Knowledge Base, Application
Interface, Semantic Annotation and ACEIS Core component.

4.1. Knowledge base

The knowledge base stores the semantic annotations for the
static description of event services as well as domain ontologies to
use as backgroundknowledge. It also stores the indexing structures
for event service description to facilitate efficient event service
discovery and composition. Historical observations and quality
analysis results are also kept in the knowledge base.

4.2. Application interface

The application interface interacts with end users as well as
ACEIS core modules. It allows users to provide inputs required
by the application and presents the results to the user in an
intuitive way. It also augments the users’ queries, requirements
and preferences with some additional, implicit constraints and
preferences determined by the application domain or user profile.
For example, in a travel navigation scenario, a user may specify
only the start and target location on the map, with a constraint
on the travel time t , because she needs to get there on time.
The application may add some additional constraints on the data
streams used to calculate the travel time, such as the frequency of
the data streams should bemore than 1/t , otherwise, the usermay
not receive any updates on the traffic condition during her trip and
the detour suggestions for traffic jams will never happen.

These augmented user inputs are transformed into a semanti-
cally annotated complex event service request (event request for
short). The event request is consumed by ACEIS core components
to discover and integrate urban streams with regard to the func-
tional and non-functional constraints specified within the event
request.

4.3. Semantic annotation

The semantic annotation component receives data streams
(e.g., ODAA real-time traffic sensors data) as well as static data
stores (e.g., ODAA traffic sensors metadata) as inputs. It annotates
syntactical informationwith semantic terms defined in ontologies.
The outputs of semantic annotation will be semantic data streams
and static semantic datastores.

With semantic annotations of both static resource and dynamic
data, ACEIS gains additional data interoperability both at design
time for event service discovery/composition and at runtime for
semantic event detection.

4.4. ACEIS core

The ACEIS core module serves as a middleware between
low-level data streams and upper-level Smart City applications.
ACEIS core is capable of discovering, composing, consuming and
publishing complex event processing capabilities as reusable
services. We call these services (primitive or complex) event
services. An example of an event service network and the
interactions between different roles in the network are shown
in Fig. 3. The ACEIS core consists of three major components:
resource management, data federation adaptation manager. In the
following, we introduce their functionalities and interactions.

4.4.1. Resource management
The resourcemanagement component is responsible for discov-

ering and composing event services based on static service descrip-
tions. It receives event requests generated by the application inter-
face containing users’ functional and non-functional requirements
and preferences. Then, it creates composition plans for event re-
quests, specifying which event services are needed to address the
requirements in event requests and how they should be composed.

The resource management component contains two sub-
components: resource discovery component and event service
composer. The resource discovery component uses conventional
semantic service discovery techniques to retrieve event services
delivering primitive events. It deals with the primitive event
requests specified within event requests. The event service
composer creates service composition plans to detect the complex
events specified by event requests based on event patterns. We
refer readers to [11,12] for further details of the composition
algorithm used by the event service composer.

4.4.2. Data federation
The data federation component is responsible for implementing

the composition plan over event service networks and process
complex event logics using heterogeneous data sources. The
composition plan is first used by the subscription manager which
will make subscriptions to the event services involved in the
composition plan. Later, the query transformer transforms the

F. Gao et al. / Future Generation Computer Systems 76 (2017) 561–581 567
Fig. 2. ACEIS architecture overview.
Fig. 3. Example of an event service network.
semantically annotated composition plan into a set of stream
reasoning queries to be executed on a stream query engine.

Leveraging the service-oriented nature of ACEIS, the query
results streams can also be wrapped as event services. Thus
the event service compositions can be deployed over distributed
query engine instances to improve the performance of the query
processing. To balance the load betweendifferent engine instances,
a scheduler is implemented to determine workload distribution at
run-time. Section 9 presents the different load balancing strategies
and the performance evaluations in prototype implementations.

4.4.3. Adaptation manager
The adaptation manager monitors the QoS updates for the

event services and determines if the QoS properties of a deployed
event service composition have violated the non-functional
constraints specified in the event request. When a QoS constraint
violation is detected, the adaptation manager makes an attempt to
automatically find replacements for parts orwhole of the deployed
composition plan in order to keep the QoS performance at an
acceptable level. If nopossible adaptation is available, a notification
is sent to the user interface, which informs the user that the QoS
constraint has been violated and the attempt of automatic recovery
has failed. Different adaptation strategies and their performance
evaluation are discussed in [13].

5. Semantic sensor data stream discovery & integration

Sensor data streams are modelled as event services in ACEIS,
and hence the discovery and integration of urban data streams are
translated into event service discovery and composition problems.
By providing an ontology for event services and allowing service
providers to semantically annotate their service description
documents, event services can obtain better data interoperability
and facilitates automatic service discovery, composition and
execution [65]. The complexity of semantic annotations may be
hindering the adoption of SemanticWeb Service (SWS) in the real-
world [66]. To cope with this issue, several automatic annotation
methods have been studied, e.g., by [67–69]. While facilitating
automatic service annotations is out of the scope of this work,
in this paper we assume the semantic annotations are provided
manually by service providers or automatically by a program.

568 F. Gao et al. / Future Generation Computer Systems 76 (2017) 561–581
As shown in Section 1, Event servicemodelling and composition
are steps taken before implementation and execution, and have
been discussed thoroughly in our previous work. We refer
interested readers to [11,12] for a detailed description on these
topics. In this section, for the sake of completeness, we describe the
key features of the ontology used for describing event services and
event requests as well as the discovery and integrationmechanism
for the sensor data streams.

5.1. Complex Event Service ontology

A Complex Event Service (CES) ontology10 had been developed
to describe event services and requests. The CES ontology is an
extension of OWL-S, which is an ontology to describe, discover
and compose semantic web services. We choose to extend OWL-
S mainly because it provides direct support for the service profile
and service quality etc., so that allows us to incrementally design
our ontology. We validated our ontology together with all reused
ontologies using Jena 3.011 (RDFS reasoner) and Pellet 3.012 (OWL2
DL reasoner). The validity reports showed no inconsistencies. Fig. 4
illustrates the overview of the CES ontology.

An event service is described with a Grounding and an
EventProfile. The concept of Grounding in OWL-S informs an
event consumer, how to access the event service by providing
information on service protocol and message formats etc. An
EventProfile is comparable to the ServiceProfile in OWL-S, which
describes the events transmitted by the service. The property
hasEventSource links an event service to its event source, which
could be a sensor described in the SSN ontology, or other data
sources described in domain ontologies.

An Event Profiledescribes a type of eventwith a Pattern andNon-
Functional Properties (NFP). A Pattern describes the correlations
between a set of member events involved in the pattern. An event
pattern may have other patterns or (primitive) event services
as sub-components, making it a tree structure. An event profile
without a Pattern describes a primitive event service, otherwise, it
describes a complex event service.NFP refers to the QoI and/or QoS
metrics, e.g., precision, reliability, cost and etc., which aremodelled
as subclasses of ServiceParameter in OWL-S.

We consider the temporal relationships captured by an Event
Pattern to have three basic types: sequence, parallel conjunction
and parallel alternation. If two events (or event patterns) are
correlated by a sequence pattern, one should occur before the
other, in parallel conjunction, both should occur and in parallel
alternation, at least one should occur. Hence we define three types
of patterns respectively: Sequence, And and Or. A special case
of Sequence is that the sequence repeats itself for more than
once, in this case, the sequence can bemodelled by a Repetition
pattern, with a cardinality indicating the number of repetition.
Besides temporal relations, event pattern may also specify causal
relations between patterns and sub-patterns or member event
services using transitive property hasSubPattern, which is an
important property for reasoning over the event provenance. Data
constraints in event patterns can be specified with Filters and
Selections. A sliding Window specifies the size of the event
instance sequence kept in memory. Fig. 5 reveals more details
on the event pattern model. Throughout this paper, we use tree
structures to represent event patterns.

An EventRequest is an incomplete EventService description,
without specific bindings to the set of federated event services
used by the requested complex event while capturing the desired

10 CESO published online at: http://citypulse.insight-centre.org/ontology/ces/.
11 https://jena.apache.org/index.html.
12 https://github.com/Complexible/pellet.
capability of the service. Constraints can be specified by users
to declare their requirements on the event pattern and NFPs
in EventRequests. Preferences can be used to specify a weight
between 0 and 1 over different quality metrics representing users’
preferences on QoS metrics: a higher weight indicates the user
cares more on the particular QoS metric.

It is worth noticing that currently, we have not extended OWL
with respect to the temporal logics implied by the event patterns,
thus reasoning on event patterns is not supported. However,
CESO still allows us to match event service descriptions based on
taxonomical or causal relations, which we will show later.

5.2. Primitive event service discovery

In the context of Smart City applications, a sensor data stream
is an atomic unit for data stream discovery and integration. It
is described as a PrimitiveEventService (PES) in the CES ontology,
which has an event source as a Sensor device in the SSN ontology.
The CES ontology is mainly used to describe the non-functional
aspects of the PES, including service quality parameters and service
groundings. The SSN ontology is used to describe the functional
aspects, including ObservedProperties and FeatureOfInterest.

A sensor service description sd is defined as a tuple sd =
(td, g, qd, Pd, FoId, fd), where t is the sensor event type, g is the
service grounding, qd is a QoS vector describing the QoS values, Pd
is the set of ObservedProperties, FoId is the set of FeatureOfInterests
and fd : Pd → FoId is a function correlating observed properties
with their feature-of-interests. Similarly, a sensor service request is
denoted sr = (tr , qr , Pr , FoIr , fr , pref , C). Compared to sd, sr do not
specify service groundings, qr represents the constraints over QoS
metrics, pref represents the QoS weight vector specifying users’
preferences on QoS metrics and C is a set of functional constraints
on the values of Pr . sd is considered a match for sr iff all of the
following three conditions are true:

• tr subsumes td,
• qd satisfies qr and
• ∀p1 ∈ Pr , ∃p2 ∈ Pd H⇒ T (p1) subsumes p2 ∧ fr(p1) = fd(p2),

where T (p) gives the most specific type of p in a property
taxonomy.

Listing 1 shows a snippet of the traffic sensor (from the travel
planning scenario) description in turtle syntax. The traffic sensor
monitors the estimated travel time, vehicle count and average
vehicle speed on a road segment. Listing 2 shows a snippet of a
sensor service request matched by the traffic sensor service. When
the discovery component finds all service candidates suitable for
the request, a Simple-Additive-Weighting algorithm [12] is used to
rank the service candidates based on qd, qr and pref. This matching
and ranking process can be accelerated by using a SPARQL query
as a filter. For example, leveraging the reasoning support for
subsumption relation, the query in Listing 3 can find appropriate
sensor types (including sub-types), and using SPARQL filters, it can
find the sensors with acceptable QoS.

5.3. Complex event service discovery and composition

To discover and integrate composite sensor streams for com-
plex event service requests, the event patterns specified in the
complex event service requests/descriptions need to be consid-
ered. State-of-the-art SWS planning and composition approaches
are based on the Input, Output parameters, Preconditions and Ef-
fects (IOPE). In this IOPE-based SWS modelling paradigm, predi-
cates are used to define preconditions and effects and rule-based
reasoning can be used to find possible composition plans that pro-
vides all inputs (using the intermediate outputs generated from
the plan) for the target task while fulfilling all preconditions (by

http://citypulse.insight-centre.org/ontology/ces/
https://jena.apache.org/index.html
https://github.com/Complexible/pellet

F. Gao et al. / Future Generation Computer Systems 76 (2017) 561–581 569
Fig. 4. Complex Event Service (CES) ontology overview.
Fig. 5. Complex event pattern ontology.
:sampleTrafficService a ces:PrimitiveEventService;
owls:presents :sampleProfile ;
owls:supports :sampleGrounding;
ces:hasEventSource :sampleTrafficSensor.

:sampleTrafficSensor a ssn:Sensor;
ssn:observes [a ct:AverageSpeed; ssn:isPropertyFor :FoI_1],

[a ct:VehicleCount; ssn:isPropertyFor :FoI_2],
[a ct:EstimatedTime; ssn:isPropertyFor :FoI_3].

:sampleProfile a ces:EventProfile ;
owls:serviceCategory [a ct:TrafficReportService ; owls:serviceCategoryName "traffic_report"^^xsd:string].

Listing 1: Traffic sensor service description

:sampleRequest a ces:EventRequest;
owls:presents :requestProfile; ces:hasEventSource :requestSensor.

:requestSensor a ssn:Sensor;
ssn:observes [a ct:EstimatedTime; ssn:isPropertyFor :FoI_3].

:requestProfile a ces:EventProfile ;
owls:serviceCategory [a ct:TrafficReportService; owls:serviceCategoryName "traffic_report"^^xsd:string].

Listing 2: Traffic sensor service request

570 F. Gao et al. / Future Generation Computer Systems 76 (2017) 561–581

PREFIX ces: <http://www.insight-centre.org/ces#>
PREFIX ssn: <http://purl.oclc.org/NET/ssnx/ssn>
PREFIX owls: <http://www.daml.org/services/owl-s/1.2/Service.owl#>
SELECT ?eventService? WHERE { ?eventService owls:presents ?profile.

?profile owls:serviceCategory :TrafficReportService.
?eventService ces:hasEventSource ?sensor. ?sensor ssn:observes ?property.
?property a :AverageSpeed. ?property ssn:isPropertyOf :FoI_1.
?profile owls:serviceParameter ?qos. ?qos a qoi:Correctness. ?qos qoi:value ?qosV. }

FILTER (?qosV >=0.9)

Listing 3: SPARQL query for sensor discovery
applying intermediate effects). Typically, the reasoning procedure
is carried out in a backward chaining style, i.e., starting from the
target outputs and effects, find possible tasks that fulfil part of the
required inputs and preconditions.

However, such IOPE-based service planning cannot be easily
applied to CESs because (1) different event detection tasks may
have the same types of inputs and outputs, butwith different event
semantics. For example, the traffic congestion events detected
within different time durations or using different threshold
values have different meanings, determining the data flow for
event service compositions using type-based matchmakings is
not feasible, and (2) it is not straightforward to define the
precondition and effect of an event detection task. For example,
an IOPE-based complex event service composition attempt ismade
by [70], in their approach, the logical correlations in event patterns
(conjunctive or disjunctive relations of event types) are extracted
as preconditions and handled by rule-based service middleware
while the temporal correlations are left to the event engine, and the
effects are simply modelled as the creation of the complex event
types.We argue that both logical and temporal correlations should
be processed in a coherent manner to realise planning based on
event patterns, and the matchmaking of preconditions and effects
in their approach are still based on event types. In ACEIS, a pattern-
based andQoS-aware event service composition is facilitated using
the techniques from [11,12], In the following we briefly describe
the process of integrating composite sensor data streams.

In the context of integrated sensor stream discovery and
composition, the definition of sensor stream description is ex-
tended to denote composite sensor stream descriptions Sd =
(epd,Qd,G),where epd consists of a set of sensor stream descrip-
tions sd and/or a set of composite sensor stream descriptions S ′d,
and a set of event operators including Sequence, Repetition, And, Or,
Selection, Filter andWindow, qd is the aggregated QoSmetrics for Sd
and G is the grounding for the composite sensor stream. Similarly,
a complex event service request is denoted as Sr = (epr ,Qr , pref),
where epr is a canonical event pattern consisting of a set of primi-
tive sensor service requests sr and a set of event operators, Qr de-
scribes theQoS constraints for the requested complex event service
and pref specifies the weights on QoS metrics.

An Sd is amatch for Sr iff epd is semantically equivalent to epr and
Qd satisfies Qr . When no matches are found during the discovery
process for Sr , it is necessary to compose Sr with a set of Sd and/or
sd which are reusable to Sr . Informally, these (composite) sensor
streams describe a part of the semantics of epr and can be reused
to create a composition plan, which contains an event patternwith
concrete service bindings. The composition plan can be used as
a part of the event service description for the composed event
service. The discovery or composition results can be ranked with
regard to the QoS metrics and preferences in the same way as
sensor stream discovery. Listing 4 shows a snippet of a sample
complex event service requestwith an event pattern and someNFP
constraints.

CES discovery and composition can benefit from the semantic
annotations the same way as the PES discovery, i.e., using SPARQL
queries as preliminary filters for the sensors involved. In addition,
the hasSubPattern property recursively define on the Pattern can be
used to infer causal relations between event patterns, based on the
rules define in Listing 5 and a sample query in Listing 6.

6. Formal semantics of event patterns in CES

In order to ensure correctness in complex event stream inte-
gration and execution, we need to define the formal semantics of
the event patterns specified in the CES ontology. In this section, we
lay down the formal semantics. We first discuss a meta-model for
complex event semantics. Then, we use this meta-model to com-
pare the semantics of event patterns (or query semantics) in ex-
isting CEP and semantic stream processing approaches, including
the design of the semantics of event patterns in the CES ontology.
Finally, we present the abstract syntax for the event patterns in
CES.

6.1. Meta-model of event semantics

In [9] a meta-model is proposed for defining the formal
semantics of complex events, i.e., what does a complex event
pattern mean and how to detect this event pattern over an Event
Instance Sequence (EIS). According to [9] the semantics of complex
events can be defined by answering three basic questions: (1) how
to use a limited set of operators, constructs and descriptors to
specify various complex event types (i.e., complex event patterns)
unambiguously, (2) how to determine which subset of the EIS
belongs to a complex event type when there are more than one
subsets satisfying the constraints specified by the complex event
types and (3) whether an event instance can be used in multiple
EISs mapping different complex event types. We thus distinguish
between three basic dimensions for describing event semantics:
Event Type Pattern, Event Instance Selection and Event Instance
Consumption, for answering these three questions, respectively.
On top of these three basic dimensions, an additional dimension
is whether events are considered instantaneous or lasting for an
interval. We call this dimension Event Duration. In the following,
we elaborate on the details of each dimension.

6.1.1. Event Duration
An Event Duration can be categorised into instantaneous or

interval-based. The fundamental difference between instanta-
neous and interval-based events is whether 1 or 2 (i.e., start and
end) timestamps are necessary for describing an event instance.
Also, instantaneous events can be seen as special cases of interval-
based events which have identical start and end timestamps.

6.1.2. Event Type Pattern
An Event Type Pattern can be categorised based on 3 dimen-

sions: Operators, Coupling and Context Condition. The operators
specify temporal constraints over EISs, including binary operators:

F. Gao et al. / Future Generation Computer Systems 76 (2017) 561–581 571

:SampleEventRequest a ces:EventRequest;
owls:presents :SampleEventProfile.

:SampleEventProfile rdf:type owls:EventProfile;
ces:hasPattern [rdf:type ces:And, rdf:Bag;

rdf:_1 :locationRequest; rdf:_2 :seg1CongestionRequest; rdf:_3 :seg2CongestionRequest;
rdf:_4 :seg3CongestionRequest; ces:hasWindow "5"^^xsd:integer];

ces:hasConstraint [rdf:type ces:NFPConstraint;
ces:onProperty ces:Availability;
ces:hasExpression [emvo:greaterThan "0.9"^^xsd:double]],
[rdf:type ces:NFPConstraint;
ces:onProperty ces:Accuracy;
ces:hasExpression [emvo:greaterThan "0.9"^^xsd:double]].

Listing 4: Complex event service request

[Rule1: (?x rdfs:member ?y) -> (?x ces:hasSubPattern ?y)]
[Rule2: (?ep1 ces:hasSubPattern ?s) (?s owls:presents ?p) (?p ces:hasPattern ?ep2)

-> (?ep1 ces:hasSubPattern ?ep2)]

Listing 5: Rules to entail sub-pattern

SELECT ?subpattern? WHERE {
:SampleService owls:presents ?sampleProfile.
?sampleProfile ces:hasPattern ?pattern.
?pattern ces:hasSubPattern ?subPattern. }

Listing 6: Tracking causal relation via SPARQL query
Sequence (;), Simultaneous (==), Conjunction (∧), Disjunction (∨),
unary operator Negation (¬) and n-ary operator Repetition.

For two event types E1, E2, ; (E1, E2) indicates the timestamps of
event instances of type E1 are older than the timestamps of event
instances of type E213; == (E1, E2) indicates the timestamp(s)
of the event instances are equal; ∧(E1, E2) and ∨(E1, E2) indicate
both and at least one of the instances of E1 and E2 should occur
regardlessly of the temporal order, respectively.

For an event type E3, ¬(E3) indicates the absence of instances
of E3. Note that although negation is in theory a unary operator, in
practice, it is normally used within the interval determined by its
previous and next operands.

For n event types E1, . . . , En, (; (E1, . . . , En))r indicates that
the sequence of instances of E1, . . . , En must repeat for r times.
Repetitions have two modes: overlapping and non-overlapping,
denoted∧(; (E1, . . . , En))r and ; (; (E1, . . . , En))r , respectively. For
example, for two event types E3 := ∧(; (E1, E2))2, E4 :=

; (; (E1, E2))2, EIS1 : (e11, e
2
1, e

1
2, e

2
2) triggers E3 but not E4, while

EIS2 : (e11, e
1
2, e

2
1, e

2
2) triggers both E3 and E4 (eji is the jth instance

of event type Ei). It is evident that overlapping repetition can
be transformed into a conjunction of sequences, while the non-
overlapping repetition can be transformed into a sequence of
sequences. The Window operator specifies how many events are
to kept in memory. The length of the window can be specified as a
temporal duration or the number of events pertained.

The Coupling sub-dimension has two types: Continuous and
Non-continuous, indicating whether an EIS for an event type allows
irrelevant event instances. For example, EIS3 : (e11, e

1
3, e

1
2) can

trigger a non-continuous event pattern (non-continuous)E5 :=
; (E1, E2) but cannot trigger (continuous)E6 :=; (E1, E2).

The Context sub-dimension specifies if the event pattern is
triggered under conditions on Environment (e.g., applications,

13 When considering overlaps for interval-based events the sequence operator can
have more variants e.g.: meets, finishes and participates etc. see [71].
users, transactions, etc.), Data (e.g., event properties, message
contents, etc.) or executions of certain Operations (e.g., database
record insert, delete, etc.).

6.1.3. Event Instance Selection
Event Instance Selection has three modes: first and last modes

pick the oldest and youngest mapping event instances in an
EIS respectively. Cumulative mode picks all instances in an EIS
satisfying the constraints.

6.1.4. Event Instance Consumption
Event Instance Consumption has three modes: Shared, Exclusive

and Ext-exclusive. In shared mode all subscriptions can share event
instances, i.e., event instances are kept until they expire in the
time window. In the exclusive mode the event instances are
removed once they are used to trigger an event type. In the ext-
exclusive mode when eji is used to trigger Ea, all eki in the EIS before
the terminator (i.e., last event instance in EIS triggering Ea) are
removed.

6.2. Comparison of existing approaches

In this section we compare the event/query semantics in ex-
isting CEP/stream processing systems using the meta-model pre-
sented in Section 6.1 and elaborate on the semantics we use in
ACEIS. In [72] a thorough survey has been conducted on existing
Information Flow Processing (IFP) systems, however, it does not de-
scribe the features of recent semantic stream processing systems.
In Table 3 we compare the event semantics used in RDF Stream
Processing (RSP) engines, including ETALIS [14], C-SPARQL [73] and
CQELS [74], aswell as in a conventional CEP system, i.e., BEMN [75],
and in ACEIS. The event pattern definition language used in ACEIS
is designed to be a user-friendly, high-level language (extending
the graphical notations from BEMN) while sufficiently expressive
to capture most of the event/query semantics in the existing IFP
systems. In the following,we elaborate on the semantics supported
by these systems in each dimension.

572 F. Gao et al. / Future Generation Computer Systems 76 (2017) 561–581
Table 3
Comparison of event semantics.

6.2.1. Event Duration
All investigated approaches support using instantaneous events,

i.e., annotating events and triples with a single timestamp. Only
ETALIS fully supports interval-based events, since it allows triples
to be annotated with a start and end timestamp. C-SPARQL par-
tially supports intervals for complex events, i.e., events consists
of multiple triples with different timestamps. To capture the in-
terval for such complex events in C-SPARQL one must use the
f:timestamp function provided by C-SPARQL language to retrieve
all timestamps and get the oldest and youngest timestamps.

6.2.2. Event Type Pattern
The Sequence operator is supported by all investigated ap-

proaches except for CQELS. The Simultaneous operator is directly
supported by ETALIS using the EqJoin operator extended from
SPARQL join and indirectly supported by C-SPARQL and ACEIS by
comparing timestamps of events and triples. The Conjunction and
Disjunction operators are supported by all investigated approaches
except CQELS, since the ‘‘OPTIONAL’’ keyword is not implemented
in the currently released version14 of CQELS. Negation is directly
supported by BEMN using Inhibition and indirectly supported by
ETALIS and C-SPARQL using the combination of LeftJoin operator
and bound filters. CQELS does support the ‘‘NOT EXISTS’’ filter in
SPARQL 1.1, since there is no support for sequential pattern in
CQELS and recall that the semantics of negation in event patterns
are typically used within a duration, i.e., implying it needs to be
used together with sequential pattern, we do not consider CQELS
supports the negation semantics in Section 6.1.2. Currently, ACEIS
do not support negations as it will introduce complexity in com-
plex event federation, but it is on the agenda of future work. Repe-
tition is partially supported in BEMNwith only overlapping mode, it
is fully supported in ACEIS in both overlapping and non-overlapping
modes.

14 CQELS version 1.0.0 home: https://code.google.com/p/cqels/.
A time-based Window operator is supported by all approaches,
while an instance-based window is partially supported by C-
SPARQL and CQELS since they allow triple-size-based windows.
However, one must assume (1) events in a triple stream consist
of the same number of (e.g., n) triples and (2) all triples are
synchronised in the stream and never lost in communication
to use triple-based windows of size n × m to keep m event
instances in the window. ACEIS supports both kinds of windows.
All approaches support non-continuous coupling, i.e., irrelevant
events and triples will not affect the results derived from relevant
ones. All approaches support context conditions on data using
filters.

To summarise, ETALIS can support applications that evaluate
Conjunction, Disjunction, Sequence, Simultaneous and Negation
patterns, which are also supported by C-SPARQL, but the Sequence,
Simultaneous and Negation are indirectly supported by C-SPARQL
using filter functions. CQELS only provides support for Conjunction
pattern. This fragmentation and complementary support for
different operators require to carefully analyse what expressivity
and what operators are required in the application, in order to
select the best system. This limitation of semantic approaches to
complex event processing is well known in the semantic web
community. In fact, concrete standardisation efforts to define
a common model for producing, transmitting and continuously
querying RDF Streams are ongoing in the W3C RSP working
group,15 and we are heavily involved in this standardisation
activity.

6.2.3. Event Instance Selection
ETALIS, C-SPARQL and CQELS support only a cumulative event

instance selection policy because their language semantics are
extended from SPARQL, in which all mapping variable bindings are
returned as results. In BEMN, the selection policy is not explicitly
explained. In ACEIS we support both cumulative and last selection,
since we want to be compatible with existing stream reasoning
engines which extend SPARQL semantics and we do not want to
neglect the fact that in some traditional CEP systems, a minimum
event instance selection policy is desired due to performance
concerns (see Section 4.3 in [72]) andwe consider the latest events
usually to be more important.

6.2.4. Event Instance Consumption
Existing semantic IFP engines like ETALIS, C-SPARQL and CQELS

allow registering multiple queries at the same time. Also, they
do not remove triples from the stream unless these triples expire
in the window. Therefore, they support only a shared event
instance consumption mode. BEMN supports shared and exclusive
consumption mode by configuring the event type definitions
and subscription scopes. In ACEIS, we designed a decentralised
system in which queries are evaluated by different event engines
on distributed servers and the messages are delivered via
publish–subscribe systems, therefore, we only support a shared
event instance consumption.

6.3. Abstract syntax of event pattern in CES ontology

Using the CES ontology and the event semantics defined above,
an event service provider can describe event services and store
these service descriptions in a service repository; an event service
consumer can formulate an event service query to specify his

15 RDF Stream Processing Community Group: https://www.w3.org/community/
rsp/.

https://code.google.com/p/cqels/
https://www.w3.org/community/rsp/
https://www.w3.org/community/rsp/
https://www.w3.org/community/rsp/
https://www.w3.org/community/rsp/
https://www.w3.org/community/rsp/
https://www.w3.org/community/rsp/

F. Gao et al. / Future Generation Computer Systems 76 (2017) 561–581 573
requirement on event services. In the following, we give the
abstract syntax of event patterns described in the CES ontology.

An Event Declaration describes a (complex) event type without
considering the NFPs. It is a tuple

E = (src, t, ep,D)

where src is the service location where the events described by
ed are hosted, t is the term for the domain specific event type,
ep is the event pattern for E and D is its data payload as a set of
event properties sets, e.g., timestamps, event identifier, message
contents, etc. Recall we defined primitive and composite sensor
service descriptions sd and Sd in Section 5.2. Now ed can be seen
as a generalised definition for sd and Sd, where sensor observation
properties and feature-of-interests are generalised into payloads,
since a generic event may contain message payloads other than
physical properties observed from the world.

An Event Pattern describes the detailed semantics of a complex
event. It is a tuple

ep = (w, E,OP, R, S, Sel, F)

where

• w is a sliding window specified for ep, we consider w as a time
duration or a number of events to be kept;
• E is a set of member event declarations involved in ep;
• for an member event declaration E ′ ∈ E we denote D′ as the

payload of E ′;
• OP is a set of operators, op ∈ OP = (top, r) where top ∈
{Seq,Or, And, Repo, Repn} is the type of operator (Repo and Repn
are overlapping and non-overlapping repetitions, respectively),
r ∈ N + is the cardinality of repetition, r > 1 for repetition
operators, and r = 1 otherwise;
• R ⊂ (OP×(OP∪E)) is a set of asymmetric relations onoperators

and member events, it captures the provenance (i.e., causal)
relation within ep, ∀(op, n) ∈ R, the execution of the operator
node op relies on the execution result of another operator node
n when n ∈ OP , or the occurrence of an event declaration node
nwhen n ∈ E ;
• S ⊂ (OP ∪ E) × (OP ∪ E) is a set of asymmetric relations

on operators and member events, it gives the temporal order
within ep, ∀(n1, n2) ∈ S, ∃n ∈ OP ∧ (n, n1), (n, n2) ∈ R ∧
n.top = (Seq|Repo|Repn) where n1, n2 are two nodes in ep, also,
the occurrence of n1 (if n1 ∈ E) or the last member event
instance that completes the execution of n1 (if n1 ∈ OP) should
happen before the occurrence of n2 (if n2 ∈ E) or the first
member event instance that completes the execution of n2 (if
n2 ∈ OP);
• Sel ⊆

E′∈E E ′.D′ is a set of selected properties from

the payloads of member events. The selected properties are
typically part of the payload D for E;
• F is a set of filters expressing constraints over event properties

in member events (i.e.,

E′∈E E ′.D′). A filter f ∈ F is to be
evaluated as true or false at query execution time according
to the event property values and the arithmetic expression
described in f .

It is evident that an event pattern defined according to the
above semantics and syntax can be constructed by recursively
appending operator and event declaration nodes as child/leaf
nodes to a root operator node, thus can be organised into a tree
structure, called an Event Syntax Tree (EST).

7. Query transformation

To implement a composition plan, the subscription manager
needs tomake subscriptions to the relevant event sources using the
service bindings provided in the composition plan. Then, the query
transformer creates (regular and constraint validation) stream
queries and registers the queries at the stream engine. In this
section, the algorithms for transforming composition plans into
regular semantic stream queries are discussed.

In the current ACEIS implementation, CQELS and C-SPARQL
are used as the semantic stream processing engines.16 These
engines consume semantically annotated events. The query
transformation algorithm in ACEIS depends on the schema of
annotated events, i.e., the ontologies used. However, it will not
take too much effort to adapt to different event ontologies as long
as the essential information (i.e., the source of event and event
payload) is provided. Without loss of generality, we assume the
primitive events in the smart city context are annotated as sensor
observations in SSN ontology. A sample traffic sensor reading
annotated as Observation in SSN is shown in Listing 7. In the
followingwe first discuss how the operator semantics in ACEIS can
be implemented by the operators in existing semantic CEP systems,
then we present the detailed query transformation algorithm for
generating CQELS and C-SPARQL queries according to the semantic
alignments.

7.1. Semantics alignment

To ensure the query transformation creates queries that detect
the right event patterns, it is required to map the semantics of
event operators to query operators. Table 4 summarises how event
operators in CES can be implemented by query operators in CQELS,
C-SPARQL and ETALIS. In the following, we elaborate the details:

• An Event Declaration E in an event pattern ep indicate the occur-
rences of event instances of type E. As shown in Listing 7 the oc-
currences of sensor events are annotated as observations. If we
use SPARQL to query the occurrences of sensor observations, a
single triple pattern

t = (?id, rdf:type, ssn:Observation)

can suffice. Given a set of mappings Ψ , u ∈ Ψ is a partial func-
tion from variables to values, such that u(var(t)) gives themap-
ping value (i.e., the IRI) of an occurred observationwhere var(t)
is the set of variables in t . To get only the observations produced
by ed, we could use a BasicGraphPattern (BGP)

P = (t ∪ (?id, ssn:observedBy, ed.src))

where E.src is the source (i.e., service id) of E specified in the
composition plan. Then, Ψ (var(P)) gives all the IRIs of sensor
observations produced by ed. Ψ (P) gives the set of triples by
replacing the variables in t with corresponding values from Ψ .
We refer to this set of triples event id triples for ed, denoted Tid(E)
and this pattern event id pattern for ed, denoted Pid(E). Indeed
the existence of Tid(E) indicates the occurrence of an event in-
stance of type E in the dataset (i.e., event stream). Notice that
Tid(E) should contain only 1 sensor observation if E is primitive,
otherwise it may contain more than 1 observation, which are
themember event instances in the EIS triggering E. The engines
in Table 4 reuse and extend the query semantics of SPARQL,
therefore we can use the same BGPs17 to query the occurrence
of events instances of type ed.
• An And operator indicates instances of the connected 2 sub-

event types E1, E2 should occur, i.e., Given E3 := ∧(E1, E2),
Tid(E3) = Tid(E1) ∪ Tid(E2), where Tid(E1) ≠ ∅ ∧ Tid(E2) ≠ ∅.
This event operator can be implemented by join (on) in SPARQL.

16 ETALIS engine is not integrated into the current prototype implementation but
we do present the semantic alignments for ETALIS operators for completeness.
17 In CQELS StreamGraphPattern (SGP) is used as an extension of BGP.

574 F. Gao et al. / Future Generation Computer Systems 76 (2017) 561–581

:Observation_1 a ssn:Observation;
ssn:observedBy :sampleTrafficSensor
ssn:observedProperty [a ct:EstimatedTime];
ssn:featureOfInterest :FoI_1;
ssn:observationResult :observationResult_1.

:observationResult_1 ssn:hasValue
[ssn:hasQuantityValue "‘25"’^^xsd:integer;
muo:unitOfMeasurement muo:second].

Listing 7: Traffic sensor stream data in SSN
Given P1, P2, Ψ1, Ψ2 such that Ψ1(P1) = Tid(E1), Ψ2(P2) =
Tid(E2), it is evident that Ψ1 join Ψ2 creates a new set of map-
pings Ψ3 = Ψ1 on Ψ2 such that dom(u3) = dom(u1) ∪ dom(u2)
where u1 ∈ Ψ1, u2 ∈ Ψ2, u3 ∈ Ψ3. Notice that u1, u2 are al-
ways compatible because they are disjoint. Since u3 is also a
partial function, it must provide mapping values for each vari-
able v ∈ dom(u3), i.e., Ψ3 = ∅ ⇐⇒ Ψ1 = ∅ ∨ Ψ2 = ∅.
The Join operator in SPARQL is reused in the semantic stream
query engines so that the And operator can be implemented by
join. However, using join is only correct if we are operating in
the cumulative event instance selection policy (recall Sections
6.1.3, 6.2.3), since all mappings, i.e., event instance sequences
fitting the pattern, are picked. If the selection policy is config-
ured as last, a result processing program is needed to filter out
all variable bindings that appeared in previous query solutions.
• An Or operator indicates at least one of its sub-events should

occur, i.e., Given E4 := ∨(E1, E2), Tid(E4) = Tid(E1) ∪ Tid(E2),
where ¬(Tid(E1) = ∅ ∧ Tid(E2) = ∅). It can be implemented by
using LeftOuterJoin () operator with bound filters in SPARQL.
To do thatwe create the new set ofmappings:Ψ4 = Ψ1 Ψ2
where Ψ4 satisfies the condition:

∀u4 ∈ Ψ4, ∃v4 ∈ dom(u4)⇒ bound(v4) = true.

It is evident that Ψ4 can be implemented by the OPTIONAL key-
word and the condition can be implemented by a set of bound
filters.
• A Sequence operator requires all its sub-events to occur in a tem-

poral order, e.g., E5 :=; (E1, E2). To implement E5 we need to
join event id triples based on their timestamps. In ETALIS a Se-
qJoin operator is defined as an extension of SPARQL join. For
brevity we refer readers to [14] for detailed definition. In C-
SPARQL such an extension does not exist. However, C-SPARQL
provides a function ft to query the timestamp of a variablemap-
ping, denoted ft(v) where v ∈ dom(u) is a variable in a map-
ping u. Using this function we can create a set of mappings
Ψ5 = Ψ1 on Ψ2 such that: ∀u5 ∈ Ψ5, u5 = u1 on u2 where
u1 ∈ Ψ1, u2 ∈ Ψ2, ft(v1) < ft(v2) holds for all v1 ∈ dom(u1) ∩
dom(u5) and v2 ∈ dom(u2)∩dom(u5). Intuitively, this condition
ensures all event instances of type ed1 occurred before those of
type ed2. Currently CQELS (public version 1.0.0) does not sup-
port SeqJoinor provide functions to access the timestamps of the
stream triples, therefore Sequence is not supported in CQELS.
• Repetition is a generalisation of sequence, recall definitions in

Section 6.1.2, an overlapping (i.e., Repo) or non-overlapping (i.e.,
Repn) repetition can be transformed into a conjunction of se-
quence or a sequence of sequence, respectively. Therefore, rep-
etition can be implemented in C-SPARQL and ETALIS by com-
bining the ways they implement∧ and ; event operators, while
CQELS does not support repetition because the sequence oper-
ator is not allowed in CQELS.
• Selection retrieves event payloads from member event in-

stances. If payload p ∈ DwhereD is the set of payloads for event
E is selected, information on p can be queried by adding triple
patterns to Pid(E):

(?id ssn:observationResult ?x. ?x ssn:hasValue ?v. . .)
and project the relevant variables into the query results. Notice
that for brevity we do not list all triple patterns required here.
• Filter and Window operators in event patterns is be mapped

to Filter and Window operators the three engines, respectively.
Notice that in ETALIS an explicit Window operator does not
exist, the window operator is implemented by using a filter
F(getDuration() < δ, Ψ) where getDuration is a function re-
trieving the duration all mappings in Ψ and δ is a time interval.
• Data or time driven query execution. CQELS uses a data-driven

approach to invoke query execution, i.e., whenever new data
arrives in the window, the query is evaluated against the data
in the current window. However, C-SPARQL uses a time driven
approach, in which a query is executed periodically, whenever
the window slides. In order to have the same results produced
by CQELS and C-SPARQL engines, a post-processing filter is de-
ployed on the CQELS result handler that reports only the results
when the time window slides and simulates the time driven
query execution.

7.2. Transformation algorithm

Previously (see Section 5.1), we briefly described how event
patterns are specified in the CES ontology and what are the se-
mantics of event patterns (Section 6). An event pattern can be
recursively defined with sub-event patterns and event service
descriptions, thus formulating an event syntax tree. In this section,
we elaborate algorithms for parsing event syntax trees and cre-
ating semantic stream queries (i.e., CQELS and C-SPARQL queries)
based on the semantics alignments presented in Section 7.1. Recall
that in an event syntax tree, the nodes can be event operators in
four types: Sequence, Repetition, And and Or, or they can be mem-
ber event declarations ED; the edges represent the provenance re-
lation in the complex event detection: the parent node is detected
based on the detection of the child nodes.

Using a top-down traversal of the event pattern tree and
querying the semantics alignment table for each event operator
encountered during the traversal, the event pattern in the
composition plan is transformed into a CQELS query following
the divide-and-conquer style. Algorithm 1 shows the pseudo
code of the main parts of the query transformation algorithm.
Lines 1–6 in Algorithm 1, construct the CQELS query with three
parts: a pre-defined query prefix, a select clause derived from the
getSelectClause() function and a where clause derived from the
getWhereClause() function. Lines 7–27 define the getWhereClause()
function in a recursive way. It takes as input the event pattern
in the composition plan (Line 7) and finds the root node in the
event pattern (Line 8). Then, it investigates the type of the root
node: if it is a Sequence or Repetition operator, the transformation
algorithm terminates, currently transformation cannot be applied
for Sequence or Repetition because of the limitations of the
underlying query language (CQELS) (Lines 9–10). If the root node is
an event service description, a getSGP() function creates the Stream
Graph Patterns (SGP) in CQELS (Lines 11–12) describing the triple
patterns of the observations delivered by the event service, and this
SGP is returned as a (part of the) where clause. If the root node

F. Gao et al. / Future Generation Computer Systems 76 (2017) 561–581 575
Table 4
Semantics alignment for event operators.

ACEIS E And Or Seq Repo Repn Sel Filter Window

CQELS SGP on – – – – BGP+ proj Filter Window
C-SPARQL BGP on ft on +ft f +t BGP+ proj Filter Window
ETALIS BGP on SeqJoin on +SeqJoin SeqJoin+ BGP+ proj Filter getDuration()
is an And or Or operator, the algorithm invokes itself on all sub-
patterns of the root node and combines the where clauses derived
from the sub-patterns (Lines 13–20). In addition, if the root is anOr
operator, anOPTIONAL keyword is inserted for eachwhere clause of
the sub-pattern and a bound filter is created indicating at least one
of the sub-patterns has bound variables (at least one sub-events
occurs, Line 21). If there are filters specified in the event pattern,
a getFilters() function is invoked to add the filter clauses to the
where clause (Lines 23–25). Finally, the where clause is returned
with a pair of brackets (Line 26). Listing 8 shows the transformation
result for the event request in Listing 4. Notice that the first graph
pattern (?ob rdfs:subClassOf ssn:Observation) is used to join the
SGPs in the query only because CQELS does not allow disjoint
join. Also, getSGP() function can insert static graph patterns to
combine the dynamic triples with static background knowledge,
if such information is necessary (i.e., expressed in the event
requests).

Algorithm 1 Transform event patterns into CQELS queries.
Require: Composition Plan: comp, Query Prefix String prefixStr
Ensure: CQELS Query String: queryStr
1: procedure transform(comp, prefixStr)
2: selectClause← getSelectClause(comp.ep)
3: whereClause← getWhereClause(comp.ep)
4: queryStr ← prefixStr + "SELECT " + selectClause + "WHERE" +

whereClause
5: return queryStr
6: end procedure

Require: Event Pattern: ep
Ensure: Where Clause String: whereClause
7: procedure getWhereClause(ep)
8: root ← getRootNode(ep), whereClause← ∅
9: if root ∈ Opseq ∪ Oprep then

10: fail and terminate
11: else if root ∈ EventServiceDescription then
12: whereClause← getSGP(ep, root)
13: else if root ∈ Opand then
14: for subPattern← getSubPatterns(ep, root) do
15: whereClause ← whereClause +

getWhereClause(subPattern)
16: end for
17: else if root ∈ Opor then
18: for subPattern← getSubPatterns(ep, root) do
19: whereClause ← whereClause + "optional" +

getWhereClause(subPattern)
20: end for
21: whereClause← whereClause+ getBoundFilters(ep)
22: end if
23: if filters← getFilters(ep) ≠ ∅ then
24: whereClause← whereClause+ getFilters(filters)
25: end if
26: return "{"+ whereClause+ "}"
27: end procedure

Following the similar approach above, we developed query
transformation algorithms for C-SPARQL. For the sake of brevitywe
do not show the details here. The major difference to CQELS query
transformation is the support for sequence event operators, which
can be implemented based on timestamp filters.
7.3. Event (Re-)construction from stream query results

The query solutions derived from evaluating the query in
Listing 8 are sets of variable bindings. To facilitate event stream
composition on different abstract levels, i.e., allow the query
results to be reused by other complex event requests, these results
must be reconstructed into annotated complex events. While
the schema/ontology used to reconstruct the complex events
may vary depending on the applications, in the current ACEIS
implementation, we reconstruct the results as a set of primitive
events (observations) annotated with SSN.

8. Prototype implementation and discussion

In this section, we demonstrate the use of our proposed com-
ponents in the context of smart city applications. We incorporated
our components within the navigational service ‘‘Context-aware
Multimodal Realtime Travel Planner’’ (a concretised Travel Plan-
ner from Section 3.1) developed for the city of the Aarhus.18 The
Travel Planner application aims at providing the ideal route for its
users while taking the current context of the user into account.
Unlike the state-of-the-art travel planning solutions with a choice
of fastest or shortest route, it allows its users to provide multi-
dimensional requirements and preferences e.g. weather condi-
tions, air quality, traffic and people intensity, parking availability,
traffic schedules etc. Travel Planner can also continuously monitor
the current context of its user and relevant events (e.g. traffic ac-
cidents) on the planned routes. The user will be prompted to opt
for a detour if the real-time conditions on the planned journey no
longer meet the user specified requirements and preferences.

The city of Aarhus has deployed a set of traffic sensors
on major roads of the city to continuously monitor the traffic
conditions within the city. In addition to traffic sensors, there
are also weather, parking and air pollution sensors deployed.
Consider, Alice (a citizen of Aarhus) who needs to travel from her
home to work (see location specifications in Fig. 6(a)). Different
means of transportation are generally available to her including
walking, biking, car and public transport. Transport options can
be optimised to Alice’s personalised functional requirements
e.g. estimated travel time, weather condition and air quality.
Fig. 6(b) shows the screenshot of the system19 to gather users’
functional requirements for the path optimisation.

After gathering all functional and non-functional requirements
from the user, ACEIS will generate an event request following
the information model presented in Fig. 4. ACEIS processes the
event request to automatically discover the relevant sensors and
evaluates the compliance of the selected sensors with the user’s
requirement and preferences. ACEIS also generates a composition
plan to continuouslymonitor the conditions of the proposed travel
plan. It is worth mentioning that the patterns requested by this
application use only conjunction patterns, therefore, both CQELS
and C-SPARQL engines can be used to evaluation the composition
plans.

18 Real Time Travel Planner Scenario: http://www.ict-citypulse.eu/scenarios/
scenario/1.
19 We are thankful to CityPulse teamhttp://www.ict-citypulse.eu for the interface
development.

http://www.ict-citypulse.eu/scenarios/scenario/1
http://www.ict-citypulse.eu/scenarios/scenario/1
http://www.ict-citypulse.eu/scenarios/scenario/1
http://www.ict-citypulse.eu/scenarios/scenario/1
http://www.ict-citypulse.eu/scenarios/scenario/1
http://www.ict-citypulse.eu/scenarios/scenario/1
http://www.ict-citypulse.eu/scenarios/scenario/1
http://www.ict-citypulse.eu

576 F. Gao et al. / Future Generation Computer Systems 76 (2017) 561–581

Select ?locId ?es4 ?value1 ... Where {
Graph <http://purl.oclc.org/NET/ssnx/ssn#>
{?ob rdfs:subClassOf ssn:Observation.}
Graph <http://sampleStaticKB> {?es4 ct:owner foaf:Alice}
Stream <locationStreamURL> [range 5s]
{?locId rdf:type ?ob. ?locId ssn:observedBy ?es4.
?locId ssn:observationResult ?result1.
?result1 ssn:hasValue ?value1.
?value1 ct:hasLongtitude ?lon. ?value1 ct:hasLatitude ?lat.
?loc ct:hasLongtitude ?lon. }
Stream <trafficStreamURL1> [range 5s]
{?seg1Id rdf:type ?ob. ?seg1Id ssn:observedBy ?es1.
?seg1Id ssn:observationResult ?result2.
?result2 ssn:hasValue ?value2.
?value2 ssn:hasQuantityValue ?eta1.}
Stream <trafficStreamURL2> [range 5s] {...}
Stream <trafficStreamURL3> [range 5s] {...} }

Listing 8: CQELS query example
(a) Start and finish location. (b) Requirements for the travel. (c) Travel path monitoring.

Fig. 6. Travel Planner Demo.
As shown in Fig. 6(c), Alice is presentedwith her ideal route and
will be able to select each leg of the journey based on concurrent
and projected aggregated conditions. During her journey, Alice is
continuously notified of the contextual conditions on her planned
journey. However, if conditions change dynamically and any of
the user defined constraints are violated during her travel, ACIES
is capable of re-calculating the optimised path considering new
conditions.

In addition, based on the experience of developing the proto-
type of ACEIS, the semantic alignments and query transformation
can be extended efficiently for other RSP engines, because of the
similarity of the query semantics and the fact that they adopt a
SPARQL-like syntax (as in the SPARQLstream [76], ETALIS [14] and
Streaming SPARQL [77]). For example, the design and implemen-
tation of the first query transformation algorithm for CQELS took
about 1.5 person per month (ppm), while developing the second
query transformation algorithm for C-SPARQL took only 0.25 ppm.

9. Query performance optimisation for concurrent queries

In order to investigate the feasibility of using RSP engines in
large-scale applications such as the smart travel planner deployed
at the city scale, performance evaluation and optimisation with
regard to concurrent queries are required. In CityBench20 [17]
some initial results for handling concurrency are presented.
However, only duplicates for the same query are used as
concurrent queries and only 20 queries are tested at one time
over a single engine instance. In the following, the performance of
single CQELS and C-SPARQL engines is analysed when processing

20 Citybench source code and datasets available at: https://github.com/CityBench/
Benchmark.
multiple different queries generated from the travel planner
application. Then, the optimisation technique of using multiple
engine instances in parallel and evaluate the improvement in
query performance is discussed. Finally, the experiment results of
the stress tests are presented in order to find out the capability
of the server that hosts RSP engines using the aforementioned
optimisation techniques. The experiments on concurrent queries
are deployed on amachine running Debian GNU/Linux 6.0.10, with
8-cores of 2.13 GHz processor and 64 GB RAM. The queries used
in the experiments are randomly created with 2–4 streams, 8–16
triple patterns.21 The stream rate is configured to 15 triples per
second per stream. Thus, for a single query, the input rate is 30–60
triples per second.

9.1. Multiple different queries over single engine instance

Figs. 7 and 8 show the performance of CQELS and C-SPARQL
engines when dealing with multiple queries. In the result data
series, the letter ‘‘p’’ denotes the number of engine instances
deployed and ‘‘q’’ represents the number of queries deployed.

The results in Figs. 7 and 8 indicate that for both types of
engines, the query latency increases when handling more queries,
and CQELS is relatively more efficient when handling multiple
queries. Also, when the number of concurrent queries exceeds 30,
the query latency is not stable, i.e., does not converge to stable
values and will stop producing results after a period of time.

9.2. Optimisation using multiple engine instances

One natural thought in handling many concurrent queries is
to deploy multiple engine instances in parallel and distribute

21 This setting is the typical situation in the travel planner scenario.

https://github.com/CityBench/Benchmark
https://github.com/CityBench/Benchmark
https://github.com/CityBench/Benchmark
https://github.com/CityBench/Benchmark
https://github.com/CityBench/Benchmark

F. Gao et al. / Future Generation Computer Systems 76 (2017) 561–581 577
Fig. 7. Latency of multiple different queries over single CQELS engine.

Fig. 8. Latency of multiple different queries over single C-SPARQL engine.

the workload over different engines. Thanks to the service-
oriented nature of ACEIS, queries can reuse results from different
engine instances and even from different types of engines.
However, a load balancing strategy is needed to determine at run-
time which queries are going to be deployed on which engine
instances. For this purpose, an additional Scheduler module is
developed,which consists of a query dispatcher and a performance
monitor. The performance monitor gathers the real-time status
of the query engine instances, such as query latency, number of
queries deployed and overall memory consumption, etc. When
a composition plan arrives at the subscription manager, the
subscription manager queries the dispatcher for the current best
engine instance for the composition. The dispatcher calculates the
best engine instance based on the status of the engines reported
by the performance monitor and send the identifier of the engine
instance to the subscription manager. The subscription manager
then deploys the query derived from the composition plan to the
best engine instance. When necessary, the dispatcher will create
new engine instances. The interactions between the scheduler and
other components in ACEIS is depicted in Fig. 9.

The scheduler controls the load balancing using different
strategies. The simplest strategy is to initialise a fixed amount
of engine instances in the beginning and keep the same amount
of queries on each engine instance. This strategy is called the
Equalised Query (denoted ‘‘EQ’’) strategy. Another strategy is to
dynamically create new instances based on the current system
load. This strategy is called the Elastic (denoted ‘‘EL’’) strategy.
Since the experiments on a single engine instance suggest that an
engine instance may become unstable when dealing with more
than 30 concurrent queries, in EL, a new engine instance when the
current engine reaches n queries, where n ≤ 30 (n is set to 20 in
the experiments below).
Fig. 9. Concurrent query scheduler inside the Data Federation component in ACEIS.

Fig. 10. Latency of CQELS engines using EQ.

Fig. 11. Latency of C-SPARQL engines using EQ.

Figs. 10 and 11 show the average query latency of multiple
CQELS and C-SPARQL engines, respectively. The results show
that using two engine instances reduces the query latency for
both CQELS and C-SPARQL compared with single engine instance.
However, more engines deployed does not necessary result into
better query performance, e.g., when 4 engines are used for
30 queries, the latency can sometimes be higher than using a
single engine. Meanwhile, the elastic approach performs better
than equalised queries in this experiment. Indeed, using multiple
engines demands more resources such as memory and initialising
all engines upfront creates overhead. Figs. 12 and 13 show the
memory usage for CQELS and C-SPARQL under different numbers
of concurrent queries and engine instances, respectively.

From the results in Figs. 12 and 13, it is clear that the memory
consumption increases as the number of concurrent queries as
well as the number of engine instances increase. Also, CQELS uses
less memory than C-SPARQL when dealing with fewer queries but
the memory growth rate over the number of queries and engine
instances are faster than C-SPARQL.

578 F. Gao et al. / Future Generation Computer Systems 76 (2017) 561–581
Fig. 12. Memory consumption of multiple CQELS engines.

Fig. 13. Memory consumption of multiple C-SPARQL engines.

Fig. 14. Latency of CQELS engines using EQ and BL while p = 5, q = 50.

Since the memory availability is limited in any system, the
elastic approach will have to stop creating new engine instances at
some point. Then it will regress to the equalised queries approach.
An alternative way is to deploy queries on the engine that has the
lowest average query latency. This strategy is called the Balanced
Latency (denoted ‘‘BL’’) strategy. The results in Figs. 14 and 15 show
that the balanced latency strategy outperforms equalised query
on both CQELS and C-SPARQL when dealing with 50 concurrent
queries with 5 instances. In particular, C-SPARQL is unstable when
using the EQ strategy but is stabilisedwhen using BL. The results in
Fig. 16 show the improvement of query latency distribution when
using BL instead of EQ. From the results, it is observable that, for
CQELS engines, the number of query results with latency less than
Fig. 15. Latency of C-SPARQL engines using EQ and BL while p = 5, q = 50.

Fig. 16. Query latency distribution, p = 5, q = 50.

500 ms is 76% and 69% when using BL and EQ respectively. For
C-SPARQL engines, the number of query results with latency
less than 5000 ms is 49% and 36% when using BL and EQ
respectively. The combined strategy of using the elastic approach
in the beginning and switch to balanced query strategy when the
memory limit has been reached is called Elastic-Balanced-Latency
strategy (denoted ‘‘EBL’’).

9.3. Stress tests

In order to further investigate the feasibility of running
federated RSP queries in large scale, i.e., with high input rate, large
amount of input streams, and high volume of concurrent users,
stress tests are conducted to evaluate the system with hundreds
to thousands of queries (deploying a new query every 1–3 s) with
the EBL load balancing strategy. The query latencies over an hour
for CQELS and C-SPARQL engines are shown in Figs. 17 and 18.

The stress test results show that CQELS can handle 1000
concurrent queries with a 15–20 s delay while C-SPARQL has
a much more limited capacity of processing no more than 100
queries in a stable status. It is also worth mentioning that during
the experiments CQELS tends to use all CPU time when the
workload is heavy, but C-SPARQL does not use more than 30% of
the CPU time even the concurrency and query delays are high. It
is not clear whether this behaviour of C-SPARQL is by design or an
implementation issue.

10. Conclusion and future directions

In this paper, we have identified several challenges for Smart
City applications. We presented ACEIS to automatically discover

F. Gao et al. / Future Generation Computer Systems 76 (2017) 561–581 579
Fig. 17. Latency of CQELS engines using EBL.

Fig. 18. Latency of C-SPARQL engines using EBL.

and integrate heterogeneous sensor data streams and thus
addressing the data stream federation challenge. ACEIS receives
requirements from users and applications as event request and
discovers or composes the relevant data streams to address
both functional and non-functional requirements specified in the
event requests. The discovery and composition process in ACEIS
rely on the CES ontology designed for describing complex event
services as extended OWL-S services. Based on the discovery
and composition results, together with alignments between
event and query semantics, ACEIS automatically generates stream
reasoning queries (i.e., CQELS and C-SPARQL queries) via query
transformation and registers the queries to the stream engines.
These queries operate on live semantic data streams produced by
various (physical or human) sensors to detect complex events.
To demonstrate how ACEIS can be used, we integrate it in
a travel planner scenario, where users’ functional and non-
functional requirements for the travel planning are addressed
and a live traffic monitoring feature on the planned route is
offered. We implement different load balancing techniques for
optimising the performance of handling concurrency in ACEIS. The
experiment results show that leveraging the ‘‘elastic-balanced-
latency’’ strategy, we increase the capacity of ACEIS when using
CQELS and C-SPARQL from about 30–1000 queries and 30–90
queries, respectively.

Looking back at the requirements defined in Section 3.3, we
can see how ACEIS implemented in the travel planner prototype
helps to fulfil these requirements. In this prototype, ACEIS deals
with heterogeneous data/event sources (e.g., traffic, air pollution,
weather etc.) on the fly, hence satisfying the requirement R.1.
Apart from functional requirements, non-functional requirements,
e.g. sensor accuracy and measurement delay, are also taken into
consideration while choosing the sensors, addressing partially the
reliable information processing requirement R.4. The ability of the
ACIES to detour is achieved by real-time monitoring and event
detection, which satisfies the requirement R.3. Large scale stream
processing and analysis (R.2) is discussed in Section 9, althoughwe
made some improvements for the system capacity, more study in
this direction is needed.

In futurework, we plan to study further the efficiency, coverage
and extensibility of our proposed ontology. We also want to
dynamically define optimal window size for live stream queries of
complex events while considering individual update frequency of
the all underlying data streams. Another direction for the future
work is to further investigate methods to improve the capacity of
RSP engines for handling concurrent queries, e.g., implementing a
distributed way of evaluating federated RSP queries.

Acknowledgements

This research has been partially supported by Science Founda-
tion Ireland (SFI) under grant No. SFI/12/RC/2289, EU FP7 CityPulse
Project under grant No. 603095, and the Key Projects of National
Social Science Foundation of China (11 & ZD189).

References

[1] S. Hasan, E. Curry, Thematic event processing, in: Proceedings of the 15th
International Middleware Conference, Middleware’14, ACM, New York, NY,
USA, 2014, pp. 109–120. http://dx.doi.org/10.1145/2663165.2663335.

[2] D. Luckham, The power of events: An introduction to complex event
processing in distributed enterprise systems, in: N. Bassiliades, G. Governatori,
A. Paschke (Eds.), Interchange and Reasoning on theWeb Rule Representation,
in: Lecture Notes in Computer Science, vol. 5321, Springer Berlin / Heidelberg,
2008, pp. 3–3. http://dx.doi.org/10.1007/978-3-540-88808-6_2.

[3] O. Etzion, P. Niblett, Event Processing in Action, Manning Publications Co.,
2010.

[4] D. Le-Phuoc, M. Dao-Tran, J.X. Parreira, M. Hauswirth, A native and adaptive
approach for unified processing of linked streams and linked data, in: The
Semantic Web–ISWC 2011, Springer, 2011, pp. 370–388.

[5] D.F. Barbieri, D. Braga, S. Ceri, E. Della Valle, M. Grossniklaus, C-sparql: Sparql
for continuous querying, in: Proc. of WWW, ACM, 2009, pp. 1061–1062.

[6] D. DellAglio, J.P. Calbimonte, E.D. Valle, O. Corcho, Towards a Unified Language
for RDF Stream Query Processing, Springer International Publishing, 2015.

[7] S. McIlraith, T.C. Son, H. Zeng, Semantic web services, IEEE Intell. Syst. 16 (2)
(2001) 46–53. http://dx.doi.org/10.1109/5254.920599.

[8] L. Zeng, A.H. Ngu, B. Benatallah, R. Podorozhny, H. Lei, Dynamic composition
and optimization of web services, Distrib. Parallel Databases 24 (1–3) (2008)
45–72.

[9] D. Zimmer, R. Unland, On the semantics of complex events in active database
management systems, in: 15th International Conference on Data Engineering,
1999. Proceedings., 1999, pp. 392–399. http://dx.doi.org/10.1109/ICDE.1999.
754955.

[10] D. Bo, D. Kun, Z. Xiaoyi, A high performance enterprise service bus platform
for complex event processing, in: International Conference on Grid and
Cooperative Computing, 2008, pp. 577–582.

[11] F. Gao, E. Curry, S. Bhiri, Complex event service provision and composition
based on event pattern matchmaking, in: Proceedings of the 8th ACM
International Conference on Distributed Event-Based Systems, ACM, Mumbai,
India, 2014, http://dx.doi.org/10.1145/2611286.2611287.

[12] F. Gao, M.I. Ali, E. Curry, A. Mileo, Qos-Aware Stream Federation and
Optimization Based on Service Composition, Vol. 12, IGI Global, 2016,
pp. 43–67.

[13] F. Gao, M.I. Ali, E. Curry, A. Mileo, Qos-aware adaptation for complex event
service, in: Proceedings of the 31st Annual ACM Symposium on Applied Com-
puting, SAC’16, ACM, New York, NY, USA, 2016, pp. 1597–1604. http://dx.doi.
org/10.1145/2851613.2851806, URL http://doi.acm.org/10.1145/2851613.
2851806.

[14] D. Anicic, P. Fodor, S. Rudolph, N. Stojanovic, Ep-sparql: a unified language
for event processing and stream reasoning, in: Proceedings of the 20th
International Conference on World wide web, WWW’11, 2011, pp. 635–644.

[15] D. Le-Phuoc, H.N.M. Quoc, C. Le Van, M. Hauswirth, Elastic and scalable
processing of linked stream data in the cloud, in: The Semantic Web–ISWC
2013, Springer, 2013, pp. 280–297.

[16] Y. Ren, J.Z. Pan, Optimising ontology stream reasoningwith truthmaintenance
system, in: ACM Conference on Information and Knowledge Management,
CIKM 2011, Glasgow, United Kingdom, October, 2011, pp. 831–836.

[17] M.I. Ali, F. Gao, A. Mileo, Citybench: A configurable benchmark to evaluate rsp
engines using smart city datasets, in: International SemanticWeb Conference,
Springer, 2015, pp. 374–389.

http://dx.doi.org/10.1145/2663165.2663335
http://dx.doi.org/10.1007/978-3-540-88808-6_2
http://refhub.elsevier.com/S0167-739X(17)30331-X/sbref3
http://refhub.elsevier.com/S0167-739X(17)30331-X/sbref4
http://refhub.elsevier.com/S0167-739X(17)30331-X/sbref5
http://refhub.elsevier.com/S0167-739X(17)30331-X/sbref6
http://dx.doi.org/10.1109/5254.920599
http://refhub.elsevier.com/S0167-739X(17)30331-X/sbref8
http://dx.doi.org/10.1109/ICDE.1999.754955
http://dx.doi.org/10.1109/ICDE.1999.754955
http://dx.doi.org/10.1109/ICDE.1999.754955
http://dx.doi.org/10.1109/ICDE.1999.754955
http://dx.doi.org/10.1109/ICDE.1999.754955
http://dx.doi.org/10.1109/ICDE.1999.754955
http://dx.doi.org/10.1109/ICDE.1999.754955
http://dx.doi.org/10.1109/ICDE.1999.754955
http://dx.doi.org/10.1109/ICDE.1999.754955
http://dx.doi.org/10.1145/2611286.2611287
http://refhub.elsevier.com/S0167-739X(17)30331-X/sbref12
http://dx.doi.org/10.1145/2851613.2851806
http://dx.doi.org/10.1145/2851613.2851806
http://dx.doi.org/10.1145/2851613.2851806
http://dx.doi.org/10.1145/2851613.2851806
http://dx.doi.org/10.1145/2851613.2851806
http://dx.doi.org/10.1145/2851613.2851806
http://dx.doi.org/10.1145/2851613.2851806
http://dx.doi.org/10.1145/2851613.2851806
http://doi.acm.org/10.1145/2851613.2851806
http://doi.acm.org/10.1145/2851613.2851806
http://doi.acm.org/10.1145/2851613.2851806
http://doi.acm.org/10.1145/2851613.2851806
http://doi.acm.org/10.1145/2851613.2851806
http://doi.acm.org/10.1145/2851613.2851806
http://doi.acm.org/10.1145/2851613.2851806
http://doi.acm.org/10.1145/2851613.2851806
http://refhub.elsevier.com/S0167-739X(17)30331-X/sbref15
http://refhub.elsevier.com/S0167-739X(17)30331-X/sbref17

580 F. Gao et al. / Future Generation Computer Systems 76 (2017) 561–581
[18] J.P. Calbimonte, Rdf stream processing: Let’s react, in: Proceedings of
International Workshop on Ordering & Reasoning.

[19] M. Sabou, D. Richards, S. Van Splunter, An experience report on using daml-s,
in: The Proceedings of the Twelfth International WorldWideWeb Conference
Workshop on E-Services and the Semantic Web, ESSW’03. Budapest, 2003.

[20] D.A. D’Mello, V. Ananthanarayana, A review of dynamic web service
description and discovery techniques, in: 2010 First International Conference
on Integrated Intelligent Computing, (ICIIC), IEEE, 2010, pp. 246–251.

[21] N. Milanovic, M. Malek, Current solutions for web service composition, IEEE
Internet Comput. 8 (6) (2004) 51–59.

[22] S. Dasgupta, S. Bhat, Y. Lee, Sgps: a semantic scheme for web service similarity,
in: Proceedings of the 18th International Conference onWorldwideweb, ACM,
2009, pp. 1125–1126.

[23] J. Hau, W. Lee, J. Darlington, A semantic similarity measure for semantic web
services, in: Web Service Semantics Workshop at WWW, 2005, pp. 10–14.

[24] M. Klusch, B. Fries, K. Sycara, Automated semantic web service discovery
with owls-mx, in: Proceedings of the Fifth International Joint Conference on
Autonomous Agents and Multiagent Systems, ACM, 2006, pp. 915–922.

[25] S. Dasgupta, S. Bhat, Y. Lee, Taxonomic clustering and query matching for
efficient service discovery, in: 2011 IEEE International Conference on Web
Services, (ICWS), IEEE, 2011, pp. 363–370.

[26] E. Stroulia, Y. Wang, Structural and semantic matching for assessing web-
service similarity, Int. J. Coop. Inf. Syst. 14 (04) (2005) 407–437.

[27] M. Carman, L. Serafini, P. Traverso, Web service composition as planning, in:
ICAPS 2003 Workshop on Planning for Web Services, 2003, pp. 1636–1642.

[28] J. Peer, A pddl based tool for automatic web service composition, in: Principles
and Practice of Semantic Web Reasoning, Springer, 2004, pp. 149–163.

[29] A. Riabov, Z. Liu, Scalable planning for distributed stream processing systems.,
in: ICAPS, 2006, pp. 31–41.

[30] Z. Liu, A. Ranganathan, A. Riabov, A planning approach for message-oriented
semantic web service composition, in: Proceedings of the National Conference
on Artificial Intelligence, Vol. 22, AAAI Press, MIT Press, Menlo Park, CA,
Cambridge, MA, London, 1999, p. 1389. 2007.

[31] R. Berbner, M. Spahn, N. Repp, O. Heckmann, R. Steinmetz, Heuristics for qos-
awareweb service composition, in: International Conference onWeb Services,
2006, ICWS’06, IEEE, 2006, pp. 72–82.

[32] Z. Duan, Z.-L. Zhang, Y.T. Hou, Service overlay networks: Slas, qos, and
bandwidth provisioning, IEEE/ACM Trans. Netw. 11 (6) (2003) 870–883.

[33] M. Alrifai, T. Risse, Combining global optimization with local selection
for efficient qos-aware service composition, in: Proceedings of the 18th
International Conference on World Wide Web, ACM, 2009, pp. 881–890.

[34] F. Karatas, D. Kesdogan, An approach for compliance-aware service selection
with genetic algorithms, in: Service-Oriented Computing, Springer, 2013,
pp. 465–473.

[35] Z. Ye, A. Bouguettaya, X. Zhou, Qos-aware cloud service composition using
time series, in: Service-Oriented Computing, Springer, 2013, pp. 9–22.

[36] A. Carzaniga, D.S. Rosenblum, A.L. Wolf, Design and evaluation of a wide-area
event notification service, ACM Trans. Comput. Syst. 19 (3) (2001) 332–383.
http://dx.doi.org/10.1145/380749.380767.

[37] E. Curry, Increasing mom flexibility with portable rule bases, IEEE Internet
Comput. 10 (6) (2006) 26–32. http://dx.doi.org/10.1109/MIC.2006.128.

[38] G. Li, H.-A. Jacobsen, Composite subscriptions in content-based publish/sub-
scribe systems, in: Proceedings of the ACM/IFIP/USENIX 2005 International
Conference on Middleware, Middleware’05, Springer-Verlag, New York, Inc.,
New York, NY, USA, 2005, pp. 249–269.

[39] J. Keeney, D. Roblek, D. Jones, D. Lewis, D. O’Sullivan, Extending siena to
support more expressive and flexible subscriptions, in: R. Baldoni (Ed.), DEBS,
in: ACM International Conference Proceeding Series, vol. 332, ACM, 2008,
pp. 35–46.

[40] Z. Long, B. Jin, F. Qi, D. Cao, Reuse strategies in distributed complex event
detection, in: Quality Software, 2009. QSIC’09. 9th International Conference
on, 2009, pp. 325–330. http://dx.doi.org/10.1109/QSIC.2009.49.

[41] S. Hasan, E. Curry, Approximate semantic matching of events for the
Internet of things, ACM Trans. Internet Technol. 14 (1) (2014) 2:1–2:23.
http://dx.doi.org/10.1145/2633684.

[42] G. Mühl, Large-scale content-based publish-subscribe systems (Ph.D. thesis),
TU Darmstadt, 2002.

[43] M. Akdere, U. Çetintemel, N. Tatbul, Plan-based complex event detection
across distributed sources, Proc. VLDB Endow. 1 (1) (2008) 66–77.

[44] N.P. Schultz-Møller, M. Migliavacca, P. Pietzuch, Distributed complex event
processing with query rewriting, in: Proceedings of the Third ACM Interna-
tional Conference on Distributed Event-Based Systems, DEBS’09, 2009, pp.
4:1–4:12. http://dx.doi.org/10.1145/1619258.1619264.

[45] Z. Laliwala, S. Chaudhary, Event-driven service-oriented architecture, in: 2008
International Conference on Service Systems and Service Management, 2008,
pp. 1–6. http://dx.doi.org/10.1109/ICSSSM.2008.4598452.

[46] A. Hinze, A. Voisard, Eva: An event algebra supporting complex event speci-
fication, Inf. Syst. 48 (2015) 1–25. http://dx.doi.org/10.1016/j.is.2014.07.003,
URL http://www.sciencedirect.com/science/article/pii/S0306437914001252.

[47] D. Zimmer, R. Unland, On the semantics of complex events in active database
management systems, in: 15th International Conference on Data Engineering,
1999. Proceedings., IEEE, 1999, pp. 392–399.

[48] A. Hinze, A-medias: An adaptive event notification system, in: Proceedings
of the 2Nd International Workshop on Distributed Event-Based Systems,
DEBS’03, ACM, New York, NY, USA, 2003, pp. 1–8. http://dx.doi.org/10.1145/
966618.966623.
[49] D. Jung, A. Hinze, A Meta-Service for Event Notification, Springer Berlin,
Heidelberg, Berlin, Heidelberg, 2004, pp. 283–300.

[50] K.Whitehouse, F. Zhao, J. Liu, Semantic Streams: A Framework for Composable
Semantic Interpretation of Sensor Data, Springer Berlin, Heidelberg, 2006.

[51] Q. Zhou, Y. Simmhan, V. Prasanna, Towards hybrid online on-demandquerying
of realtimedatawith stateful complex event processing, in: BigData, 2013 IEEE
International Conference on, 2013, pp. 199–205. http://dx.doi.org/10.1109/
BigData.2013.6691575.

[52] D. De Leng, F. Heintz, Towards on-demand semantic event processing for
stream reasoning, in: International Conference on Information Fusion, 2014,
pp. 1–8.

[53] S. Bischof, A. Karapantelakis, C.S. Nechifor, A. Sheth, A. Mileo, P. Barnaghi,
Semantic modeling of smart city data, in: Proc. of the W3C Workshop on the
Web of Things: Enablers and Services for anOpenWeb of Devices,W3C, Berlin,
Germany, 2014.

[54] D. Arditi, G. Mangano, A. De Marco, Assessing the smartness of buildings,
Facilities 33 (9/10) (2015) 553–572.

[55] A. Boulis, S. Ganeriwal, M.B. Srivastava, Aggregation in sensor networks: an
energy–accuracy trade-off, Ad Hoc Networks 1 (2) (2003) 317–331.

[56] J.B. Johnson, G.L. Schaefer, The influence of thermal, hydrologic, and snow
deformationmechanisms on snowwater equivalent pressure sensor accuracy,
Hydrol. Process. 16 (18) (2002) 3529–3542.

[57] A.Mainka, S. Hartmann,W.G. Stock, I. Peters, Looking for friends and followers:
a global investigation of governmental social media use, Transforming Gov.:
People Process Policy 9 (2) (2015) 237–254.

[58] T. Sakaki, M. Okazaki, Y. Matsuo, Earthquake shakes twitter users: real-time
event detection by social sensors, in: Proceedings of the 19th International
Conference on World wide web, ACM, 2010, pp. 851–860.

[59] B. Liu, L. Zhang, A survey of opinionmining and sentiment analysis, in: Mining
Text Data, Springer, 2012, pp. 415–463.

[60] M.F. Goodchild, Citizens as sensors: the world of volunteered geography,
GeoJournal 69 (4) (2007) 211–221.

[61] A. Martinez-Balleste, P. Perez-martinez, A. Solanas, The pursuit of citizens’
privacy: a privacy-aware smart city is possible, IEEE Commun. Mag. 51 (6)
(2013) 136–141.

[62] G. Pan, G. Qi,W. Zhang, et al., Trace analysis andmining for smart cities: issues,
methods, and applications, IEEE Commun. Mag. 51 (6) (2013) 120–126.

[63] A. Bartoli, J. Hernández-Serrano, M. Soriano, M. Dohler, A. Kountouris, D.
Barthel, Security and privacy in your smart city, in: Proceedings of the
Barcelona Smart Cities Congress, 2011.

[64] I. Stojmenovic, Machine-to-machine communications with in-network data
aggregation, processing, and actuation for large-scale cyber-physical systems,
IEEE Internet Things J. 1 (2) (2014) 122–128.

[65] D. Martin, M. Burstein, D. Mcdermott, S. Mcilraith, M. Paolucci, K. Sycara, D.L.
Mcguinness, E. Sirin, N. Srinivasan, Bringing semantics to web services with
owl-s, World Wide Web 10 (3) (2007) 243–277.

[66] K. Haniewicz, M. Kaczmarek, D. Zyskowski, Semantic web services applica-
tions–a reality check, Wirtschaftsinformatik 50 (1) (2008) 39–46.

[67] M. Bruno, G. Canfora, M. Di Penta, R. Scognamiglio, An approach to support
web service classification and annotation, in: The 2005 IEEE International
Conference on e-Technology, e-Commerce and e-Service, 2005. EEE’05.
Proceedings., IEEE, 2005, pp. 138–143.

[68] K. Belhajjame, S.M. Embury, N.W. Paton, R. Stevens, C.A. Goble, Automatic
annotation of web services based on workflow definitions, ACM Trans. Web
(TWEB) 2 (2) (2008) 11.

[69] F. Gao, S. Bhiri, Capability annotation of actions based on their textual
descriptions, in: 2014 IEEE 23rd International WETICE Conference, (WETICE),
IEEE, 2014, pp. 257–262.

[70] J. Schiefer, S. Rozsnyai, C. Rauscher, G. Saurer, Event-driven rules for sensing
and responding to business situations, in: DEBS, Vol. 233, DEBS’07, ACM, 2007,
pp. 198–205.

[71] J.F. Allen, L.F. Allen, Maintaining knowledge about temporal intervals,
Commun. ACM (1983) 832–843.

[72] G. Cugola, A. Margara, Processing flows of information: From data stream
to complex event processing, ACM Comput. Surv. 44 (3) (2012) 15:1–15:62.
http://dx.doi.org/10.1145/2187671.2187677.

[73] D.F. Barbieri, D. Braga, S. Ceri, E.D. Valle, M. Grossniklaus, Querying rdf streams
with c-sparql, SIGMOD Rec. 39 (1) (2010) 20–26. http://dx.doi.org/10.1145/
1860702.1860705.

[74] D. Le-Phuoc, M. Dao-Tran, J.X. Parreira, M. Hauswirth, A native and
adaptive approach for unified processing of linked streams and linked data,
in: Proceedings of the 10th International Conference on The Semantic Web -
Volume Part I, Springer-Verlag, 2011.

[75] G. Decker, A. Grosskopf, A. Barros, A graphical notation for modeling complex
events in business processes, in: edoc, IEEE Computer Society, 2007, p. 27.
http://dx.doi.org/10.1109/EDOC.2007.41.

[76] J.-P. Calbimonte, O. Corcho, A.J.G. Gray, Enabling ontology-based access to
streaming data sources, in: Proceedings of the 9th International SemanticWeb
Conference on The Semantic Web - Volume Part I, ISWC’10, Springer-Verlag,
Berlin, Heidelberg, 2010, pp. 96–111.

[77] A. Bolles, M. Grawunder, J. Jacobi, Streaming SPARQL-Extending SPARQL to
Process Data Streams, Springer, 2008.

http://refhub.elsevier.com/S0167-739X(17)30331-X/sbref20
http://refhub.elsevier.com/S0167-739X(17)30331-X/sbref21
http://refhub.elsevier.com/S0167-739X(17)30331-X/sbref22
http://refhub.elsevier.com/S0167-739X(17)30331-X/sbref24
http://refhub.elsevier.com/S0167-739X(17)30331-X/sbref25
http://refhub.elsevier.com/S0167-739X(17)30331-X/sbref26
http://refhub.elsevier.com/S0167-739X(17)30331-X/sbref28
http://refhub.elsevier.com/S0167-739X(17)30331-X/sbref30
http://refhub.elsevier.com/S0167-739X(17)30331-X/sbref31
http://refhub.elsevier.com/S0167-739X(17)30331-X/sbref32
http://refhub.elsevier.com/S0167-739X(17)30331-X/sbref33
http://refhub.elsevier.com/S0167-739X(17)30331-X/sbref34
http://refhub.elsevier.com/S0167-739X(17)30331-X/sbref35
http://dx.doi.org/10.1145/380749.380767
http://dx.doi.org/10.1109/MIC.2006.128
http://refhub.elsevier.com/S0167-739X(17)30331-X/sbref38
http://refhub.elsevier.com/S0167-739X(17)30331-X/sbref39
http://dx.doi.org/10.1109/QSIC.2009.49
http://dx.doi.org/10.1145/2633684
http://refhub.elsevier.com/S0167-739X(17)30331-X/sbref42
http://refhub.elsevier.com/S0167-739X(17)30331-X/sbref43
http://dx.doi.org/10.1145/1619258.1619264
http://dx.doi.org/10.1109/ICSSSM.2008.4598452
http://dx.doi.org/10.1016/j.is.2014.07.003
http://www.sciencedirect.com/science/article/pii/S0306437914001252
http://refhub.elsevier.com/S0167-739X(17)30331-X/sbref47
http://dx.doi.org/10.1145/966618.966623
http://dx.doi.org/10.1145/966618.966623
http://dx.doi.org/10.1145/966618.966623
http://dx.doi.org/10.1145/966618.966623
http://dx.doi.org/10.1145/966618.966623
http://dx.doi.org/10.1145/966618.966623
http://dx.doi.org/10.1145/966618.966623
http://dx.doi.org/10.1145/966618.966623
http://refhub.elsevier.com/S0167-739X(17)30331-X/sbref49
http://refhub.elsevier.com/S0167-739X(17)30331-X/sbref50
http://dx.doi.org/10.1109/BigData.2013.6691575
http://dx.doi.org/10.1109/BigData.2013.6691575
http://dx.doi.org/10.1109/BigData.2013.6691575
http://dx.doi.org/10.1109/BigData.2013.6691575
http://dx.doi.org/10.1109/BigData.2013.6691575
http://dx.doi.org/10.1109/BigData.2013.6691575
http://dx.doi.org/10.1109/BigData.2013.6691575
http://dx.doi.org/10.1109/BigData.2013.6691575
http://dx.doi.org/10.1109/BigData.2013.6691575
http://refhub.elsevier.com/S0167-739X(17)30331-X/sbref54
http://refhub.elsevier.com/S0167-739X(17)30331-X/sbref55
http://refhub.elsevier.com/S0167-739X(17)30331-X/sbref56
http://refhub.elsevier.com/S0167-739X(17)30331-X/sbref57
http://refhub.elsevier.com/S0167-739X(17)30331-X/sbref58
http://refhub.elsevier.com/S0167-739X(17)30331-X/sbref59
http://refhub.elsevier.com/S0167-739X(17)30331-X/sbref60
http://refhub.elsevier.com/S0167-739X(17)30331-X/sbref61
http://refhub.elsevier.com/S0167-739X(17)30331-X/sbref62
http://refhub.elsevier.com/S0167-739X(17)30331-X/sbref64
http://refhub.elsevier.com/S0167-739X(17)30331-X/sbref65
http://refhub.elsevier.com/S0167-739X(17)30331-X/sbref66
http://refhub.elsevier.com/S0167-739X(17)30331-X/sbref67
http://refhub.elsevier.com/S0167-739X(17)30331-X/sbref68
http://refhub.elsevier.com/S0167-739X(17)30331-X/sbref69
http://refhub.elsevier.com/S0167-739X(17)30331-X/sbref70
http://refhub.elsevier.com/S0167-739X(17)30331-X/sbref71
http://dx.doi.org/10.1145/2187671.2187677
http://dx.doi.org/10.1145/1860702.1860705
http://dx.doi.org/10.1145/1860702.1860705
http://dx.doi.org/10.1145/1860702.1860705
http://dx.doi.org/10.1145/1860702.1860705
http://dx.doi.org/10.1145/1860702.1860705
http://dx.doi.org/10.1145/1860702.1860705
http://dx.doi.org/10.1145/1860702.1860705
http://dx.doi.org/10.1145/1860702.1860705
http://refhub.elsevier.com/S0167-739X(17)30331-X/sbref74
http://dx.doi.org/10.1109/EDOC.2007.41
http://refhub.elsevier.com/S0167-739X(17)30331-X/sbref76
http://refhub.elsevier.com/S0167-739X(17)30331-X/sbref77

F. Gao et al. / Future Generation Computer Systems 76 (2017) 561–581 581
Feng Gao received his B.Sc. degree in Software Engineer-
ing from Wuhan University, China, in September 2008.
He received an M.Eng. degree in Telecommunication from
Dublin City University with honors in 2009. Currently he
is a Ph.D. student at the INSIGHT Centre for Data Analyt-
ics, National University of Ireland, Galway. His current re-
search interests includes Semantic Web, Complex Event
Processing and Service Computing. He has passed his Ph.D.
viva recently on 24th March 2016 and is conferred with
Ph.D. from National University if Ireland, Galway in June
2016. He is currently a Lecturer in the Department of Com-

puter Science, Wuhan University of Science and Technology since Sept. 2016.

Muhammad Intizar Ali is an Adjunct Lecturer, Research
Fellow and Project Leader at the Unit for Reasoning and
Querying at Insight Centre for Data Analytics, National
University of Ireland, Galway. His research interests
include SemanticWeb, Data Integration, Internet of Things
(IoT), Linked Data, Federated Query Processing, Stream
Query Processing andOptimal Query Processing over large
scale distributed data sources. He is actively involved in
various EU funded and industry-funded projects aimed
at providing IoT enabled adaptive intelligence for smart
city applications and smart enterprise communication

systems. He is serving as a PCmember of various journals, international conferences
and workshops. He is also actively participating in W3C efforts for standardisation
in RDF Stream Processing Community Group and Web of Things Interest Group.
Dr. Ali obtained his Ph.D. (with distinction) from Vienna University of Technology,
Austria in 2011.
Edward Curry is Vice President of the Big Data Value As-
sociation (www.BDVA.eu) a non-profit industry-led or-
ganisation with the objective of increasing the competi-
tiveness of European Companies with data-driven inno-
vation. Edward is a research leader at the Insight Centre
for Data Analytics (www.insight-centre.org) and a funded
investigator at LERO The Irish Software Research Cen-
tre (www.lero.ie). Edward has worked extensively with
industry and government advising on the adoption pat-
terns, practicalities, and benefits of new technologies. Ed-
ward has published over 120 scientific articles in journals,

books, and international conferences. He has presented at numerous events and has
given invited talks at Berkeley, Stanford, and MIT. In 2010, he was a guest speaker
at the MIT Sloan CIO Symposium to an audience of 600+ CIOs and senior IT ex-
ecutives. His research projects include studies of smart cities, energy intelligence,
semantic information management, event-based systems, and collaborative data
management. He is a member of the scientific leadership committee of Insight, and
a Lecturer in Informatics at the National University of Ireland Galway (NUIG). He
has a Ph.D. from the National University of Ireland Galway.

Alessandra Mileo is a Lecturer, Senior Research Fellow in
INSIGHT Centre for Data Analytics, School of Computing,
Dublin City University since 2016. She was a Senior
Research Fellow, Adjunct Lecturer and Unit Leader at
the INSIGHT Research Centre for Data Analytics, NUI
Galway, Ireland (formerly DERI). Since 2011, she has been
leading the Reasoning and Querying Unit, focusing on
the ability to unlock the potentials hidden in the fast
growing torrent of data generated on the Internet of
Things, and investigating the resulting economical and
social impact on application domains including Smart

Cities, Smart Transport and remote health monitoring. She is Principal Investigator
of the EU FP7 CityPulse project on large-scale data analytics for smart cities, and
for the primary industry collaboration within the Research Centre portfolio on
Enabling the Internet of Everything: a Linked Data infrastructure for networking,
managing and analysing streaming information. Her research interests includeweb
stream reasoning, deductive systems, Internet of Things, Semantic Web and Linked
Data, adaptive algorithms, inductive learning, large-scale query processing and
federation, context-aware systems, and she has published more than 40 articles
in international conferences and Journals. As part of the Steering Committee of the
INSIGHT Centre for Data Analytics, Dr. Mileo contributed to the global strategy for
H2020 which includes the proposal of a Magna Carta for Data. Dr. Alessandra Mileo
has a M.Sc. (2002) and a Ph.D. (2006) in Computer Science, both obtained with
distinction from the University of Milan.

http://www.BDVA.eu
http://www.insight-centre.org
http://www.lero.ie

	Automated discovery and integration of semantic urban data streams: The ACEIS middleware
	Introduction
	Related work
	RDF Stream Processing
	Semantic Web Services
	Publish--subscribe systems
	On-demand/unified event stream processing

	Smart city applications
	Sample scenarios in a smart city
	Smart city data streams
	Physical sensors
	Mobile and wearable sensors
	Social media data streams

	Requirements and challenges

	Overview of ACEIS architecture
	Knowledge base
	Application interface
	Semantic annotation
	ACEIS core
	Resource management
	Data federation
	Adaptation manager

	Semantic sensor data stream discovery & integration
	Complex Event Service ontology
	Primitive event service discovery
	Complex event service discovery and composition

	Formal semantics of event patterns in CES
	Meta-model of event semantics
	Event Duration
	Event Type Pattern
	Event Instance Selection
	Event Instance Consumption

	Comparison of existing approaches
	Event Duration
	Event Type Pattern
	Event Instance Selection
	Event Instance Consumption

	Abstract syntax of event pattern in CES ontology

	Query transformation
	Semantics alignment
	Transformation algorithm
	Event (Re-)construction from stream query results

	Prototype implementation and discussion
	Query performance optimisation for concurrent queries
	Multiple different queries over single engine instance
	Optimisation using multiple engine instances
	Stress tests

	Conclusion and future directions
	Acknowledgements
	References

