
Future Generation Computer Systems 90 (2019) 405–422

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

A Real-time Linked Dataspace for the Internet of Things: Enabling
‘‘Pay-As-You-Go’’ Data Management in Smart Environments
Edward Curry a,*, Wassim Derguech a, Souleiman Hasan a, Christos Kouroupetroglou b,
Umair ul Hassan a

a Insight Centre for Data Analytics, National University of Ireland Galway, Ireland
b Ultra4, Admitou 27, Thessaloniki, 56224, Greece

h i g h l i g h t s

• High-level design of real-time linked dataspace for IoT-enabled smart environments.
• Principled ‘‘Pay-As-You-Go’’ data management using tiered dataspace support services.
• Dataspace query service enabling unified queries across live, historical, & entity data.
• Demonstrates the use of a real-time linked dataspace to create analytics & decision support apps.
• Experiences and lessons from 5 real-world smart environments.

a r t i c l e i n f o

Article history:
Received 16 December 2017
Received in revised form 20 June 2018
Accepted 11 July 2018
Available online 17 July 2018

Keywords:
Smart environments
Data management
Internet of Things
Water management
Energy management
Dataspace
Linked data
Semantic web
Event processing
Distributed systems

a b s t r a c t

As smart environments move from a research vision to concrete manifestations in real-world enabled by
the Internet of Things, they are encountering a number of very practical challenges in data management
in terms of the flexibility needed to bring together contextual and real-time data, the interface between
new digital infrastructures and existing information systems, and how to easily share data between
stakeholders in the environment. Therefore, data management approaches for smart environments need
to support flexibility, dynamicity, incremental change, while keeping costs to a minimum. A Dataspace is
an emerging approach to datamanagement that has proved fruitful for personal information and scientific
data management. However, their use within smart environments and for real-time data remains largely
unexplored.

This paper introduces a Real-time Linked Dataspace (RLD) as an enabling platform for data man-
agement within smart environments. This paper identifies common data management requirements
for smart energy and water environments, details the RLD architecture and the key support services
and their tiered support levels, and a principled approach to ‘‘Pay-As-You-Go’’ data management. The
paper presents a dataspace query service for real-time data streams and entities to enable unified
entity-centric queries across live and historical stream data. The RLD was validated in 5 real-world
pilot smart environments following the OODA (Observe, Orient, Decide, and Act) Loop to build real-time
analytics, decisions support, and smart apps for energy and water management. The pilots demonstrate
that the RLD enables incremental pay-as-you-go data management with support services that simplify
the development of applications and analytics for smart environments. Finally, the paper discusses
experiences, lessons learnt, and future directions.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Driven by a desire to use ICT to manage resources more ef-
fectively and efficiently, smart environments emerged in the form
of smart cities, smart buildings, smart grids, smart water, and
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smart mobility [1]. A key driver in the development of smart
environments is the convergence of technologies including the
Internet of Things, Big Data [2],Middleware [3],Mobile computing
[4] and the digitisation of traditional physical infrastructure with
sensors and network connectivity [5]. In this paper, we focus on
the middleware and application layers of a smart environment,
specifically investigating the key data management requirements
for supporting the creation of applications and decision support
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tools.Weare interested in the interface betweennewdigital infras-
tructures and existing information systems, how to bring together
contextual and real-time data [6,7], and how to easily share data
between stakeholders in the environment.

Dataspaces are an emerging approach to pay-as-you-go data
management that has proved fruitful for personal information
and scientific data management. However, their use within Smart
Environments and for Real-Time data remains largely unexplored
and a number of open questions exist: What are the pay-as-you-
go requirements of a smart environment? What real-time support
services are needed by a dataspace? Can a set of incremental
service are levels be defined for pay-as-you-go data management
in a smart environment? What are appropriate data model in
dataspace for a smart environment?Howdoes a dataspace perform
in a real-world deployment?

In this work, we explore the use of the dataspace paradigm
within smart environments. The paper introduces the Real-time
Linked Dataspace (RLD) as an enabling platform for data manage-
ment within smart environments. At a high-level, the RLD com-
bines the ‘‘Pay-As-You-Go’’ paradigmof dataspaces and linked data
with entity-centric real-time query capabilities. The contributions
of this paper are:

• It defines the requirements, and high-level design of a real-
time linked dataspace for Internet-of-Things enabled smart
energy and water environments.

• A principled incremental approach to ‘‘pay-as-you-go’’ data
managementwithdataspace services providing tiered levels
of support.

• A dataspace query service for real-time data streams and
entities that enables unified queries across live streams,
historical streams, and entities.

• Demonstrates the use of the approach within the OODA
(Observe, Orient, Decide, and Act) Loop to build real-time
analytics, decisions support, and smart apps for smart en-
ergy and water management.

• Experiences and lessons from the 5 real-world pilot smart
environments

The structure of the paper is as follows: in section 2, it details the
motivation for new forms of data management within smart envi-
ronments by identifying commondata requirements of 5 smart en-
vironments in the smart energy and water management domains.
The coverage of these requirements within existing approaches
is then analysed in section 3. Section 4 details the fundamentals
of the RLD including the main components of the architecture.
Section 5 describes the key dataspace support services and their
tiered service levels. Section 6 discusses a principled approach to
Pay-As-You-Go data management based on the tiered levels of the
support services. In Section 7 the RLD is demonstrated in smart
environments following the OODA (Observe, Orient, Decide, and
Act) Loop to build real-time analytics, decisions support tools, and
smart apps for energy and water management. Finally, the paper
discusses the results of the pilots including experiences and lessons
learnt.

2. IoT-enAbled Smart Environments

Mark Weiser et al. defined a smart environment as ‘‘a physical
world that is richly and invisibly interwoven with sensors, actua-
tors, displays, and computational elements, embedded seamlessly
in the everyday objects of our lives, and connected through a
continuous network’’ [8]. In the past decade, smart environments
have moved from a research vision to concrete manifestations in
real-world deployments. Internet of Things (IoT) projects such as
the SmartSantander smart city project [9] are enabling smart en-
vironments by deploying tens of thousands of Internet-connected

Fig. 1. Three-layered framework for an internet of things enabled smart environ-
ment.
Source: Adapted from [11].

sensor devices monitoring everything from solar radiation and
temperature to flows of traffic and water. The sensor devices
provide a digital representation of the state of the real-world, in the
case of SmartSantander a digital representation of the city, which
enables visibility into processes and operations of the city that can
be analysed and optimised.

Real-world smart environments are encountering many chal-
lenges including the interoperability of diverse technologies (in-
cluding legacy systems) [10], meeting the needs of diverse stake-
holderswith extensive goals and expectations, andworkingwithin
the limited budgets available to invest in infrastructure. As illus-
trated in Fig. 1, the range of IoT technical challenges within a smart
environment canbe studiedusing a three-layered framework [11]:

• Layer 1- Communication and Sensing: A basic require-
ment is an infrastructure of communication and sensing
that maps the world of physical things into the world of
computationally processable data.

• Layer 2- Middleware: There is a need for middleware that
can abstract the underlying technologies for the application
developers. Data distribution, processing, and integration
with legacy information systems take place at this layer.

• Layer 3- Applications: IoT-enabled applicationswill need to
present the data gathered and analysed by the middleware
layer in an intuitive and user-friendly manner using new
visualisations and user experiences to ensure cognitive-
friendly smart environments.

While significant efforts in the area of IoT come from communi-
cation and sensing levels, there has been a growing realisation that
the challenges of the IoT will be more prevalent at the middleware
layer [12] including data collection, management, analytics, and
sharing. IoT-enabled smart environments are presenting new chal-
lenges for existing approaches to data management concerning
their need for flexibility, dynamicity [1], and an ability to deal with
incremental change while keeping costs to a minimum. Under-
standing these challenges inmore detail requires anunderstanding
of how the Internet of Things is enabling smart environments.
In the scope of this paper, we examine the data management
requirements of smart energy and water management systems as
a study of the practical data requirements of smart environments.

2.1. Smart energy and water management

Managing energy and water holistically within a smart envi-
ronment requires decision support tools that present meaningful
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and contextual information about usage, price, and availability of
energy and water intuitively and interactively to users. Users will
need different forms of information to manage their energy and
water consumption, from home users managing their water usage,
business users managing the water consumption of their commer-
cial activities, tomunicipalitiesmanaging regional distribution and
consumption at the city level. In order to develop smart apps for
these diverse users, it is necessary to leverage knowledge from
a number of different domains including metering (household,
neighbourhood, etc.), collection and catchment management, en-
ergy generation, environmental impacts, water quality, energy us-
age for pumping water, distribution networks, end-user feedback,
occupancy patterns, meteorological data, etc. The design of next-
generation smart energy and water management systems poses
significant technical challenges regarding information manage-
ment, integration of heterogeneous data, and real-time processing
of dynamic data generated in smart environments.

2.2. Five IoT-enabled smart environments

Over the past three years, we have been involved in numerous
projects [13–15] concerned with next-generation information
platforms for smart energy and water management systems. As
detailed in Fig. 2, the five pilots are:

• Smart Airport: Linate airport in Milan represents a large-
scale commercial energy and water consumer with uses
from washing activities, toilets, restaurants, and irrigation,
flight operations, to safety critical infrastructure for emer-
gency response. Linate targets a variety of users from the
company’s employees (including executives, operational
managers and technical staff), to passengers. The variety of
sensors used in the airport require the management of dif-
ferent events and their availability for applications in near-
real-time. Significant contextual data from the Airport’s op-
erational legacy systems are needed to process the events
for decision-making.

• Smart Office: The Insight Building was built in the 1990s
without a building management system and was retrofitted
with energy sensors. As typically in an organisation, Insight
has many information systems that run its operations, in-
cluding finance and enterprise resource planning, budget-
ing, and office IT assets. These enterprise systems can help
in identifying energy wastage and promoting conservation
actions within the office.

• Smart Homes: The Municipality of Thermi in Greece pro-
vides a residential smart water pilot with a representative
sample of 10 domestic residences. The target users are the
residents (both adults and children), municipality manage-
ment, a developer community for smart home ‘‘Apps’’, re-
search scientists, and the local water utility. Data from IoT
devices in each home needs to be managed in a near-real-
time manner to provide feedback to users on their water
consumption. Secure sharing of datasets with both the re-
search and developer community is needed.

• Mixed Use: The Engineering Building at NUI Galway is a
state-of-the-art smart building with significant numbers of
sensors and actuators. Target users include academic staff,
managers, technicians, researchers, and students. This smart
environment is designed to be a ‘living laboratory’where the
building itself is an interactive teaching tool where students
can utilise data from the environment in their projects and
research works.

• Smart School: Coláiste na Coiribe is a newly constructed
Irish language secondary school. The school accommodates
students aged 12–18, together with teaching and opera-
tional staff. The school has been fitted with a commercial

state-of-the-art building management system to manage
its energy and water consumption. A key challenge is to
customise the communication of energy and water data for
the diverse range of school stakeholders.

2.3. Common data requirements

For each of the five smart environments detailed, a system anal-
ysis was performed to identify the functional and non-functional
information processing requirements that were needed to develop
smart applications. The shared data requirements identified across
the pilots are:

Pay-as-you-go data integration, accessibility, and sharing:
Each smart environment contains potentially thousands of data
sources from sensors and things to legacy information systems.
Harnessing this data is critical to enabling the smart environment,
challenges include the integration of multiple formats and se-
mantics, discoverability and access, and data re-use and sharing
in a low-cost and incremental manner [9,16–19]. This high-level
requirement can be broken down into a set of technical require-
ments:

• Standard Data Syntax, Semantics, and Linkage: Facilitate inte-
gration and sharing, ideally with open standards and non-
proprietary approaches.

• Single-Point Data Discoverability and Accessibility: Allow the
organisation and access of datasets and metadata through a
single location.

• Incremental Data Management: Enable a low barrier to entry
and a pay-as-you-go paradigm to minimise costs.

Secure access control: Support data access rights to preserve
the security of data and privacy of users in the smart environment.
Access control is needed at both the level of the dataset and at the
level of the data-item (e.g. entity-value).

Real-time data processing and historical querying: Each en-
vironment requires support for the real-time processing of data
generated from sensors and things within the environments. This
requirement can be broken down into two technical requirements:

• Real-time Data Processing: Including ingestion, aggregation,
and pattern detectionwithin event streams originating from
sensors and things in the smart environment.

• Unified Querying of Real-time Data and Historical Data: Pro-
vide applications and end-users with a holistic queryable
state of the smart environment at a latency suitable for user
interaction.

Entity-centric data views: Applications and end-users need to
be able to explore and query the data from an entity perspective,
such as the energy or water usage in a specific building zone.
The raw data generated by things (e.g. a Smart Tap) within the
environments often only report on the observed values of a partic-
ular property (e.g. water consumption). Thus, the raw sensor/thing
data may require additional contextual information, such as the
location of the sensor [16–18]. This high-level requirement can be
broken down into two technical requirements:

• Entity Management: The storage, linkage, curation, and re-
trieval of entity data, such as users, zones, and locations.

• Event Enrichment: Enhancement of sensor/things streams
with contextual data (e.g. entities) to make the stream data
more encapsulated and useful in downstream processing.

The level of importance of these shared data requirements
varied within each pilot as detailed in Table 1. Many other require-
mentswere also identified, in particular, interoperability of devices
and network protocols, user profiling, the resilience of remote sen-
sors, and advanced privacy-preserving analytics. However, these
issues are beyond the scope of this work.
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Fig. 2. Five smart environments used to identify data management requirements.

Table 1
Level of importance of common data requirements within pilot smart environments.

Requirements Smart Airport Smart Office Smart Homes Mixed Use Smart School

Standard Data Syntax, Semantics, and Linkage High Medium Low Medium Medium
Single-Point Data Discoverability and Accessibility High Medium High High Medium
Incremental Data Management High High Low High Medium
Secure Access Control High High High High Medium
Real-time Data Processing High High Medium High High
Unified Querying of Real-time Data and Historical Data High High High High High
Entity Management High High Medium High Medium
Event Enrichment High High High High Medium

3. Related work

Related works to data sharing and management within smart
environments can cover a broad range of topics that touchon issues
from the high-level visions of Cyber–Physical Social systems [20],
to policy perspectives in service integration in smart cities [21].
This section focuses on the common requirements identified in
Section 2.3 to survey the capabilities of existing approaches and
highlight the main contribution of this paper. A summary of the
analysis is in Table 2.

The CityPulse [17] project provides a distributed system for
semantic discovery, data analytics, and interpretation of large-
scale and near-real-time Internet of Things data and social media
data streams [20]. In addition to providing unified views of the
data, CityPulse also provides data analytics modules that perform
intelligent data aggregation, event detection, quality assessment,
contextual filtering, and decision support. CityPulse supports open
standards for semantics, real-time stream processing, and partial
entity management. However, no support exists for single-point
data access, a pay-as-you-go data management paradigm, uni-
fied views over real-time and historical data, security, and event
streams enrichment.

The OpenIoT [18] platform enables the semantic interoper-
ability of IoT services in the cloud through the use of the W3C
Semantic Sensor Networks (SSN) ontology [22], which provides
a common standards-based model for representing physical and
virtual sensors. OpenIoT provides amiddleware for uniform access
to IoT data and support for the development and deployment of

IoT applications. OpenIoT supports open standards for semantics,
real-time stream processing, security, and entity management.
However, it lacks support for single-point data access, a pay-as-
you-go data management paradigm, unified views over live and
historical data, and event streams enrichment.

The SmartSantander project developed the City Data and An-
alytics Platform (CiDAP) [9] a centralised platform to access data
generated frommultiple heterogeneous sensors installed in a city.
The platform can dealwith historical data and near real-time infor-
mation in an architecture similar to Lambda [23]. CiDAP provides
limited support for data management beyond the low-level sensor
streams and pushes these concerns to the application level. The
result is applications duplicating common data management func-
tionalities. SmartSantander follows open standards for semantics,
single-point data access, security, real-time streamprocessing, and
partial unified queries over streams and datasets. However, it lacks
support for an incremental data management paradigm, entity
management, or event streams enrichment.

The Spitfire [16] project uses semantic technologies to provide
a uniform way to search, interpret and transform sensor data.
Spitfire works towards a Semantic Web of Things, by providing
abstractions for things, basic services for search and annotation, as
well as by integrating sensors and things into the LinkedOpenData
(LOD) cloud. Spitfire mainly adopts semantic web standards for
describing data, partial secure access control, entity management
and event enrichment. It does not support single point access for
data, incremental data management, real-time data processing, or
unified queries for real-time and legacy data.
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Table 2
Comparison of related frameworks to common data requirements.

Requirements CityPulse
[17]

Open
IOT [18]

Smart Santander [9] Spitfire
[18]

Thing
Store [24]

Real-time Linked
Dataspace

Standard Data Syntax, Semantics, and Linkage Yes Yes Partial Yes No Yes
Single-Point Data Discoverability and Accessibility No No Partial No No Yes
Incremental Data Management No No No No No Yes
Secure Access Control No Yes Yes Partial Partial Yes
Real-time Data Processing Yes Yes Yes No Yes Yes
Unified Querying of Real-time Data and Historical Data No No Partial No No Yes
Entity Management Partial Yes No Yes No Yes
Event Enrichment No No No Partial No Yes

ThingStore [24] provides a ‘‘marketplace’’ for IoT applications
development with the ability to deploy and host. The platform
provides support for event detection, service discovery, an Event
Query Language together with event notification and manage-
ment. The architecture of ThingStore is a computation hub to con-
nect things, software and end-users. Thingstore mainly supports
secure and real-time data processing and lacks support for open
standards to describe data, single-point access for data, entityman-
agement and event enrichment, incremental data management,
and unified queries for real-time and legacy data.

From the analysis in Table 2,we note that existingworksmainly
support semantic descriptions of data according to open standards
such as Semantic Web and Linked Data. However, they lack an
incremental data management paradigm and do not support a
single access point to discover and access datasets. Most related
works address the real-time processing of data but do not provide
unified access to it along with historical data. Half of the works
provide some support for entity management. However, streams
are not typically enriched with contextual data. Based on the
analysis of existing work concerning the requirements identified
we can see there is a clear need for an incremental pay-as-you-go
datamanagement, a single point of data/stream access, support for
entity-centric views of real-time and historical data, and streams
enrichment for better entity-centric and contextual data retrieval.

4. Real-time linked dataspaces

In this section, we introduce a Real-time Linked Dataspace
(RLD) to meet the key data requirements identified for smart
environments. The RLD adopts the pay-as-you-go paradigm of
dataspaces and linked data with support for entity-centric real-
time query capabilities. This section details the fundamentals of
the dataspace approach and describes the architecture for the Real-
time Linked Dataspace.

4.1. Dataspaces

A Dataspace is an emerging data management architecture that
is very distinct from current approaches to data management.
The dataspace approach recognises that in large-scale integration
scenarios, involving thousands of data sources, it is difficult and
expensive to obtain an upfront unifying schema across all sources
[25]. Dataspaces are not a data integration approach [25], they
shift the emphasis to providing support for the co-existence of
heterogeneous data that does not require a significant upfront
investment into a unifying schema. Data is integrated on an ‘‘as-
needed’’ basiswith the labour-intensive aspects of data integration
postponed until they are required. Dataspaces reduce the initial ef-
fort required to set up data integration by relying onmatching and
mapping generation techniques. This results in a loosely integrated
set of data sources. When tighter semantic integration is required,
it can be achieved in an incremental ‘‘pay-as-you-go’’ fashion by
more closely integrating the required data sources.

The goal of a Dataspace Support Platform (DSSP), as detailed
in [25], is to provide a set of common related support services

to all data sources within the dataspace (e.g. keyword search).
The DSSP provides a base functionality needed for data integration
that enables developers to focus on application-specific challenges
instead of the common data integration tasks faced when working
with multiple data sources. To achieve this goal, the DSSP must
support all of the data in the dataspace requiring it to work with
a large variety of data formats and system interfaces. A dataspace
does not host data, the data resides in their native systems, as such
it is not in full control of the data andmay only provide weak guar-
antees of consistency anddurability.When stronger guarantees are
desired, more effort can be put into making agreements among
the various systems. To this end, a DSSP must provide tools to
support the tighter integration of data in a pay-as-you-go manner.
As a result of the varying levels of data integration, the DSSP offers
varying levels of service and often will only be able to provide
best-effort or approximate results using the data accessible at the
time of the query [25]. A comparison of the dataspace paradigm to
traditional DBMS is provided in Table 3.

The usage of Dataspaces has been considered in a number of
different contexts including managing Personal Information [26,
27], Astronomical data [28], and Biomedical data [29], while
research into dataspace support services includes Integration and
Curation [30], context-based query [31], data modelling [32,33],
data mining [34], and user feedback [35,36].

Dataspaces can provide an approach to enable information
management in smart environments that would help to overcome
technical and conceptual barriers to information interoperability.
However, there has been limited work on the use of the datas-
pace approach within smart environments and the investigation
of relevant support services necessary for real-time data sources.
This work builds on past efforts to use dataspaces in Building Data
Management [13], Energy Data Management [14], and System of
Systems [37]. However, these efforts do not cover the full range
of requirements identified for smart environments identified in
Section 2.3. In particular, they donot support a principled approach
to incremental datamanagement based on a set of support services
with tiered levels of support. Finally, current works lack support
for a unified entity-centric query framework over real-time and
historical data streams in the smart environment.

4.2. Architecture

The Real-time Linked Dataspace (RLD) contains all the relevant
information sources within a smart environment including things,
sensors, and datasets, and has the responsibility for managing the
relationships between these participants. The RLD goes beyond a
traditional dataspace approach [25] by supporting the manage-
ment of entities within the smart environment as first-class citi-
zens along with data sources, and it extends the dataspace support
platformwith real-time processing and querying capabilities. Fig. 3
illustrates the architecture of the RLD with the following central
concepts:
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Table 3
DBMS vs. Real-time linked dataspace comparison.
Source: Adapted from [37].

Model Formats Control Query Integration Data processing

DBMS Relational Homogeneous Complete Exact Upfront None
RLD All Heterogeneous Partial Approx. Incremental Real-time & Batch

Fig. 3. Real-time linked dataspace architecture.

• Things/Sensors: Produce real-time data streams that need
to be processed and managed. Things in a smart environ-
ment include connected devices, energy and water sensors,
and occupant sensors.

• Datasets: Available in a wide variety of formats and accessi-
ble through different systems interfaces. Example datasets
include building management systems, energy and water
management systems, passenger information systems, fi-
nancial data, weather, and (linked) open datasets.

• Managed Entities: Actively managed entities within the
smart environment including their relationship to partici-
pating things, data sources, and other entities in the RLD.

• Support Platform: Responsible for providing the function-
alities and services essential for managing the dataspace.
Key services are the catalog, and the entity-centric real-time
query service discussed further in Section 5.

• Users, Apps, and Analytics: Interactwith the RLD and lever-
age its data and services to provide data analytics, deci-
sion support tools, user interfaces, and data visualisations.
Apps/Users can query the RLD in an entity-centric manner.
Users can be enlisted in the curation of the data and entities
via the Human Task service.

5. Support platform services

The Real-time Linked Dataspace-Support Platform (RLD-SP)
provides a set of core services to support developers with a base
functionality when working with sources in the RLD. Each of the
services in the RLD-SP has been designed to follow the Pay-As-You-
Go paradigm to support varying levels of service offerings to the
participants in the smart environment. This section details these

services and their tiered-levels of support including the catalog, ac-
cess control, search and query, entity management, entity-centric
real-time query, and the human task service.

5.1. Catalog service

The catalog service plays a crucial role in providing informa-
tion services for participants in the dataspace including search,
browse, and query services. The catalog service extends the origi-
nal CKAN1 portal with functionality for an entity-centric view of
the dataspace.2 The catalog provides a registry of:

• Datasets: May contain contextual information about a
building or thing within a smart environment, real-time
sensors data, enterprise data (e.g. customer data, enterprise
resource planning systems, etc.), and open data such as
weather forecast data.

• Managed Entities: An entity defines a concrete instance of
a concept within the smart environment (e.g. a sensor or a
water outlet). The catalog tracks critical entities in the smart
environment and links those entities with the datasets and
streams that contain further information about the entities.
Metadata about an entity includes the identifier, entity type,
and associated datasets. Fig. 4 shows an example of entities
defined in the catalog.

• Applications/Users: Applications are the descriptions of
software that utilises datasets from the RLDusers. For exam-
ple mobile applications, public displays, data services, ana-
lytics, web applications, and interactive dashboards. Users

1 https://ckan.org.
2 Demo Video available at this link: https://www.youtube.com/watch?v=fHcL-

bOREIU.

https://ckan.org
https://www.youtube.com/watch%3Fv%3DfHcL-bOREIU
https://www.youtube.com/watch%3Fv%3DfHcL-bOREIU
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Fig. 4. Example of managed entities in the catalog.

and their role within the RLD are also managed by the
catalog.

Within the catalog all datasets and entities are declared along
with relevant metadata. The tiered level of service provided by the
catalog increases as follows:

• Registry: A simple registry of datasets and streams, only
pointing to the interfaces available for access.

• Metadata: Describing datasets and streams in terms of
schema and entities in a non-machine-readable format
(e.g. PDF document).

• Machine-readable:Machine-readablemetadata and simple
equivalence mappings between dataset schemas to facili-
tate queries across the dataspace.

• Relationships: Relations between schema and concepts
across the dataspace.

• Semantic Mapping: Semantic mappings and relationships
between domains of different datasets; thus, supporting
reasoning and schema agnostic queries.

5.2. Access control service

The access control service ensures secure access to the data
sources defined in the catalog. Access is managed by defining
access roles for applications/users to the data source/entity that
are declared in the catalog. As illustrated in Fig. 5, the secure
query service is an intermediary between the applications/users
and the dataspace by using the catalog as a reference to verify
applications/users to the actual data sources. The advantage of
this approach is to keep the applications/users’ profiles centrally
managed by the catalog under the governance of the dataspace
managers. Within the pilot deployments we defined 3 types of

roles for users/applications Dataspace managers, App developers,
and End-users. In terms of tiered levels of support the access
control service can limit access as follows:

• None: The source is not managed by the access control
service.

• Coarse-grained: Access is limited to the user at the dataset
level.

• Fine-grained: Access is limited to users at the entity-level.
• Data anonymisation: Access to sanitised data for privacy

protection. (Not supported in pilots.)

5.3. Search and query service

The objective of the Search and Query service is to help de-
velopers and users to find relevant datasets within the dataspace.
Users can navigate the dataspace by entities (if supported), or by
performing a search or query on the datasets. A key challenge in
developing search and query services over heterogeneous sources
in a dataspace is the expressivity–usability trade-off. An ideal
dataspace query mechanism must provide both high expressivity
and high usability [38]. As data sources aremore closely integrated
into the dataspace the search and query service can offer the
following level of functionality:

• Browsing: Browsing of the datasets available in the datas-
pace catalog.

• Keyword Search: Basic keyword search of the sources
within the dataspace.

• Structured Queries: Structured query using SPARQL where
the user understands the underlying schema of the data.

• Question Answering: A best-effort entity-centric natural
language interface to the dataspace that allows users to ask
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Fig. 5. Query workflow using the secure query service.

questions without understanding the underlying schema
[39]. Note, in the pilots we did not implement a question
answering system as it was not an explicit requirement.

5.4. Entity management service

Managing information about the critical entities (e.g. real-world
objects) in a smart environment is an essential requirement for
decision-making applications that rely on accurate entity informa-
tion. An essential aspect of the RLD is the treatment of entities as
first-class citizens. This section details how the RLD uses Semantic
Web and Linked Data techniques to manage entities and provides
an example of a managed entity from a pilot site.

5.4.1. Semantic web and linked data
Semantic Web and Linked Data leverage open protocols and

W3C standards of theWeb architecture for sharing structured data
on the web. Semantic Web provides a set of standards, tools, and
techniques to facilitate sharing and reuse of data across domains.
It primarily uses a graph-based representation framework for
structuring data and uses standard ontology languages for defin-
ing the semantics of data. Ontologies and vocabularies provide a
shared understanding of concepts and entities within a domain of
knowledge which supports automated processing for data using
Semantic Web tools.

The fundamental concept of Linked Data is that data is created
with the mindset of sharing and reuse. Linked Data proposes an
approach for information interoperability based on the creation
of a global information space [40]. The main components of this
approach are: (1) Universal Resource Identifiers (URIs) to name
things, (2) Resource Description Framework (RDF) for representing
data, (3) Linked Data principles for publishing, linking, and inte-
gration, (4) Vocabularies to establish and share understanding, and
(5) Bottom-up incremental agreement. Linked Data uses openweb
standards in conjunction with four basic principles for publishing
data. These principles are:

• Naming: Use URIs as names for things — the use of a Uni-
form Resource Identifier (URI) (similar to URLs) to identify
things such as a person, a building, a device, an organisation,
an event or even concepts such as risk exposure or energy

andwater consumption, simplifies reuse and the integration
of data.

• Access: Use URIs based on HyperText Transfer Protocol
(HTTP) so that people can look up those names — URIs are
used to retrieve data about objects using standard web pro-
tocols. For an employee, this could be their organisation and
job classification, for an event this may be its location time
and attendance, for a device this may be its specification,
availability, price, etc.

• Format:When a URI is looked up (dereferenced) to retrieve
data, provide useful information using a standardised for-
mat. Ideally, in Web standard such as RDF.

• Contextualisation: Include links to other URIs so that more
information can be discovered. Retrieved data may link to
other data sources, thus creating a data network, e.g., data
about a product may link to all the components it is made
of, which may link to their supplier.

In terms of implementing a dataspace for Smart Environments,
SemanticWeb and LinkedData have three advantages: (a) Separate
systems that are designed independently can be later joined/linked
at the edges, (b) Interoperability is added incrementally when
needed and where it is cost-effective, and (c) Data is expressed in
a mixture of vocabularies.

5.4.2. Managed entities
The Entity Management Service (EMS) is concerned with the

maintenance of information about entities within the smart envi-
ronment and togetherwith the catalog service acts as the canonical
source of entity (meta)data. Each managed entity within the EMS
can be accessed via a URI which can be used to retrieve detailed
entity data. The URI also serves as a canonical identifier for the
entity. Each entity is linked with datasets that contain information
related to it. The relationship between entities and datasets can
quickly become complicated within a smart environment. This
is a significant challenge within traditional data integration ap-
proaches and requires significant upfront investment. The RLD
follows the incremental dataspace philosophy. In practice, you
only connect data sources related to an entity on an as-needed
basis. The approach encourages that entities should be as minimal
as possible to achieve the desired results. Fig. 6 describes aminimal
data model for entities in one of the smart water pilots.
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Fig. 6. Minimal data model for entities in a smart water management environment.

The key components and entities of the data model and the
sources they originate from are:

• Sensor: Measures the flow of water and generates a stream
of data to calculate the water consumption levels of the area
covered by the sensor (from an Internet of Things Platform).

• Observation: Various types of sensors may be installed for
metering water consumption; therefore, it is necessary to
precisely describe the sensor capabilities including the units
and rate of measurement (from an Internet of Things Plat-
form).

• Outlet: Information on the actual physical water outlet is
necessary for analysis and decision making. It is possible
that a single sensor might be installed for a set of outlets. In
such cases, a cumulative assessment for water consumption
is needed (crowdsource using human task service).

• Location: Information on the associated spatial locations
serviced by the water pipe (from Building Management
System).

• User Group: Each sensor is associated with a set of users
who have permission to access the data (fromEnterprise Ac-
cess Control). This information is used by the access control
service described earlier in Section 5.2.

Active entitymanagement can follow the incremental improve-
ment philosophy of dataspaces. The entity management service
has the following levels of incremental support:

• None: Entities are not managed.
• Documented: Entity description (e.g. schema and identi-

fiers) are documented in a non-machine-readable format
(e.g. PDF document).

• Source-level:Machine-readable entity at the source level.
• Multi-source mapping: Canonical identifiers for entities in

the dataspace and mapping across sources.
• Entity Knowledge Graphs: Entities are semantically linked

to other related entities, data, and streams across the datas-
pace.

5.5. Entity-centric real-time query service

A key requirement in a smart environment is to support the
querying of real-time data streams.Within the RLD this is achieved
by the entity-centric real-time query service that enables unified
queries across live streams, historical streams, and entity data to
enable full entity-centric views of the current and past state of
the smart environment. This section first discusses the Lambda
Architecture and then details how it has been extended in the RLD-
SP to support entity-centric real-time queries.

5.5.1. Lambda architecture
The Lambda Architecture is a frequently used Big Data process-

ing architecture that realises the need for real-time data analytics
crucial to support data analysis within smart environments. Rather
than using two different systems for processing real-time data and
historical data, the Lambda Architecture allows seamless ingestion
and processing of live and historical streaming data [23] within a
single architecture. Streams of events can be sourced froma variety
of systems such as sensors, database logs, and website logs. All
data entering the system are processed by both the batch layer
and the speed layer. The batch layer pre-computes batch views of
the stored raw data. The serving layer indexes the batch views for
low-latency fast-access queries by applications. The speed layer
deals with high-velocity updates by providing real-time append-
only views of recent data. Queries are answered bymerging results
from both batch views (data-at-rest) and real-time views (data-in-
motion). The Lambda Architecture has proved very useful for data
management within smart environments [9].

5.5.2. Entity-centric real-time index and architecture
Concerning real-time data processing, the Lambda approach

meets many of the requirements defined in Section 2.3. However,
Lambda does not natively support the inclusion of entity and con-
textual data within the indexing and querying process. This means
that applications need to maintain the relationship between the
Lambda index and the entities in the dataspace by themselves. Ide-
ally, an entity-centric real-time query service would be provided
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Fig. 7. The four layers of the entity-centric real-time query service.

by the RLD-SP to remove the need for applications to manage the
entity/stream relationship.

To meet this requirement, we designed an extension of the
Lambda architecture that includes the addition of an entity layer
for the indexing of entity data alongside historical and live streams.
The approach enables the serving layer to provide merged views
across all three layers, removing the need for applications tomain-
tain the entity/stream relationships. The entity-centric real-time
query service is part of the RLD-SP and is tightly integrated with
other support services such as the catalog, entitymanagement, and
access control services.

Fig. 7 illustrates the design of the entity-centric real-time query
service. The main components are:

• Entity Data (Data Catalog): Provides entity data from the
catalog and entity management services.

• Data Streams: Produced by the ‘‘things’’ and sensors within
the smart environment.

• Batch Layer: Provides batch-based processing for accurate,
but delayed views of historical data.

• Speed Layer: Provides real-time processing for data with
low latency processing requirements. Streams in the speed
layer are not stored but instead processed on-the-fly to
guarantee low-latency approximate views of the data to
complement the older views achieved by the batch layer.
The speed layer provides a number of support services for
processing event data such as approximate event matching
and event enrichment.

• Entity Layer: Provides a viewof themanaged entitieswithin
theRLDworking closelywith the catalog and entitymanage-
ment service.

• Serving layer: Provides applications and users with a single
entity-centric interface for data access. This layer transpar-
ently splits queries to the batch, speed, and entity layers to
combine pre-computed views over the three layers.

• Query: Request for entity-centric views from applications,
analytics, and users.

The entity-centric real-time query service has the following
levels of incremental tired support:

• None: Streams are not managed in the service.
• Basic Processing: Basic real-time stream processing in the

speed layer only.

• Historical Views: Streams are stored in the batch layer for
historical views.

• Enrichment: Streams are enriched with context and entity
data from the catalog and entity management service.

• Entity-Centric: Streams are processed in all three layers to
provide entity-centric real-time queries.

5.5.3. Approximation and enrichment
The speed layer has two event processing services for event

approximation and event enrichment. The approximation service
allows automatic semantic matching of events based on user-
defined rules using a semantic matching model [41,42]. The se-
mantic event matcher simplifies the task of things/sensors man-
agement as it allows the system to match semantically equivalent
events across heterogeneous event streams automatically. This
reduces the number of event processing rules which need to be
written by users of the RLD. Further details on the semantic event
matcher are available in [41] and [42].

Data streams can become difficult to process if forwarded be-
yond a system’s boundary. The RLD is fundamentally a System
of Systems approach that reflects the reality of multiple systems
operating in a smart environment. Thus, it is crucial for the RLD-SP
to support the processing of events and streams between systems
in the dataspace. Raw data streams usually have a very minimal
amount of data, such as sensor ID and the value of the sensor’s
reading. Enrichment of event data by adding extra contextual
information such aswhere the sensors are located, orwhat entity it
monitors, can result in a more complete event description making
it easier for other systems to process the event. The enrichment
service in the speed layer performs this task by enhancing the
event description with data from related entities in the RLD. The
entity management service plays a key role in the enrichment
process as the mappings between managed entities are used to
determine relevant contextual data for an event. Further details on
event enrichment are available in [43].

5.6. Human task service

The Human Task service is concerned with the collaborative
aspect of data management [35,44] within the RLD by enabling
small data management tasks to be distributed among willing
users in the smart environment [45]. The inclusion of users in
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Fig. 8. Overview of the human task service for real-time linked dataspace.

the data management process not only helps in managing data but
may help in building user trust and a sense of ownership of the
dataspace. Fig. 8 shows a simple architecture for the human task
service that includes (1) Task Assignment:matching between tasks
and users in the smart environment [44] based on characteristics
of tasks or the specific requirements of tasks in terms of human
capabilities [35,45] and (2) Quality assurance: to ensure truthful
and correct responses of tasks. The human task service has the
following levels of incremental support:

• None: No human tasks are used.
• Schema: Tasks are used to map schemas between sources.
• Entity: Tasks are used to map entities between sources.
• Enrichment: Entities are enriched with contextual data.
• Data Quality: Tasks are used to improve the quality of data

(e.g. verification).

The Human Task servicemay be called by apps using the RLD, or
by other support serviceswithin the RLD-SP. A good illustrative ex-
ample of the service in action is human tasks for entity enrichment.
Based on their knowledge and understanding of the environment,
users can help with enrichment for important entities. Fig. 9(a)
shows an example enrichment task that is associated with an IoT
device (e.g. CoAP sensor). The human task can be retrieved by scan
the QR code on the device with a mobile phone or tablet device.
The task is retrieved from the task service and asks the user a set
of simple questions about the surroundings of the sensor to enrich
the description of an entity in a smart building (e.g. Fig. 9(b) what
are the features of the roomwhere the sensor is located?). Further
details on the Human Task service are available in [44–46].

Each of the support services described in this section play a
central role in the incremental management of data within the
RLD. Users of the RLD need to be aware of the different levels of
data management available from each of these support services. In
order to make it easier to understanding the incremental nature of
the RLD,we have developed a rating framework for articulating the
tiered data management within the RLD.

6. Five star pay-as-you-go data management

In contrast to the classical one-time integration of datasets that
causes a significant upfront overhead, the RLD adopts a principled
pay-as-you-go paradigm for supporting an incremental approach
to data management. At the foundation of the approach is the
principle that the publisher of the data is responsible for paying
the cost of joining the dataspace. This pragmatic decision allows
the RLD to grow and enhance gradually with participants joining
or leaving the dataspace at any time. The next principle is that
data is managed following a tiered approach where an increase in
the level of active data management has a corresponding increase
in associated costs. The tiered approach to data management pro-
vides flexibility by reducing the initial cost and barriers to joining
the dataspace. The tiers are described using a variation of the 5-
stars scheme defined by Tim Berners-Lee for publishing open data
on the Web [47]. Berners-Lee’s 5 star scheme is a rating system to
determine how accessible, reusable, and interconnected data is on
theweb. The 5 star scheme has been extended to consider the level
of integration of the data source with the RLD support services.
At the lowest level, data only needs to be made available at the
minimum cost. Over time the level of integration with the RLD-SP
can be improved in an incremental manner on an as-needed basis.
The more investment is made to work with the support services,
the more integrated into the RLD they become. The 5-Stars Pay-
As-You-Go model for the RLD is detailed in Table 4.

7. OODA apps with a real-time linked dataspace

John Boyd hypothesised that individuals and organisations un-
dergo a continuous cycle of interaction with their environment.
Boyd developed the OODA loop [48] as a decision process bywhich
an entity (either an individual or an organisation) reacts to an
event by breaking the decision cycle down to four interrelated and
overlapping processes: Observe, Orient, Decide, and Act (OODA),
through which one cycles continuously. Boyd initially applied the
OODA loop to military operations, and it was later applied to
enterprise operations, more recently it has been considered as
an approach for processing observations within cyber–physical
systems [20]. In this latter context we apply the OODA loop as
a high-level design guide for smart energy and water systems
within smart environments. As illustrated in Fig. 10, the four OODA
processes applied to smart environments are:

• Observation: The gathering of data from the smart environ-
ment to understand its state.

• Orientation: The analysis and synthesis of data to form an
assessment of the circumstances within the smart environ-
ment. Moving from Data to Information, Knowledge, and
Insights.

• Decision: Consideration of the options to determine an
appropriate course of action. The goal is to optimise the
operation of the smart environment. The use of predictive
modelling can play a significant role.

• Action: The physical execution of decisions via actuation
(both automated and human). Once the result of the action
is observed, the loop starts over again.

To validate the RLD approach it has been used in the develop-
ment of OODA smart applications and decision support for the five
smart energy and water environments in Section 2. The remainder
of this section details the role of the RLD at each phase in the loop.
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Table 4
5-star pay-as-you-go scheme for the real-time linked dataspace support services.

Star rating Data format Catalog Access control Search and
query

Entity Real-time Human

*
Basic

Any format (e.g. PDF). Registry of
Datasets, and
Streams

None None None None None

**
Machine-
readable

Machine-readable
structured data (e.g.
Excel)

Documentation to
understand the
data/stream structure,
format and
characteristics.

Non-machine-
readable
Metadata
document (e.g.
PDF)

Coarse-grained
(Dataset level)

Browsing Entities
identifiers in
documenta-
tion

Stream
processing

Schema
Mapping

***
Basic
Integration

Non-proprietary format
(e.g. CSV, JSON, XML)

Machine-
readable
metadata

Equivalence
between
Schema
Concepts

Fine-grained
(Entity-level)

Secure query
service

Keyword
search

Source level
(siloed)

Historical
views of
streams

Entity
Mapping

****
Advanced
Integration

Open standards (RDF,
JSON-LD) to identify
things/entities using the
first two principles of
linked data

Relationships
between
Schemas
(dataspace
level)

Fine-grained
(Entity-level)

Data
anonymisation

Structured
queries

Canonical
identifiers and
entity
mappings
across sources

Stream
enrichment
with context
and entity data

Entity
Enrichment

*****
Full Semantic
Integration,
search, and
query

Follows all publishing
principles of linked data

Full Semantic
Mappings

Fine-grained
(Entity-level)

Data
anonymisation

Domain-
agnostic
question
answering

Knowledge
graphs
semantically
link entities to
related
entities, data,
and streams

Entity-centric
real-time
query

Data Quality
improvement

Fig. 9. Examples of a human task to enrich entities.

7.1. Observation

The RLD-SP services support the observation phase by min-
imising the amount of effort required for a data source to join
the RLD. The incremental approach of the RLD made it easier to
gradually improve the collection of observations from the smart
environment by adding a new sensor or dataset to the RLD. The
5-star schema was useful for specifying and planning the level of
service needed for each data source.

The human task service enables the engagement of users in
maintaining a high-quality catalog of managed entities. Active
participation of users in a smart environment improves their en-
gagement and sense of ownership while supporting a high-level of
accuracy in the data maintained by the dataspace. In the Insight

pilot, we noticed a direct benefit of using the human task service
for the collaborative management of entities in the environment
to provide a more accurate and rich understanding of the environ-
ment’s state [44].

7.2. Orientation

The primary objective of the orientation phase is to support
situational awareness of the smart environment. The entity man-
agement service builds awareness regarding the entities in the
environment through entity linking and enrichment. The search
and query service and real-time query service enable users to un-
derstand the current and historical state of the smart environment.

Within all of the pilots, a key goal is to increase the visibil-
ity, understanding, and awareness of energy and water use. RLD
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Fig. 10. Role of RLD-support services and application across OODA Loop phases in smart environments.

Fig. 11. Public interactive displays and dashboards.

services can be used to build dashboards to provide situational
awareness and orientation to the users within each environment
with targeted information on their environment’s energy and wa-
ter consumption. Within the different pilots, this is manifested
in a variety of ways and at different time-frames, from inform-
ing the residents in the smart home as they live their day, the
detailed analysis required by building managers and operational
staff, to brief encounters with ‘‘frequent-flyer’’ passengers as they
pass through the airport. User orientation in the pilots was driven
by public displays, interactive touch screen displays and tablet
apps (see Fig. 11). These user interfaces communicate current and
historical energy and water usage within the environment, convey
information about the importance of the resource, footprint, tips
on how to improve consumption, and games to calculate the users’
footprint in real time. The displays are also personalised to target
different users by using metaphors so that they can use them in
communicating relevant messages to the target user. The appli-
cations in the orientation phase make extensive use of real-time,
historical, and contextual data sources.

7.3. Decision

Once users have built a certain level of awareness of the energy
or water consumption of their environment, they can use their
expertise to start taking decisions towards more sustainable be-
haviour. In the decision phase, a critical aspect of the dashboards is
to provide users with targeted information on usage, goal setting,
targets for conservation, and tips to improve their consumption
behaviour. For example,managers can define consumption thresh-
olds to serve as triggers for ‘‘alerts’’, notifying them of excessive
usage, goals attained, or the detection of possible faults. Develop-
ing decision support apps is simplified by using the entity-centric
real-time query service to analyse data from the environment.

A specific example of decision support is the Water Retention
Time Observer application that determines the residence time of
drinking water pipes and creates alerts in case of potential issues.
In this context, the water retention time observer application can
assist managers to provide timely notifications regarding low wa-
ter quality in drinking water pipes. This is achieved by detecting
inactivity in specificmeasurement points in thewater network and
sending a notification if stagnant water is detected.
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Fig. 12. Example of tasks and notifications within the smart environment.

7.4. Action

Applications in the action phase of the OODA Loop help users
in smart environments meet their goals for energy and water
consumption by taking appropriate actions. Real-time event pro-
cessing is used to express these goals as a set of rules which
can generate alerts and suggested preventive actions. Actions are
then communicated to the users in the smart environment us-
ing appropriate means of communication: emails, notifications on
dashboards, messages on smart devices, and human tasks. The
occupants of the environment can participate in taking energy or
water saving actions. In the Smart Building pilot, we implemented
a collective energy management system where the RLD was used
for the identification of energy saving tasks that were routed to the
building occupants using the human task service to take energy
conservation actions such as turning off the light in empty rooms,
or closing a window when an air conditioner is on in a room.
Fig. 12(a) shows an example of these ‘‘Citizen’’ actuation tasks.

The role of a building manager is a demanding one that often
has personnel away from their desk working in the field. An any-
time, anywhere, notificationmechanismwasneeded formanagers.
The wearable info-centre application was developed to enable
notification of high-priority alertst. Fig. 12(b) shows an example
notification using the wearable info-centre.

8. Pilot results and lessons learned

This section presents the results and insights gained from de-
ploying the RLD in the smart environments described in Section 2.
Each pilot followed a similar methodology for design, deployment,
and evaluation [15]. In this section, we detail the energy andwater
savings of the pilots, the performance of the entity-centric real-
time query service, and a set of experiences with lessons learnt
from deploying the RLD in the pilots.

8.1. Deployments

The RLD has been implementedmainly through an open source
stack of technologies. As shown in Fig. 13 entities fromdata sources
(e.g. BMS, sensors) are exported into the CKAN-based dataspace
catalog. Batch data is fed into map/reduce jobs in the Apache
Spark SQL node, while real-time data from sensors are fed into

the Apache Kafka message bus for distribution and then into
map/reduce jobs in the Apache Spark Streaming node. Results
from the batch nodes are then fed into a Druid indexer node as
dimensional data, while the streaming data goes into Kafka and
then into a Druid real-time node. The Druid nodes use the Apache
Cassandra deep storage data store. Both batch data and real-time
data are exposed transparently via a Druid broker node which can
be queried by applications in JSON format.

8.2. Energy and water savings

During the initial period of the pilots, energy and water meter-
ing data was collected from existing monitoring systems to estab-
lish baselines for consumption across all pilots. During the control
period, the users within the pilots had access to the data gen-
erated by the metering infrastructure system through traditional
information systems (e.g. Building Management System, and basic
public dashboards within the airports, office building, and school).
The data collection period for each pilot spanned between 6 to
16 months which also included a range of user interventions such
as pre-surveys, focus groups, interviews, and feedback cycles. The
RLDwas used to develop Smart Energy andWater Applications and
decision support analytics across the pilot smart environments.
Table 5 detail the characteristics of the pilots during the study
period, number of events generated in the environment, number
of apps deployed, and savings achieved in terms of energy and
water. Regarding energy andwater savings, the RLD supports these
impacts in 3 fundamental ways:

• Entity-Centric Views:Connecting data across silos provided
‘‘big picture’’ entity-centric views of the resource consump-
tion within the smart environments. Entity-centric views
made it easier for the users within the smart environments
(e.g. buildingmanagers) to identify waste and efficiency op-
portunities as the datawas structured and organised around
the real-world entities they work with everyday.

• Quick Wins: The Pay-As-You-Go approach was useful for
building the business case and getting ‘‘buy-in’’ from users
by enabling quick wins to demonstrate the benefit of the
approach. Quick wins that clearly demonstrated energy and
water savings encouraged non-technical business users to
more actively engage with the RLD. The project team could
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Fig. 13. Real-time linked dataspace deployment.

Table 5
Summary of impact of energy and water management in smart environments.

Pilot site Study period Events per year Apps deployed Actual savings measured Est. annual
savings

Linate Airport, Italy 10 Mts ∼11.5 million 8 2954 cubic m3

3013 kg CO2

54,000 m3

55,080 kg CO2

Thermi, Greece 16 Mts ∼2.3 million 11 30% water reduction –

Engineering Building, NUI Galway 16 Mts ∼36 million 8 174 m3

177 kg CO2

8089 m3

8251 kg CO2

Coláiste na Coiribe,
Galway, Ireland

12 Mts ∼1 million 5 2179 m3

2223 kg CO2

9306 m3

9492 kg CO2

Insight, Ireland 6 Mts ∼8 million 4 24% energy reduction –

build a business case around apps and decision support
tools that would reduce resource usage and its associated
economic costs. The savings identified can be used to justify
the necessary investment needed in data integration.

• Actionable Notifications: The RLD enabled highly spe-
cialised decision analytics that provided action and notifica-
tion alerts for each of the pilot smart environments includ-
ing leak detection, fault detection and abnormal usage pat-
terns. These actionable alerts and notifications were crucial
for buildingmanagers and operational staff who do not have
time to study and analyse the data generated in the smart
environment.

8.3. Entity-centric real-time query service performance

A key contribution of this paper is the entity-centric real-time
query service for the RLD. The query latency for the service was
evaluated within each environment to ensure it could support
interactive user querying [49,50]. We evaluated seven common
queries within the developed applications to determine the level
of query interactivity of the service. Table 6 presents these results
based on the average of 5 runs for each query. The majority of
queries have an ‘‘instantaneous response’’ of under 0.1 s, and
all queries are responsive under 1 s which is needed for ‘‘good
navigation’’. This initial evaluation demonstrates the suitability of
the query service for apps within the smart environments.

8.4. Experiences and lessons learnt

Based on a reflection of our experience using the RLD in several
pilot environments, the following lessons were identified as key
learnings to inform the design of future smart environments using
the RLD.

Developer education: Across the pilots, we worked with a
diverse set of developer teams with different backgrounds from
embedded devices to web front-ends. The dataspace concept was
new to most of them, and they were accustomed to working in an
environment where they have full-control with the expectation of
exact results. Also, the store-and-query culture is more common
among developers and users. The processing of data on-the-fly
and detecting only data of interest in real time, without storage
in many cases, can be challenging (aka. event processing) for some
developers to understand. Embracing the dataspace took time and
required us to demonstrate both the benefits and limitations of the
paradigm. Developer education was critical to the adoption of the
dataspace. Workshops and tutorials held at pilot sites proved to be
an effectivemechanism of engaging developers in order to educate
them on the capabilities of the platform and the dataspace data
management approach.

Incremental data management can support agile software
development: The project teams for each pilot operated using an
agile software development methodology. The incremental datas-
pace approach proved useful during the design and development
phase. The RLD enabled the teams to work at the pace suitable
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Table 6
Query latency (seconds) of entity-centric real-time query service in selected pilots.

Query type Airport A Mixed Use A Home A School A Airport B Mixed Use B

timeBoundary 0.266415 0.076204 0.078805 0.076004 0.080605 0.078605
dataSourceMetadata 0.091405 0.078005 0.080805 0.153609 0.137808 0.092205
segmentMetadata 0.073804 0.084405 0.074004 0.140008 0.077405 0.077604
search 0.162609 0.142808 0.085805 0.076404 0.136808 0.204812
timeseries 0.072404 0.080005 0.077204 0.072404 0.134008 0.083605
groupBy 0.073404 0.078205 0.075604 0.081605 0.078605 0.072204
topN 0.078405 0.086805 0.072604 0.073004 0.077804 0.076604

to the stakeholders and data owners involved. The RLD allowed
the project team to include new data sources during an iteration,
or to increase the level of integration of an existing source. The
decoupling achieved via the catalog and the use of event and
streams, removed dependencies between parties. It enabled the
team to work with participants in the pilots in an incremental
manner where we could quickly demonstrate value with a low
upfront investment in data integration. As the pilots progressed,
more and more data became available in the RLD and enabled the
creation of sophisticated data-intensive applications and analytics.

Build the business case for data-driven innovation: It is im-
portant to clearly articulate the business case for the RLD to justify
the necessary investment in data infrastructure. Within our pilots,
we discovered a strong business case for data-driven innovation
by justifying the investment based on the resulting cost savings
achieved by improving resource efficiency (e.g., energy and water
savings). A key challenge was to bring together the different stake-
holders to support and deliver the project. For example, within our
pilot, the IT organisations had the data, but the savings resulting
from the system benefit the operations teams of the organisations
(e.g. water and energy). Thus, operations have a clear motivation
to invest, but IT does not. By bringing these stakeholders together,
we were able to build a holistic business case.

Integrationwith legacy data is a significant cost in smart en-
vironments:While sensors and connected devices are an essential
source of data in a smart environment, they are not the only source
of data necessary to make an environment ‘‘smart’’. In our pilots, a
considerable number of different legacy data sources needed to be
integrated to collect the necessary information to make informed
and intelligent decisions. While the RLD provided an effective
incremental approach that integrates legacy data at a minimum
cost, it is not a silver bullet to data integration costs in smart
environments and the cost of integrating with legacy data should
not be underestimated. This is of particular relevance within en-
terprise settings where the non-technical challenges (e.g. sharing
data between departments) can be as significant as the technical
ones.

The 5-star pay-as-you-go schema simplified communication
with non-technical users: The Pay-As-You-Go star schema was
very useful regarding communicating both enhanced functionality
and the additional costs of tighter integration with the RLD-SP
services. Within the pilots, it was widespread to integrate data to
the 3-star level on most services. The investment to bring a source
to 4 and 5 stars was only made for core datasets within a pilot,
and not for each service. Interestingly, many datasets that were
initially identified in the early design phases as of high-importance
(e.g. sensor specifications, detailed infrastructure schematics) re-
mained at the 1-star level as they were not needed by the final ap-
plicationdeveloped. This resulted in significant savings by avoiding
unnecessary integration costs. Within the commercial pilots the 5-
stars model supported the articulation of the business case for the
investment necessary to include data sources in the dataspace.

A secure canonical source for entity data simplifies appli-
cation development: Programmable access to the catalog by en-
abling queries over machine-readable metadata and entities was
crucial to facilitate application development in the dataspace. The

role of the catalog as a canonical source for identifiers for entities
was critical tomanage the entities in the dataspace. Demonstrating
the secure query service was essential to get ‘‘buy-in’’ and build
trust with the pilot data owners. For example, sensor data within
the domestic pilot were of a sensitive nature, and we needed to
assure residents that access was restricted to privileged users.

Data quality with Things and Sensors is challenging in an
operational environment: Data quality challenges are further
complicated as participating data sources, and things within the
RLD are not under its full control. Data quality issues included
incorrect file formats, incorrect timestamps, unusual sensor usage
values, multiple and conflicting values, and missing data. Specifi-
cally, concerning the timestamps, the different time zones of pilot
sites in different countries posed a challenge, as well as the time
changes due to the Daylight Savings Time. Keeping raw datawhere
possible allowed these issues to be addressed and for the analysis
to be rerun with the data quality issues resolved. Finally, physical
access to the infrastructure can be a significant challenge within
operational smart environments. At Linate, the infrastructure was
often underground within secured areas of the airport. One cannot
rely on having physical access to restart or update infrastructure.
As a result, the system design must be fault tolerant and adapt to
operating conditions.

Working with three pipelines adds overhead: The complex-
ity of maintaining three (batch, real-time, and entity) different
processing pipelines was challenging in terms of the engineering
and operational overhead involved. Diagnosing problems and fault
required the workflow of all pipelines to be check for issues,
and this can increase the time needed to resolve an issue. One
possible future direction is to look at end-to-end exactly-once
stream processing technologies (Kappa Architectures). However,
the highly decentralised nature of a smart environment and the
lack of end-to-end control within dataspaces may not be suitable
to the additional coordination/control overhead of exactly-once
stream processing.

9. Conclusion and future work

As smart environments become a reality, they need to cope
with the inherent complexity of the data management challenges
that they face. In this paper, we identified the shared data man-
agement requirements for Internet-of-Things (IoT) enabled smart
energy and water environments. The paper explores the use of
the Dataspace data management approach within Smart Envi-
ronments for real-time IoT and contextual data. The paper in-
troduces a Real-time Linked Dataspace (RLD) that goes beyond
traditional data management approaches by combining the pay-
as-you-go paradigm of dataspaces and linked data with real-time
query capabilities. The RLD Support Platform includes a number
of tiered services to support the management of data and users
in smart environments including catalog, entity management, and
human task services. An entity-centric real-time query service is
also provided to support unified queries across entities and both
live and historical stream data.

The RLD has been validated within five real-world smart envi-
ronment pilot deployments to build real-time analytics, decisions
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support, and smart apps for smart energy and water management.
The pilots demonstrate that the RLD provides effective support
services for the development of smart applications and decision
support analytics at each stage of the ‘‘OODA’’ loop within smart
environments. They show that the entity-centric real-time query
service of the RLD is suitable to meet the interactive query latency
requirements within smart environments. Finally, based on the
results of the pilots the RLD will be further exploited by our
industrial partners, including a licensing deal for the platform, a
start-up leveraging it within fitness centres, SEA are investigating
deployment at Malpensa Airport, and regional governments in
Ireland and Greece are exploring additional deployments.

In our future work we plan to investigate:
Large-scale Deployments andReduced Cost of Operation:We

will investigate the performance of the RLD in larger-scale deploy-
ments (e.g. city-wide data ecosystems [51]) and within different
types of smart environments including mobility and marine. In
particular, we will explore ways to improve the maintenance and
operational costs of the platform within large-scale deployments.

Enhanced Supported Services:Many enhancements are possi-
ble for the support services of the RLD including the use of Natural
Language Interfaces to improve the user experience, decentralised
support services for large-scale deployments, and further automa-
tion to support incremental data integration.

Privacy-by-design: With the increase in personal information
captured in smart environments and introduction of the European
Union’s new General Data Protection Regulation, there is a clear
need for additional protection of personal data within the datas-
pace. Enhanced dataspace support services are needed that lever-
age privacy-by-design approaches for storing and analysing per-
sonal data using processes for anonymisation or pseudonymiza-
tion.

Scaling EntityManagement:Within larger-scale deployments,
it will be necessary to enhance the entity services to support both
the increase in data and users involved. The use of summarisation
techniques for entities in the dataspace could significantly simplify
entity management and improve performance. Furthermore, we
will investigate the more extensive usage of the human service for
human-in-the-loop entity curation within smart environments.

Support Services forMultimedia Data:Asmultimedia data be-
comes more common in smart environments through the Internet
of Multimedia Things there will a direct need for support within
dataspaces. We are investigating support services for rich content
types including text and multimedia streams within the datas-
pace that leverage advances in deep learning for image processing
(e.g. object detection) [52].
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