
DOI: 10.4018/IJSWIS.2016100103

Copyright © 2016, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal on Semantic Web and Information Systems
Volume 12 • Issue 4 • October-December 2016

QoS-Aware Stream Federation
and Optimization Based on
Service Composition
Feng Gao, Insight Centre for Data Analytics, National University of Ireland, Galway, Ireland

Muhammad Intizar Ali, Insight Centre for Data Analytics, National University of Ireland, Galway, Ireland

Edward Curry, Insight Centre for Data Analytics, National University of Ireland, Galway, Ireland

Alessandra Mileo, Insight Centre for Data Analytics, National University of Ireland, Galway, Ireland

ABSTRACT

The proliferation of sensor devices and services along with the advances in event processing brings
many new opportunities as well as challenges. It is now possible to provide, analyze and react upon
real-time, complex events in urban environments. When existing event services do not provide such
complex events directly, an event service composition maybe required. However, it is difficult to
determine which event service candidates (or service compositions) best suit users’ and applications’
quality-of-service requirements. A sub-optimal service composition may lead to inaccurate event
detection, lack of system robustness etc. In this paper, the authors address these issues by first
providing a quality-of-service aggregation schema for complex event service compositions and then
developing a genetic algorithm to efficiently create near-optimal event service compositions. The
authors evaluate their approach with both real sensor data collected via Internet-of-Things services
as well as synthesised datasets.

Keywords
Complex Event Service, Genetic Algorithm, Internet-of-Things, Quality-of-Service, Semantic Web, Service
Composition, Service Optimisation, Service-Oriented Computing, Smart City

1. INTRODUCTION

Recent developments in the Internet-of-Things (IoT) envision “Smart Cities’’ and promise to improve
urban performances in terms of sustainability, high quality of life and wise management of natural
resources. Complex Event Processing (CEP) and event-based systems are important enabling
technologies for smart cities (Hinze, Sachs, & Buchmann, 2009), due to the need for integrating and
processing high volumes of real-time physical and social events. However, with the multitude of
heterogeneous event sources to be discovered and integrated (Hasan & Curry, 2014), it is crucial to
determine which event services should be used and how to compose them to match non-functional
requirements defined by users or applications. Indeed, non-functional properties, e.g.: Quality-of-
Service (QoS) properties, can play a pivotal role in service composition (Wu, Zhu, & Jian, 2013).

In (Gao, Curry, & Bhiri, 2014), CEP applications are provided as reusable services and the
reusability of those event services is determined by examining event patterns. In this paper, we aim

43

International Journal on Semantic Web and Information Systems
Volume 12 • Issue 4 • October-December 2016

44

to enable a QoS-aware event service composition and optimization. In order to facilitate this, two
issues should be considered: QoS aggregation and composition efficiency. The QoS aggregation for
a complex event service relies on how its member event services are correlated and composed. The
aggregation rules are inherently different to conventional web services. Efficiency becomes an issue
when the complex event consists of many primitive events, and each primitive event detection task
can be achieved by multiple event services. This paper addresses both issues by: 1) creating QoS
aggregation rules and utility functions to estimate and assess QoS for event service compositions,
and 2) enabling efficient event service compositions and optimization with regard to QoS constraints
and preferences based on Genetic Algorithms.

This paper is an extension of the work in (Gao, Curry, Ali, Bhiri, & Mileo, 2014). The extension
is three-fold: 1) we introduce a realistic scenario in the context of traffic management using smart
city applications with both real-world and synthetic datasets, 2) we provide in-depth analysis of the
parameters used in the genetic algorithm using the datasets and 3) we validate the QoS aggregation
rules with simulation. The remainder of the paper is organized as follows: Section 2 presents the a
real-world travel planning scenario for the City of Aarhus as motivation, Section 3 introduces some
preliminary concepts adopted in this paper; Section 4 presents the QoS model we use and the QoS
aggregation rules we define; Section 5 presents the heuristic that enables QoS-aware event service
compositions based on Genetic Algorithms (GA); Section 6 evaluates the proposed approach; Section
7 discusses related works in QoS-aware service planning before Section 8 concludes.

2. MOTIVATION SCENARIO

Event services can be applied in different Smart City scenarios. In this paper, we study the scenario
of smart urban travel planning, as regular citizens, developers and city stakeholders rank it highly1.
The city of Aarhus in Denmark has deployed a set of street-level traffic sensors. These sensors are
paired as start nodes and end nodes. Each pair is capable of monitoring the average vehicle speed
v and vehicle count n on a street segment (from the start node to the end node). Combined with the
distance d between the two sensors, the estimated travel time t = d/v and congestion level c = n/d
can be derived and published regularly as traffic report events.

Figure 1 shows some traffic sensor nodes (depicted as red dots) on the Aarhus city map. Suppose a
user, Alice, has an important appointment in 15 minutes, and she has to travel from home (on segment
A in Figure 1) to her work place (on segment F in Figure 1) within the time frame. Alice decides
not to pick a route randomly since it is rush hour and there’s a good chance that she may experience
traffic congestion. Instead, Alice uses a travel planner application on her smartphone to select the
fastest route. Alice would like to receive live traffic condition reports during her trip in case some
traffic incidents happen on the selected route and a detour is necessary. To do that, she specifies the
start and end location of the travel. She also wants to be sure that the time estimation is accurate, so
she sets some non-functional constraints such as the accuracy of the estimated travel time above 90%.

According to Alice’s request, the backend system will calculate possible routes and query the
sensor services for the latest traffic condition. Based on this information, the system finds the fastest
route (A-D-F) for Alice. Taking into account the QoS constraints specified by Alice, i.e., the accuracy
of the estimated travel time to be above 90%, the system will try to create event service compositions
reusing different available event services. For example, as shown in the map in Figure 1, if other users,
e.g., Bob and Charlie, are living in the neighbourhood and they have deployed some semi-permanent
services monitoring the traffic conditions within the same segments (B-C-G and E-F) on the route
that Alice chooses and they have registered these services to the service registry, the backend system
will recognise these services as reusable and try different combinations to find the optimal solution.
Meanwhile, the optimization needs to be efficient to enable real-time re-planning and adapt to the
fast changing service environment. Simply enumerating all possible composition plans will not scale.

International Journal on Semantic Web and Information Systems
Volume 12 • Issue 4 • October-December 2016

45

3. FOUNDATIONS

In this section, we briefly introduce the core concepts and methodologies for enabling pattern based
event service composition (F. Gao, Curry, & Bhiri, 2014). These concepts are reused in this paper
for enabling a constraint aware event service composition based QoS.

3.1. Conceptualization
The conceptualization of an event service in this paper is built upon existing concepts in literature.
Table 1 shows the definitions of the terms used.

Figure 1. Traffic sensors in Aarhus City

Table 1. Definitions of terms

Concepts Definitions

Event “An occurrence within a particular system or domain...” – (Etzion & Niblett, 2010).

Complex Event “An event consisting several different event instances” – (Etzion & Niblett, 2010)
“An event that summarises, represents, or denotes a set of other events.” – EPTS2

Event Pattern “A template containing event templates, relational operators and variables.” –EPTS

Service
“A service is a self-contained, logical representation of a repeatable business activity
that has a specified outcome,” “is a ‘black box’ to the consumer of the service” –
The Open Group3

Event Service An asynchronous notification service that accepts subscriptions from event
consumers and delivers events.

Complex Event Service (CES) An event service that delivers complex events with the event patterns published as
part of its service description.

Primitive Event Service (PES) An event service not equipped with CEP capability or does not describe the event
pattern in the service description, i.e., an event service that is not a CES.

International Journal on Semantic Web and Information Systems
Volume 12 • Issue 4 • October-December 2016

46

The definition of “events” is usually broad. In this paper, we adopt the definition in (Etzion
& Niblett, 2010) and consider any occurrence/arrival of data/information in the system an event
instance. An example of an event could be a measurement reported by the traffic sensor as described
in Section 2. A complex event consists of other event instances and an event pattern describes the
rules to be evaluated against those event instances in order to detect the complex event. An example
of a complex event could be a traffic jam detected using multiple traffic sensor measurements, and
the event pattern could be all traffic sensors in a region are reporting high vehicle count and low
vehicle speed repeatedly over the last 10 minutes.

When the sources generating event messages are wrapped as services following the Service-
Oriented Computing paradigm, we call them event services. Like Web Services, event services
describe their service capability in a service repository to facilitate service discovery, composition
and invocation. Suppose an event/stream processing system detecting the aforementioned traffic jams
is implemented as an event service, we should describe its capability with the event pattern, since it
gives the exact semantics of this complex event and is essential for identifying the service capability.
We call this service a Complex Event Service (CES). When an event service does not describe its
complex event pattern in the service description, it is a Primitive Event Service (PES), an example
of PES would be the traffic sensor service publishing traffic reports (with attribute-value pairs) when
no specifications are provided on how these reports are generated.

Figure 2 shows the overview of an event service network and illustrates how CESs are composed
with PESs, which collect sensor readings from a sensor network and deliver sensor observation events.
It also illustrates how event service consumers and providers interact with service repository and
middleware to discover and compose event services.

3.2. Event Service Modelling and Matchmaking
Event service descriptions are crucial for enabling event service discovery and composition. In this
paper, we use the Complex Event Service Ontology (CESO)4 to semantically describe CESs. CESO
is an extension of OWL-S5. In CESO, an event service is described with an Event Grounding and
Event Profile. The concept of Event Grounding is similar to Service Grounding in OWL-S. It tells an
event consumer how to access the event service by providing information on service endpoints and
message formats. An Event Profile is comparable to the Service Profile in OWL-S, which describes
the functional and non-functional aspects of an event service.

Figure 2. Overview of an event service network

International Journal on Semantic Web and Information Systems
Volume 12 • Issue 4 • October-December 2016

47

Event profiles are key documents used for event service discovery and composition. An event
profile is a tuple  = ()t ep D Q, , , , where t is the domain-specific event type, ep is the event pattern
describing the temporal and logical rules for detecting complex events, D is the data payloads of the
event and Q is the QoS parameters of the event service. An event service request is a tuple
r r r rt ep D Const Pref= (), , , , , where tr is the requested event type, epr is the requested event
pattern, Dr is the requested data payloads, Const is a set of QoS constraints and Pref is a set of QoS
preferences. Like other Web Service ontologies, CESO provides a common ground for defining the
concepts used in event services and allows for querying and reasoning over these concepts. For
example, the SPARQL query in Listing 1 can be used to discover PESs with the requested event type
(temperature measurement) and payloads (temperature sensor reading). With RDFS level reasoning,
it can also find PESs annotated with terms subsumed by the requested terms, e.g., a PES backed by
a specific type of temperature sensor.

Event patterns describe the temporal and logical correlations (using event operators, e.g., And,
Or, Sequence and Repetition) between events (using event declarations). They can be represented
as partially ordered trees, called Event Syntax Trees (ESTs). An example of EST describing Alice’s
travel planning request (See Section 2) is depicted in Figure 36. This request describes a conjunction
pattern between Alice’s current location update event and several traffic report events: whenever all
events are captured, calculate the sum of the estimated travel time for Alice using the traffic event
payloads, and report her current location. Alice’s non-functional constraints (e.g., accuracy of estimated
time above 90%) and preferences can be annotated with CESO. Using the results calculated upon
this request pattern, a post-processing method (could be implemented by a separate program) can
determine if the estimated travel time is above some predefined threshold and if so, notify Alice, or
suggest a new route. Also, when Alice moved beyond some segments, remove that segment from the
query pattern and deploy the new query.

Listing 1. Discovering PES via SPARQL query

Figure 3. Traffic planning event request for Alice (denoted Qa)

International Journal on Semantic Web and Information Systems
Volume 12 • Issue 4 • October-December 2016

48

The event patterns in CESO are annotated as nested RDF containers. CESO provides information
on the provenance of event patterns using a transitive property hasSubPattern over patterns. Rule 1
in Listing 2 is used in CESO to entail sub-pattern relationships. Notice that rdfs:member is the super-
property for the container membership property (i.e., rdf:_1, rdf:_2 ...) in RDF Schema version 1.1.
The query in Listing 3 shows how to track the provenance within a single Event Profile. To track
provenance relations between different event services, the additional Rule 2 in Listing 2 is required.

Using SPARQL over CESO provides inference capability over taxonomical and provenance
information between event patterns and thus improves data interoperability. However, it does not
fully address pattern-based pattern composition and QoS-aware optimization for CESs. Semantic
equivalence of event patterns (denoted ep ep1 2) needs to be examined by comparing the tree
isomorphism between canonical forms of event patterns. A canonical event pattern is derived by first
expanding the leaves of an EST until all leaves are primitive events, and then removing all redundant
event operators. We use fcanonical to denote the function that derives canonical event patterns.

3.3. Pattern-Based Event Service Reusability Index
Comparing canonical ESTs can determine if two event pattern match. When no matches for an event
request can be found, we can divide the requested EST into sub-trees and try to create an event service
composition using matches of the sub-trees. An example of an event service composition (for a slightly
advanced version of Bob’s event request in Section 2) based on event pattern matching is illustrated
in Figure 4. In this figure, Bob’s request pattern is depicted as the EST on the top-left, and existing
event services (1 to 4) are depicted on the right. Using these as input, the composition algorithm
creates a composition plan on the bottom-left for Bob’s request, which consists of a traffic congestion
monitoring service (Event Service 4) and a road blockage notification service (Event Service 1).

However, creating event service compositions through identifying matches for sub-trees can be
expensive and it will not scale because of the combinatorial explosion. To accelerate event service
compositions, a reusability index is proposed in (F. Gao, Curry, & Bhiri, 2014) based on a binary
reusable relation over event patterns. For two canonical event patterns ep1 and ep2, ep1 is reusable
(denoted R ep ep1 2,()) to ep2, if and only if it is directly reusable (denoted R ep epd 1 2,()) or

indirectly reusable (denoted R ep epi 1 2,()) to the other. Informally, R ep epd 1 2,() holds if ep1

matches a sub-tree of the EST of ep2, and R ep epi 1 2,() holds if ep1 can partially replace a sub-tree
of the EST of ep2. Figure 5 shows how the pattern in Qb can reuse other patterns.

Listing 2. Rules to entail sub-patterns

Listing 3. Tracking pattern provenance via SPARQL

International Journal on Semantic Web and Information Systems
Volume 12 • Issue 4 • October-December 2016

49

Given a set of event services and the reusable relations among them, an Event Reusability
Hierarchy (ERH) can be constructed as an index for CESs. An ERH is a Directed-Acyclic-Graph
(DAG). Its nodes represent canonical event patterns of event services and its edges represent reusable
relations between nodes. Constructing an ERH requires iteratively inserting canonical event patterns
into the hierarchy. If not all nodes can be inserted to a single ERH, we obtain a set of separated
ERHs, called an Event Reusability Forest (ERF). ERH and ERF are used to accelerate event service
composition, as detailed in (F. Gao, Curry, & Bhiri, 2014).

Figure 4. Example of a composition plan for the advanced Bob’s request (denoted by Qb): Notify the user when there are traffic
congestions (labelled “cng”) on route B to G, or if a road construction has blocked route (labelled “blk”)

Figure 5. Example of event pattern reusability

International Journal on Semantic Web and Information Systems
Volume 12 • Issue 4 • October-December 2016

50

4. QoS MODEL AND AGGREGATION SCHEMA

QoS properties of event service compositions may vary depending on the set of member event
services used in the compositions. Some QoS properties may propagate along the event service
network. In this section, a QoS model is used to represent some sample QoS properties. Then the
QoS aggregation schema is presented to estimate the QoS properties for complex event service
composition plans. Finally, a utility function is introduced to evaluate the QoS performance under
constraints and preferences.

4.1. QoS Properties of Event Services
As a proof-of-concept, we do not intend to create a complete and precise QoS ontology for event
services. We refer readers to (Iggena et al., 2014) for a more comprehensive study on the Quality
Ontology7 for IoT-enable event streams. In this paper, we consider the following QoS attributes from
(Iggena et al., 2014) are relevant for QoS propagation and aggregation, including:

•	 Latency (L) describes the delay in time for an event service, i.e., the temporal difference between
the time when the event consumer receives the notification and the time when the event actually
happens (usually denoted by the timestamp of the event);

•	 Price (P) describes the monetary cost for an event service;
•	 Energy Consumption (Eng) describes the energy cost for an event service;
•	 Network Consumption (Net) describes the usage of network (measured by messages consumed

per unit time) for an event service, fewer messages consumed will also reduce the burden of
event engines while evaluating event patterns;

•	 Availability (Ava) describes the possibility of an event service being accessible, it can be
numerically represented in percentages;

•	 Completeness (C) describes the completeness of events delivered by an event service, it can be
numerically represented as recall rates in percentages;

•	 Accuracy (Acc) describes the possibility of getting correct event messages, it can be numerically
represented in percentages; and

•	 Security (S) describes the security protocol used by event services numerically represented as
integer security levels (higher numerical value indicates higher security levels).

By the above definition, a quality vector Q = <L,P,Eng, Net,Ava,C,Acc,S> can be specified to
indicate the QoS performance of an event service in 8 dimensions.

4.2. Quailty of Service Aggregation
The QoS performance of an event service composition is influenced by three factors: Service
Infrastructure, Composition Pattern, and Event Engine. The Service Infrastructure refers to
computational hardware, service Input/Output (I/O) implementation and the physical network
connection; it determines the inherent I/O performance of a service. The Composition Pattern refers
to the local event patterns evaluated by the event engine and the set of member event services directly
involved. Indeed, the QoS performance varies depending on which services are used to produce
member events and how event operators correlate them. The internal implementation of the Event
Engine also has an impact on the event service composition performance. However, it can be difficult
to assess or specify, because it depends on different implementations of event engines.

Table 2 summarizes how the different QoS parameters of an event service composition are
calculated based on these three factors. In this table, we assume event engines are free to use, always
ready to accept new queries when deployed, and do not introduce security issues. When network
consumption is measured in the number of event messages, we consider it irrelevant to the service
infrastructure (connection types, messaging formats etc.). We do consider the effect of service

International Journal on Semantic Web and Information Systems
Volume 12 • Issue 4 • October-December 2016

51

infrastructure over accuracy because out-of-synchronization messages during data transmission
may lead to incorrect results. Also, note that for a simple event service that is not equipped with
CEP engines (e.g., a sensor service), its overall quality vector is identical to the quality vector of the
Service Infrastructure.

The Composition Pattern (EST of a composed event pattern) is a key factor in aggregating QoS
properties for event service compositions. A step-wise aggregation over ESTs is used to aggregate
QoS properties. More specifically, we apply aggregation rules iteratively from leaves to roots on ESTs.
Aggregation rules for different QoS dimensions can be event operator dependent or independent, i.e.,
the aggregated QoS on a parent node in an EST may or may not depend on the event operator type of
the parent node. Table 3 shows the detailed rules for each quality dimension with regard to different
composition patterns. In the following, we explain the rationale for each rule:

1. 	 Price and Energy Consumption are operator independent properties. They can be specified in
different manners, e.g., the price can be charged over subscription time or volume, similar for
energy consumption. For simplicity we assume they are specified over time. The overall price
and energy cost of ℰ (denoted Pc(ℰ) and Engc(ℰ), similar for other QoS dimensions) is the sum
of the price and energy cost of the Immediately Composed Event services (denoted ℰice), i.e.,
leaves in the EST of ℰ;

2. 	 Network Consumption is an operator independent property. The aggregated network consumption
is the sum of the product of the completeness and the frequencies of the services in ℰice (denoted
f(e), e∈ ℰice). We refer readers to (Gao, Curry, & Bhiri, 2014) for detailed descriptions on
estimating frequencies of event services;

3. 	 Availability, Accuracy and Security are operator independent properties. The availability and
accuracy of ℰ is the product of event service availability and accuracy in ℰice. The rationale of
aggregating accuracy with multiplication is that we consider a result is incorrect if one of the
inputs used to calculate the result is incorrect. By the same logic, we aggregated the availability
with multiplication. The security level is determined by the most vulnerable event service in ℰice;

4. 	 Latency of event ℰ is an operator dependent property. It is determined by the last event completing
the event pattern of ℰ. Therefore, if the root operator of ℰ is a sequence or repetition, the latency

Table 2. Overall quailty of service calculation

Dimensions
QoS Symbols

Overall QoS CalculationService
Infrastructure

Composition
Pattern Event Engine

Latency Li Lc Le L = Li + Lc + Le

Price Pi Pc - P = Pi + Pc

Energy Engi Engc Enge Eng = Engi + Engc + Enge

Network
Consumption - Net c - Net = Net c

Availability Avai Avac - Ava = Avai × Avac

Completeness Ci Cc Ce C = Ci × Cc × Ce

Accuracy Acci Accc Acce Acc = Acci × Accc × Acce

Security Si Sc - S = min(Si, Sc)

International Journal on Semantic Web and Information Systems
Volume 12 • Issue 4 • October-December 2016

52

of ℰ is same as the last event in the Direct Sub-Events of ℰ (denoted ℰdse), i.e., sub-events whose
root nodes are child nodes of the root of ℰ. Since it is hard to predict when the last direct sub-
event occurs under parallel operators (i.e., And and Or operator), we make an approximation
with the average of the latencies of the event services in ℰdse;

5. 	 Completeness is an operator dependent property. The completeness of ℰ can be estimated based
on its direct sub-event frequencies (f(e), e ∈ ℰdse), and completeness (Cc(e), e ∈ ℰdse):

min C e f e e
card

c dse() ⋅ () ∈{ }
()

| 


or
max C e f e e

card f
c dse() ⋅ () ∈{ }

() ⋅ ()
| 

 
	

Table 3. Quailty of service aggregation rules based on composition patterns

QoS Dimensions for
Event Service ℰ Aggregation Rules Applicable Event Operators

Pc(ℰ) e
c

ice

P e
∈
∑ ()


And, Or, Sequence, Repetition

Engc(ℰ) e
c

ice

Eng e
∈
∑ ()


And, Or, Sequence, Repetition

Netc(ℰ) e
c

ice

C e f e
∈
∑ () ⋅ ()


And, Or, Sequence, Repetition

Avac(ℰ) e
c

ice

Ava e
∈
∏ ()


And, Or, Sequence, Repetition

Accc(ℰ) e
c

ice

Acc e
∈
∏ ()


And, Or, Sequence, Repetition

Sc(ℰ) min S e ec ice() ∈{ }|  And, Or, Sequence, Repetition

Lc(ℰ)

L e e is the last event inc dse() ,  Sequence, Repetition

avg L e ec dse() ∈{ }|  And, Or

Cc(ℰ)

min C e f e e
card f
c dse() ⋅ () ∈{ }

() ⋅ ()
| 

 
And, Sequence, Repetition

max C e f e e
card f
c dse() ⋅ () ∈{ }

() ⋅ ()
| 

 
Or

International Journal on Semantic Web and Information Systems
Volume 12 • Issue 4 • October-December 2016

53

represents how often all or any direct sub-event instances would occur under the influences of the
completeness, where card(ℰ) gives the cardinality8 of the root operator of ℰ. By dividing this frequency
with the estimated frequency of ℰ, we derive the completeness of ℰ.

4.3. Event QoS Utility Function
In order to choose the best service composition under users’ QoS constraints and preferences, a
QoS utility function is needed. While defining a sophisticated utility function is not the focus of this
paper, we use the Simple Additive Weighting (SAW (Zeleny & Cochrane, 1982)) technique to define
the service QoS utility. SAW is widely used in QoS-aware service composition optimization, e.g.,
in (Alrifai & Risse, 2009), (Wu et al., 2013). It is worth noting that by applying SAW we have the
following three assumptions (Rowe & Pierce, 1982):

•	 Risk independence: Implying the uncertainty of QoS values are not considered, i.e., the
probability p of a QoS attribute q has the value v is not modelled;

•	 Preferential independence: Implying preferences over values of a set of QoS attributes do not
depend on the values of other attributes; and

•	 Utility independence: Implying QoS attributes are independent of each other.

The first assumption is trivial for us because we do not take into account the probability of errors
in the QoS aggregation. The second assumption also holds because a total order can be applied to
all eight QoS dimensions, regardless of the values in other dimensions. For example, under any
circumstances, it is safe to assume that lower latency is more desirable, as well as higher accuracy.
The third assumption is a simplification of the real-world settings: sensors may use more energy to
take more samples in order to achieve higher accuracy, and the network consumption of a composition
plan may have a correlation with the completeness of the composition. In the current QoS model, we
do not consider the correlation between quality attributes.

Given a quality vector of an event service composition Q = <L, P, Eng, Net, Ava, C, Acc, S>
representing the service QoS capability, we denote q as one of the eight quality dimensions in the vector,
O(q) as the theoretical optimum value (e.g., for latency the optimum value is 0 seconds) in the quality
dimension of q, C(q) as the user-defined value specifying the hard constraints (i.e., worst acceptable
value, e.g., 1 second for latency) on the dimension, and 0≤ W(q)≤ 1 as the weighting function of the
quality metric, representing users’ preferences (e.g., W(L)=1 means latency is highly important for
the user and W(L)=0 means latency is irrelevant for the user). Furthermore, we distinguish between
QoS properties with positive or negative tendency: Q=Q+∪ Q-, where Q+={Ava, C, Acc, S} is the set
of properties with the positive tendency (larger values the better), and Q-={L, P, Eng, Net} is the set
of properties with the negative tendency (smaller values the better). The QoS utility U is derived by:

U
W q q C q
O q C q

W q q O q

q Q

i i i

i i q Q

j j j

i j

=
() ⋅ − ()()
() − ()

−
() ⋅ − ()()

∈ ∈+ −

∑ ∑ CC q O qj j() − ()
	

According to the above equation, the best event service composition should have the maximum
utility U. A normalised utility with values between [0,1] can be derived using the function:

U U Q Q Q= +() +()− + −| | | | 	

International Journal on Semantic Web and Information Systems
Volume 12 • Issue 4 • October-December 2016

54

5. GENETIC ALGORITHM FOR QoS-AWARE EVENT
SERVICE COMPOSITION OPTIMIZATION

The detection of the complex event pattern of an event service composition can be achieved by
monitoring different sets of member events on different levels of granularity. Each member event
detection task can be achieved by subscribing to a set of event services. In large-scale scenarios, it is
highly inefficient to enumerate all possible compositions of event services and evaluate their overall
performance. In this section, we propose a heuristic method based on Genetic Algorithms (GA) to
derive near-optimal event service compositions efficiently. The algorithm is intended to be deployed
as an event service discovery/composition engine on a centralized server.

Typically, GAs require a genetic encoding for the solution space, as well as a fitness function to
evaluate the solutions. A standard GA-based search iterates the procedure of select, crossover and
mutation until termination conditions are met. The GA approach in this section follows these steps.
The “fitness’’ of each solution can be evaluated by the QoS utility function in Section 4.3.

5.1. Population Initialization
Given an event request with a requested canonical event pattern ep, the initialization of the population
consists of three steps. First, enumerate all Abstract Composition Plans (ACPs) of ep. An ACP is a
composition plan without concrete event service bindings. Second, pick randomly a set of ACPs. Third,
for each chosen ACP, pick randomly one concrete event service binding for each sub-event involved.
Then, a set of Concrete Composition Plans (CCPs) with random structure and service bindings are
obtained. The second and third steps are trivial; next we explain how ACPs are derived based on an ERF.

When an event pattern ep is inserted into the ERF, we can mark its reusable nodes denoted as
depicted in Figure 6. Intuitively, a reusable node n∈ Nr for ep means the sub-tree of the EST of ep
with n as the root can be replaced by another EST in the service repository. Evidently, ep has at
least one ACP, which is the canonical event pattern in the event request. This ACP implies all event
operators of ep are evaluated locally by the event engine that the composition plan is deployed on and
subscriptions are made only to PESs. If one or more nodes in Nr are event operators, more ACPs of ep
can be derived by collapsing different combinations of the reusable operator nodes, i.e., subscribing
to relevant CESs and allowing the event operators in ep to be evaluated externally.

It is worth noting that although it requires enumerating all ACPs to ensure the diversity in the
structure of event compositions, the size of the different combinations of reusable sub-events is
moderate, compared to the size of all concrete composition plans. The reusable relations can be
efficiently retrieved from the ERF. Therefore, the enumeration of ACPs can be done efficiently.

5.2. Genetic Encodings for Concrete Composition Plans
Individuals (CCPs) in the population need to be genetically encoded to represent their various
characteristics (composition patterns). In a typical encoding for Web Service compositions, each

Figure 6. Marking the reusable nodes

International Journal on Semantic Web and Information Systems
Volume 12 • Issue 4 • October-December 2016

55

service task is encoded with a value indicating the concrete service implementing the task. These
values are ordered in a sequence so that the positions of the values indicate the service task to which
they relate. Similarly, we encode the event detection tasks (leaf nodes) in a CCP with values to indicate
the service bindings used. However, the positions of the values (arranged in any tree traversal orders)
cannot represent which parts of the event detection task do the reused event services contribute to,
since the CCPs are partially ordered trees with variable structures. The only thing identifying an event
detection task is the event pattern it detects. Nevertheless, the sequence of ancestors of the nodes can
give a hint about which roles they play in the entire event pattern and reducing the search space while
finding their functional equivalent counterparts. Therefore, global identifiers are assigned to all the
nodes in the CCPs and a leaf node in a CCP is encoded with a string of node identifiers as a prefix
representing the path of its ancestors and a service identifier indicating service binding for the leaf,
as shown in Figure 7. For example, a gene for the leaf node “n13” in P2 is encoded as a string with
prefix “n10n11” and a service id for the traffic service candidate for road segment B, i.e., “es3”, hence
the full encoding of n13 is <n10n11,es3>. The complete set of encodings for every gene constitutes
the chromosome of P2.

5.3. Crossover and Mutation Operations
After the population initialization and encoding, the preparation tasks for GA-based optimization
are completed. The algorithm iterates the cycle of select, crossover and mutation to find optimal
solutions. The selection is trivial; individuals with better finesses (i.e., QoS utility) are more likely
to be chosen to reproduce. In the following, we explain the details on the crossover, mutation and
elitism operations designed for GA-based event service composition.

5.3.1. Crossover
To ensure valid child generations are produced by the crossover operation, parents must only exchange
genes representing the same part of their functionalities, i.e., the same (sub-) event detection task,
specified by semantically equivalent event patterns. An example of crossover is illustrated in Figure
7. Given two genetically encoded parent CCPs P1 and P2, the event pattern specified in the query Q
and the event reusability forest ERF, the crossover algorithm takes the following steps to produce
the children:

Figure 7. Example of genetic encodings and crossover

International Journal on Semantic Web and Information Systems
Volume 12 • Issue 4 • October-December 2016

56

1. 	 Pick randomly a leaf node l1 from P1, create the node type prefix ntp1 from the genetic encoding
of P1, i.e., code1, as follows: replace each node id in the prefix of code1 with the operator type;

2. 	 For each leaf l1 in P2, create the node type prefix ntp2 from code2 (i.e., encodings for l2) and
compare it with ntp1. If ntp1 = ntp2 and the event semantics of l1 and l2 are equivalent, i.e., they
are merged into the same node in the ERF, then mark l1, l2 as the crossover points n1, n2. If ntp1
= ntp2 but the pattern of l1 is reusable to l2 or l2 is reusable to l1, then search back on code1, code2
until the cross points n1, n2 are found on code1, code2 such that T(n1)  T(n2), i.e., the sub-patterns
of P1,P2 with n1, n2 as the root node of the ESTs of the sub-patterns are semantically equivalent;

3. 	 If ntp1 is an extension of ntp2, e.g., ntp1 = (And;Or;Seq), ntp2 = (And;Or) and the pattern of l1 is
reusable to l2 in the ERF, then search back on code1 and try to find n1 such that the sub-pattern
with EST T(n1) is equivalent to l2. If such n1 is found, mark l2 as n2;

4. 	 If ntp2 is an extension of ntp1, do the same as step 3 and try to find the cross point n2 in code2;
5. 	 Whenever the cross points n1, n2 are marked in the previous steps, stop the iteration. If n1 or n2

is the root node, return P1, P2 as they were. Otherwise, swap the sub-trees in P1, P2 whose roots
are n1, n2 (and therefore the relevant genes), resulting in two new CCPs.

5.3.2. Mutation
The mutation operation changes the composition plan for a leaf node in a CCP. To do that we first
select a random leaf node in a CCP. If the leaf is a PES, then the mutation is simply changing the
service binding to a different PES. Otherwise, we treat the event pattern of the leaf node as a new
event request that needs to be composed, then we use the same process specified in the population
initialization to create a random composition plan for the leaf and replace the leaf node in the original
CCP with the composition plan.

5.3.3. Elitism
We use an Elitism method in the GA. More specifically, after the selection in every generation, we add
an exact copy of the best individual directly into the next generation without crossover or mutation
(the original instance may still participate in the crossover and mutation). Elitism ensures the best
individual is kept through the evolution until a better individual has occurred.

6. EVALUATION

In this section, we present the evaluation results of the proposed approaches. We put our experiments
in the context of the travel-planning scenario in Section 2 by using both real and synthetic sensor
datasets for the city of Aarhus. The evaluation has two parts: in the first part, we analyse in detail the
performance of the genetic algorithm. In the second part, we demonstrate the usefulness of the QoS
aggregation rules. All experiments are carried out on a machine with a 2.53 GHz duo core CPU and
4 GB 1067 MHz memory. Experiment results are the average of 30 iterations.

6.1. Part 1: Performance of the Genetic Algorithm
In this part of the evaluation, we compare the QoS utility derived by Brute-Force (BF) enumeration
and the developed GA. Then, we test the scalability of the GA. Finally, we analyse the impact of
different GA parameters and provide guidelines to identify optimal GA parameter settings.

6.1.1. Datasets
Open Data Aarhus (ODAA)9 is a public platform that publishes sensor data and metadata about the
city of Aarhus. Currently there are 449 pairs of traffic sensors in ODAA. Each pair is deployed on
one street segment for one direction and reports the traffic conditions on the street segment. These
traffic sensors are used in the experiments to answer requests on travel planning. We also include

International Journal on Semantic Web and Information Systems
Volume 12 • Issue 4 • October-December 2016

57

some other sensors in our dataset that might be used in traffic monitoring and travel planning, e.g.,
air pollution sensors and weather sensors. These sensors are not actually relevant to requests like
Alice’s (i.e., Qa in Figure 3) or Bob’s (i.e., Qb in Figure 4), i.e., they are noise to queries like Qa and
Qb (but could be used in other travel related queries). In total we use 900 real sensors from ODAA,
in which about half of them are noise. We denote this dataset sensor repository R0.

Each sensor in R0 is annotated with a simulated random quality vector <L, Acc, C, S> where L
∈ [0ms, 300ms], Acc, C ∈[50%,100%], S ∈[1,5] and frequency f ∈[0.2Hz,1Hz]. We do not model
price or energy consumption in the experiments because their aggregation rules are similar to network
consumption. For similar reasons we also do not model availability. To test the algorithms on a larger
scale, we further increase the size of the sensor repository by adding N functionally equivalent sensors
to each sensor in R0 with a random quality vector, resulting in the 9 different repositories as shown
in Table 4. In the experiments we use a loose constraint10 to enlarge the search space and we set all
QoS weights set to 1.011. The queries used in the experiments are summarised in Table 5.

6.1.2. QoS Utility Results and Scalability
In this set of experiments, we first demonstrate the usefulness of the GA by comparing it to a BF
algorithm and a random pick approach. Figure 8 shows the experimental results for composing Qa
over R3 to R9 (R1 and R2 are not tested here because their solution spaces are too small for GA), where
Qa has 6 service nodes and 1 operator. A more complicated variant of Qa with 8 service nodes and 4
operators is also tested, denoted Qa’.

The best utility obtained by the GA is the highest utility of the individual in the last generation
before the GA stops. In the current implementation, the GA is stopped when the current population
size is less than 5 or the difference between the best and the average utility in the generation is less
than 0.01, i.e., the evolution has converged. Given the best utility from BF U bf, best utility from GA
U ga and the random utility of the dataset U rand}, we calculate the degree of optimization as
d U U U Uga rand bf rand= −() −() . From the results in Figure 8 we can see that the average d=
89.35% for Qa and Qa’. In some cases, the BF algorithm fails to complete, e.g., Qa over R8 and R9,
because of memory limits (heap size set to 1024 MB). We can see that for smaller repositories, d is
bigger. This is because under the same GA settings12, the GA has a higher chance of finding the global
optimum during the evolution when the solution space is small and the elitism method described in

Table 4. Simulated sensor repositories

R1 R2 R3 R4 R5 R6 R7 R8 R9

N 1 2 3 4 5 6 7 8 9

Total Size 1800 2700 3600 4500 5400 6300 7200 8100 9000

Table 5. Queries used in experiments

Query Description Nodes

Qa Alice’s query on estimated travel time on route (Figure 3). 1 AND, 6 streams.

Qb Bob’s query on traffic condition, (Figure 4). 1 AND, 1 OR, 4 streams.

Qa’ A variants of Qa with more nodes. 1 AND, 3 random operators, 8 streams.

Qb’ A variant of Qb with more nodes. 1 AND, 1 OR, 10 streams

International Journal on Semantic Web and Information Systems
Volume 12 • Issue 4 • October-December 2016

58

Section 5.3 makes sure that, if found, the global optimum “survives” till the end of evolution, e.g.,
in the GA results for Qa over R3 and R4 in Figure 8.

It is evident that a BF approach for QoS optimization is not scalable because of the NP-hard
nature of the problem. We analyse the scalability of the GA using different repository sizes, query
sizes (total number of event operator nodes and event service nodes in the query), as well as different
number of CESs in the ERF.

From the results in Figure 9 we can see that the composition time of Qa grows linearly for GA
when the size of the repository increases. To test the GA performance with different query sizes
using different operators, we use the EST of Qb as a base and replace its leaf nodes with randomly
created sub-trees (invalid ESTs excluded). Then we test the GA convergence time of these queries
over R5. Results from Figure 10 indicate that the GA execution time increases linearly with regard
to the query size.

Figure 9. GA scalability over repository size

Figure 8. QoS utilities of BF, GA and random pick

International Journal on Semantic Web and Information Systems
Volume 12 • Issue 4 • October-December 2016

59

In order to test the scalability over different number of CESs in the ERF (called ERF size), we
deploy 10 to 100 random CESs to R5, resulting in 10 new repositories. We test the GA on a query
created in the previous step (denoted Qb’) with the size of 12 nodes (2 operators, 10 sensor services)
and record the execution time in Figure 11. To ensure each CES could be used in the composition
plan, all CESs added are sub-patterns of Qb’. From the results we can see that although the increment
of the average execution time is generally linear, in some rare test instances there are “spikes”, such
as the maximum execution time for ERF of size 40 and 80. After analysing the results of those cases,
we found that most (over 90%) of the time is spent on population initialisation, and this is caused by
the complexity of the ERF, i.e., number of edges considered during ACP creation.

6.1.3. Fine-Tuning the Parameters
In the experiments above, a fixed set of settings is used as the GA parameters, including crossover
rate, mutation rate and population size. In order to find good settings of the GA in our given problem
domain, we fine tune the mutation rate, population size and crossover rate based on the default setting
used above, i.e., we change one parameter value at a time while keeping other parameters unchanged.

Figure 10. GA scalability over EP size

Figure 11. GA scalability over ERH size

International Journal on Semantic Web and Information Systems
Volume 12 • Issue 4 • October-December 2016

60

In order to determine the effect of the parameter tuning, we define a Cost-Effectiveness score
(i.e., CE-score) as follows: given the random pick utility of a dataset U rand, we have the final utility
derived by GA U ga and the number of milliseconds taken for the GA to converge tga, CE-score =
(U ga-U rand)*105/tga. We test two queries Qa, Qb’ over two new repositories R5’, R9’, which are R5
and R9 with 50 and 100 additional CESs, respectively. Hence we have 4 test combinations on both
simple and complex queries and repositories. The results of fine-tuning the mutation rate, population
size and crossover rate are shown in Figure 12, Figure 13 and Figure 14.

From the results in Figure 12 we can see that the optimal mutation rate is quite small for all
tests, i.e., from 0% to 0.4%. Results in Figure 13 indicate that for smaller solutions spaces such as
Qa over R5’ and R9’, the optimal initial population size is smaller, i.e., with 60 individuals in the
initial population. For more complicated queries and larger repositories, using a larger population
size e.g., 100, is more cost-efficient. Results from Figure 14 indicate that for Qa over R5’, the optimal
crossover rate is 35% because the global optimum is easier to achieve and more crossover operations

Figure 12. CE-score over mutation rate

Figure 13. CE-score over population size

International Journal on Semantic Web and Information Systems
Volume 12 • Issue 4 • October-December 2016

61

bring overhead. However, for more complicated queries and repositories, a higher crossover rate,
e.g., from 90% to 100%, is desired. It is worth noticing that in the results from Figure 13 and Figure
14, the changes of the score for Qb’ over R9’ is not significant. This is due to the fact that the GA
spends much more time trying to initiate the population, making the cost-effectiveness score small
and the differences moderate.

In the previous experiments, we use the selection policy such that every individual is chosen to
reproduce once (except for the elite whose copy is also in the next generation). This will ensure the
population will get smaller as the evolution progresses and the GA will converge quickly. This is
desirable in our case because the algorithm is executed at run-time and is time sensitive. However, it
is also possible to allow an individual to reproduce multiple times and keep a fixed population size
during the evolution.

In order to compare the differences of having a fixed or flexible population size, we show the
average utility (of Qb’ over R9’) over the generations in Figure 15. The results show that the number
of generations for flexible population sizes is similar while larger sizes achieve higher utilities. In

Figure 14. CE-score using over crossover rate

Figure 15. Average utility using flexible (“p=x”) and fixed (“pf=x”) population size

International Journal on Semantic Web and Information Systems
Volume 12 • Issue 4 • October-December 2016

62

addition, the duration of generations in fixed population sizes is very different: for a fixed population
size of 60 the GA converges in about 60 generations and for the size of 100 it lasts more than 100
generations. Larger sizes also produce better final results in a fixed population, but it is much slower
and the utilities are lower than those obtained from flexible populations. In summary, we can confirm
that using a flexible population size is better than a fixed population size for the GA described in
this section.

6.2. Part 2: Validation of QoS Aggregation Rules
In this part of evaluation, we show how the QoS aggregation works in a simulated environment.

6.2.1. Datasets and Experiment Settings
In order to demonstrate the effect of QoS aggregation and optimisation, we generate two composition
plans CP1 and CP2 with the GA for Qa over R9’ using same constraints specified in 0. CP1 is optimized
for latency, with the weight of latency set to 1.0 and other QoS weights set to 0.1; while CP2 is
optimized for network consumption, with the weight of network consumption set to 1.0 and others
0.1. The reason we generate two plans for optimizing latency and network consumption is that the
resulting plans are the very different in structure, as shown in Figure 16.

When the two composition plans are generated, we transform the composition plans into stream
reasoning queries (e.g., C-SPARQL query). We evaluate the queries over the traffic data streams
produced by ODAA sensors. According to the composition plan and the event service descriptions
involved in the plans, we simulate the QoS of the event services on a local test machine, i.e., we
create artificial delays, wrong and lost messages according to the QoS specifications in event
service descriptions, and set the sensor update frequency as the frequency annotated (so as to affect
the messages consumed by the query engine). Security is annotated but not simulated, because the
aggregation rule for security is trivial, i.e., estimated to be the lowest security level. Notice that
the simulated quality is the Service Infrastructure quality. We observe the results and the query
performance over these simulated streams and compare it with the QoS estimation using the rules
in Table 2 and Table 3, to see the differences between the practical quality of the composed event
streams and the theoretical quality as per our estimation.

6.2.2. Simulation Results
The results of the comparison between the theoretical and simulated quality of the event service
composition is shown in Table 6. The first column is the quality dimensions of the two composition
plans, the second column is the computed quality values based on the aggregation rules defined in
Table 3. These rules take into account the Composition Pattern of the query as well as the Service
Infrastructure quality of the composed services. We denote this quality QoScp. However, this is not
the end-to-end QoS, because the quality of the event stream engine needs to be considered. To get
the stream engine performance we deploy the queries with optimal Service Infrastructure quality, i.e.,

Figure 16. Composition plans for Qa under different weight vectors

International Journal on Semantic Web and Information Systems
Volume 12 • Issue 4 • October-December 2016

63

no artificial delay, mistake or missing events, and we record the quality of query executions in the
third column. We denote this engine quality QoSee. The simulated end-to-end quality is recorded in
the fourth column, denoted QoSs. We calculate the theoretical end-to-end quality based on QoScp and
QoSee using Table 2. Notice that the Service Infrastructure qualities of the queries themselves are not
considered, since we do not measure the results provided to external service consumers, rather, the
quality measurement stops at the point when query results are generated. We denote this theoretical
end-to-end quality QoSt and calculate the deviation d = (QoSs/QoSt) - 1, which is recorded in the
last column. From the results we can see that the GA is very effective in optimizing latency for CP1
and network consumption for CP2: the latency of the former is 1/7 of the latter and event messages
consumed by the latter are less than 1/8 of the former.

We can also see that the deviations of latency and accuracy are moderate for both plans.
However, the completeness estimation is about 15% to 18% different to the actual completeness. For
the network consumption in CP1 the estimation is quite accurate, i.e., about 5% more than the actual
consumption. However, the network consumption for CP2 deviates from the estimated value by about
13.51%. The difference is caused by the unexpected drop in C-SPARQL query completeness when
a CES with imperfect completeness is reused in CP2, which suggests that an accurate completeness
estimation of a service could help improving the estimation of the network consumption for event
service compositions using the service.

Another interesting observation from Table 6 is that the end-to-end delay of CP2 is about 1650 ms
longer than CP1, while the artificial delay imposed by the CES is no more than 280 ms. This is caused
by the internal query mechanism of the C-SPARQL engine: when composed queries are registered
to the same engine instance, the engine will take much more time to process the query because of
the concurrency. This suggests that a federated manner of query composition over distributed engine
instances is desirable.

7. RELATED WORK

The first step of solving the QoS-aware service composition problem is to define a QoS model,
a set of QoS aggregation rules and a utility function. Existing works have discussed these topics
extensively, e.g., in (Jaeger, Rojec-Goldmann, & Muhl, 2004) and (Wu et al., 2013). In this paper,

Table 6. Validation for QoS aggregation and estimation

Composition Pattern Event Engine End-to-End
Simulated

End-to-eEnd
Deviations

Plan 1 (CP1)

Latency 40 ms 604 ms 673 ms +4.50%

Accuracy 50.04% 100% 51.43% +2.78%

Completeness 87.99% 97.62% 72.71% -14.89%

Network
Consumption 4.05 msg/s 4.05 msg/s 3.84 msg/s -5.19%

Plan 2 (CP2)

Latency 280 ms 1852 ms 2328 ms +9.19%

Accuracy 53.10% 100% 51.09% -3.79%

Completeness 87.82% 73.18% 46.31% -17.96%

Network
Consumption 0.37 msg/s 0.40 msg/s 0.32 msg/s -13.51%

International Journal on Semantic Web and Information Systems
Volume 12 • Issue 4 • October-December 2016

64

we extract some typical QoS properties from the existing work and define a similar utility function
based on SAW. However, the aggregation rules in existing works focus on conventional web services
rather than complex event services, which need a different QoS aggregation schema. For example, the
event engine has an impact on the QoS aggregation, which is not considered in conventional service
QoS aggregation. Also, the aggregation rules for some QoS properties based on event composition
patterns is different to those based on workflow patterns (as in (Jaeger et al., 2004)).

As a second step, different concrete service compositions are created and compared with regard
to their QoS utilities to determine the optimal choice. To achieve this efficiently, various Genetic
Algorithm based approaches are developed, e.g., in (Zhang & Li, 2004), (Zhang, Su, & Chen, 2006),
(Gao, Cai, & Chen, 2007) and (Karatas & Kesdogan, 2013). In (Zhang & Li, 2004) the chromosomes
are encoded with binary bits representing whether a service is selected or not. The problem with
this approach is that the readability of the genomes is poor and the chromosome length is not fixed
during evolution. In (Zhang et al., 2006) a two-dimensional genome encoding is proposed to express
all execution paths while considering task relations, but its crossover and mutation need validation.
In (Gao et al., 2007), the authors use tree coding chromosomes, crossovers operate on sub-trees
and mutations operate on leaf nodes to avoid invalid reproductions. In (Karatas & Kesdogan, 2013)
the authors develop a GA-based approach that goes beyond QoS-aware composition and enables
compliance-aware service composition.

The above GA-based approaches can only evaluate service composition plans with fixed sets of
service tasks (abstract services) and cannot evaluate composition plans with service tasks on different
granularity levels. A more recent work in (Wu et al., 2013) addresses this issue by presenting the
concept of Generalized Component Services (GCS) and developing the GA encoding techniques and
genetic operators based on GCS. Results in (Wu et al., 2013) indicate that up to 10% utility enhancement
can be obtained by expanding the search space. Composing events on different granularity levels is
also a desired feature for CES composition. However, (Wu et al., 2013) only caters for Input, Output,
Precondition and Effect (IOPE) based service compositions. Complex event service composition
requires a pattern-based reuse mechanism (Gao, Curry, & Bhiri, 2014). As a result, it requires different
genetic encoding mechanisms and crossover operations.

8. CONCLUSION AND FUTURE WORK

In this paper, we address the issue of enabling QoS-aware event stream federation and optimisation
using services in an IoT context. A QoS aggregation schema is proposed to calculate the overall QoS
vector for a federated IoT stream (an event service composition). Based on user-defined constraints
and preferences, a QoS utility function is defined to calculate the degree of optimisation for event
composition. A genetic algorithm for creating optimal event service compositions is developed and
evaluated. We evaluate the proposed approach over a travel-planning scenario with both real and
synthetic datasets. The experimental results show that the genetic algorithm is scalable, and can give
near-optimal (about 89% optimal) results efficiently. We provide analysis on how to fine-tune the GA
parameters including mutation rate, crossover rate and population size in order to achieve the best
performance of GA. The experiments on the validation of QoS aggregation show that our estimation
model does not deviate too far from the practical results.

As future work, we plan to optimise the GA approach with regard to the population initialisation,
because we found that this process takes the majority of the computation time. We also plan to
investigate how interdependent quality metrics can be modelled and optimised. Moreover, investigating
the QoS aggregation over different RDF stream processing engines is also on the agenda.

International Journal on Semantic Web and Information Systems
Volume 12 • Issue 4 • October-December 2016

65

REFERENCES

Alrifai, M., & Risse, T. (2009). Combining global optimization with local selection for efficient QoS-aware
service composition.Proceedings of the 18th international conference on World wide web (pp. 881–890).
doi:10.1145/1526709.1526828

Berbner, R., Spahn, M., Repp, N., Heckmann, O., & Steinmetz, R. (2006). Heuristics for qos-aware web service
composition. Proceedings of the International Conference on Web Services ICWS’06 (pp. 72–82). doi:10.1109/
ICWS.2006.69

Etzion, O., & Niblett, P. (2010). Event processing in action. Manning Publications Co.

Gao, C., Cai, M., & Chen, H. (2007). QoS-aware Service Composition Based on Tree-Coded Genetic Algorithm.
Proceedings of the 31st Annual International Computer Software and Applications Conference (Vol. 1, pp.
361–367). Washington, DC, USA: IEEE Computer Society. doi:10.1109/COMPSAC.2007.174

Gao, F., Curry, E., Ali, M., Bhiri, S., & Mileo, A. (2014). QoS-aware Complex Event Service Composition and
Optimization using Genetic Algorithms.Proceedings of the 12th International Conference on Service Oriented
Computing, Paris, France.Springer. doi:10.1007/978-3-662-45391-9_28

Gao, F., Curry, E., & Bhiri, S. (2014). Complex Event Service Provision and Composition based on Event
Pattern Matchmaking.Proceedings of the 8th ACM International Conference on Distributed Event-Based
Systems,Mumbai, India. ACM. doi:10.1145/2611286.2611287

Hasan, S., & Curry, E. (2014). Thematic Event Processing. In ACM/IFIP/USENIX Middleware conference
2014. doi:10.1145/2663165.2663335

Hinze, A., Sachs, K., & Buchmann, A. (2009). Event-based applications and enabling technologies.Proceedings
of the Third ACM International Conference on Distributed Event-Based Systems (pp. 1–15). New York, NY,
USA: ACM. doi:10.1145/1619258.1619260

Iggena, T., Kümper, D., & Tönjes, R. (2014, May). Kontinuierliche Bewertung von Informationsqualität in Stream-
basierten Smart City Architekturen. ITG-Fachbericht-Mobilkommunikation–Technologien und Anwendungen,
Osnabrück, Germany.

Jaeger, M. C., Rojec-Goldmann, G., & Muhl, G. (2004). QoS aggregation for Web service composition using
workflow patterns.Proceedings of the Eighth IEEE InternationalEnterprise Distributed Object Computing
Conference. EDOC 04 (pp. 149–159). doi:10.1109/EDOC.2004.1342512

Karatas, F., & Kesdogan, D. (2013). An Approach for Compliance-Aware Service selection with genetic
algorithms. In Service-Oriented Computing (pp. 465–473). Retrieved from http://link.springer.com/
chapter/10.1007/978-3-642-45005-1_35

Mela, K., Tiainen, T., & Heinisuo, M. (2012). Comparative study of multiple criteria decision making methods
for building design. Advanced Engineering Informatics, 26(4), 716–726. doi:10.1016/j.aei.2012.03.001

Rowe, M. D., & Pierce, B. L. (1982). Sensitivity of the weighting summation decision method to incorrect
application. Socio-Economic Planning Sciences, 16(4), 173–177. doi:10.1016/0038-0121(82)90036-2

Wu, Q., Zhu, Q., & Jian, X. (2013). QoS-Aware Multi-granularity Service Composition Based on Generalized
Component Services. In S. Basu, C. Pautasso, L. Zhang, & X. Fu (Eds.), Service-Oriented Computing (Vol.
8274, pp. 446–455). Springer Berlin Heidelberg; doi:10.1007/978-3-642-45005-1_33

Zeleny, M., & Cochrane, J. L. (1982). Multiple criteria decision making (Vol. 25). McGraw-Hill New York.

Zeng, L., Benatallah, B., Ngu, A. H. H., Dumas, M., Kalagnanam, J., & Chang, H. (2004). QoS-aware middleware
for Web services composition. IEEE Transactions on Software Engineering, 30(5), 311–327. doi:10.1109/
TSE.2004.11

Zhang, C., Su, S., & Chen, J. (2006). A novel genetic algorithm for qos-aware web services selection. In Data
Engineering Issues in E-Commerce and Services (pp. 224–235). Springer. doi:10.1007/11780397_18

Zhang, L.-J., & Li, B. (2004). Requirements Driven Dynamic Services Composition for Web Services and Grid
Solutions. Journal of Grid Computing, 2(2), 121–140. doi:10.1007/s10723-004-4202-1

http://dx.doi.org/10.1145/1526709.1526828
http://dx.doi.org/10.1109/ICWS.2006.69
http://dx.doi.org/10.1109/ICWS.2006.69
http://dx.doi.org/10.1109/COMPSAC.2007.174
http://dx.doi.org/10.1007/978-3-662-45391-9_28
http://dx.doi.org/10.1145/2611286.2611287
http://dx.doi.org/10.1145/2663165.2663335
http://dx.doi.org/10.1145/1619258.1619260
http://dx.doi.org/10.1109/EDOC.2004.1342512
http://link.springer.com/chapter/10.1007/978-3-642-45005-1_35
http://link.springer.com/chapter/10.1007/978-3-642-45005-1_35
http://dx.doi.org/10.1016/j.aei.2012.03.001
http://dx.doi.org/10.1016/0038-0121(82)90036-2
http://dx.doi.org/10.1007/978-3-642-45005-1_33
http://dx.doi.org/10.1109/TSE.2004.11
http://dx.doi.org/10.1109/TSE.2004.11
http://dx.doi.org/10.1007/11780397_18
http://dx.doi.org/10.1007/s10723-004-4202-1

International Journal on Semantic Web and Information Systems
Volume 12 • Issue 4 • October-December 2016

66

ENDNOTES

1	 CityPulse 101 scenarios: http://www.ict-citypulse.eu/scenarios/
2	 Event Processing Technical Society - Glossary of Terms: http://www.complexevents.com/wp-content/

uploads/2011/08/EPTS_Event_Processing_Glossary_v2.pdf
3	 The Open Group’s definition for service: https://www.opengroup.org/soa/source-book/soa/soa.htm
4	 Complex Event Service Ontology: http://citypulse.insight-centre.org/ontology/ces/
5	 OWL-S: Semantic Markup for Web Services: http://www.w3.org/Submission/OWL-S/
6	 In the ESTs depicted in this paper, event operator nodes are labelled with operator types and a location

update event is labelled “loc”, traffic report events are labelled as the street segments in the map (See
Figure 1) where the sensors are deployed

7	 Quality Ontology: https://mobcom.ecs.hs-osnabrueck.de/cp_quality/
8	 The function card(ℰ) gives the cardinality of the root operator of event pattern in ℰ, the cardinality of a

repetition node is greater than 1, for other operators the cardinality is 1.
9	 Open Data Aarhus: Error! Hyperlink reference not valid.
10	 Constraint used in the evaluation: (L>= 3000ms, Acc>= 0, C >= 0, S >= 1, B <= 50)
11	 In this paper, we consider the weights representing users’ personal preferences and do not differentiate

between “good” or “bad” weight settings.
12	 In the experiments in Section 6.1, the GA has the following parameter settings: the initial population size

is set to 200, crossover rate is 95%, mutation rate is 3%.

Feng Gao received his BSc degree in Software Engineering from Wuhan University, China, in September 2008.
He received an MEng degree in Telecommunication from Dublin City University with honors in 2009. Currenty he
is a PhD student at the INSIGHT Centre for Data Analytics, National University of Ireland, Galway. His current
research interests include Semantic Web, Complex Event Processing and Service Computing. He has passed
his PhD viva recently on 24th March 2016 and is expected to be coferred with PhD from National University of
Ireland, Galway in June 2016.

Muhammad Intizar Ali is an Adjunct Lecturer, Research Fellow and Project Leader at the Unit for Reasoning and
Querying at Insight Centre for Data Analytics, National University of Ireland, Galway. His research interests include
Semantic Web, Data Integration, Internet of Things (IoT), Linked Data, Federated Query Processing, Stream
Query Processing and Optimal Query Processing for large scale distributed data sources. He is actively involved
in various EU funded and industry-funded projects aimed at providing IoT-enabled adaptive intelligence for smart
city applications and smart enterprise communication systems. He is serving as a PC member of various journals,
international conferences and workshops. He is also actively participating in W3C efforts for standardization in
RDF Stream Processing Community Group. Dr. Ali obtained his PhD (with distinction) from Vienna University of
Technology, Austria in 2011.

Edward Curry a research leader at the Insight Centre for Data Analytics (www.insight-centre.org) and a funded
investigator at LERO The Irish Software Research Centre (www.lero.ie). Edward has worked extensively with
industry and government advising on the adoption patterns, practicalities, and benefits of new technologies. Edward
has published over 120 scientific articles in journals, books, and international conferences. He has presented at
numerous events and has given invited talks at Berkeley, Stanford, and MIT. In 2010, he was a guest speaker
at the MIT Sloan CIO Symposium to an audience of 600+ CIOs and senior IT executives. His research projects
include studies of smart cities, energy intelligence, semantic information management, event-based systems,
and collaborative data management. He is a member of the scientific leadership committee of Insight, and a
Lecturer in Informatics at the National University of Ireland Galway (NUIG). He is the Vice President of the Big
Data Value Association (www.BDVA.eu) a non-profit industry-led organisation with the objective of increasing the
competitiveness of European Companies with data-driven innovation.

http://www.insight-centre.org
http://www.lero.ie
http://www.BDVA.eu

International Journal on Semantic Web and Information Systems
Volume 12 • Issue 4 • October-December 2016

67

Alessandra Mileo is a Senior Research Fellow, Adjunct Lecturer and Unit Leader at the INSIGHT Research Center
for Data Analytics, NUI Galway, Ireland (formerly DERI). She holds an MSc (2002) and a PhD (2006) in Computer
Science from the University of Milan. Since 2011, she has been leading the Reasoning and Querying Unit, focusing
on the ability to unlock the potentials hidden in the fast growing torrent of data generated on the Internet of Things,
and investigating the resulting economical and social impact on application domains including Smart Cities, Smart
Transport and remote health monitoring. She has been involved in the organization of numerous conferences and
symposia, and she is an active PC member of more than 40 conferences and high impact Journals. Dr. Mileo
is a Steering Committee member of the Web Reasoning and Rule Systems Association (RRA), member of the
Association of Logic Programming (ALP) and area editor for the ALP Newsletter (Database and Semantic Web
area), Research Committee Member in INSIGHT@NUIG, member of the Italian AI Association (AI*IA), the Italian
working group on Knowledge Representation and Automated Reasoning (RCRA) and the ARCOE association as a
chair of the ARCOE workshop series. She is Principal Investigator of the EU FP7 CityPulse project on large-scale
data analytics for smart cities, and for the primary industry collaboration within the Research Centre portfolio on
Enabling the Internet of Everything: a Linked Data infrastructure for networking, managing and analyzing streaming
information. Her research interests include web stream reasoning, deductive systems, Internet of Things, Semantic
Web and Linked Data, adaptive algorithms, inductive learning, large-scale query processing and federation, context-
aware systems, and she has published more than 40 articles in international conferences and Journals. Dr. Mileo
has proven experience in supervising both undergrad and postgrad students in Computer Science and Digital
Humanities around her topics of expertise and research interests. In relation to standardization activities, Dr. Mileo
is an active member of the W3C RDF Stream Processing and Web of Things groups. As a Principal Investigator in
the EU FP7 project CityPulse, she is also involved in the IERC Activiy Chain AC7 - Cognitive Technologies for IoT.
As part of the Steering Committee of the INSIGHT Centre for Data Analytics, Dr. Mileo contributed to the global
strategy for H2020 which includes the proposal of a Magna Carta for Data.

