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Abstract

The crisp/brittle semantic model behind databases lim-
its the scale in which data consumers can query, ex-
plore, integrate and process structured data. Approaches
aiming to provide more comprehensive semantic mod-
els for databases, which are purely logic-based (e.g. as
in Semantic Web databases) have major scalability lim-
itations in the acquisition of structured semantic and
commonsense data. This work describes a complemen-
tary semantic model for databases which has seman-
tic approximation at its center. This model uses distri-
butional semantic models (DSMs) to extend structured
data semantics. DSMs support the automatic construc-
tion of semantic and commonsense models from large-
scale unstructured text and provides a simple model to
analyze similarities in the structured data. The combi-
nation of distributional and structured data semantics
provides a simple and promising solution to address the
challenges associated with the interaction and process-
ing of structured data.

Introduction
Data consumers querying, exploring, integrating or analyz-
ing data today need to go through the process of mapping
their own conceptualization to the identifiers of database el-
ements. The requirement of a perfect symbolic and syntactic
matching in the database interaction process forces the user
to perform (during query construction time) a time consum-
ing information need-database symbol alignment process.
With the growth of the symbolic space associated with con-
temporary databases, the process of manual alignment to the
database symbolic space becomes infeasible and restrictive.

Automatic semantic approximation between the data con-
sumer information needs and database elements is a cen-
tral operation for data querying, exploration, integration and
data analysis. However, effective semantic approximation
is heavily dependent on the construction of comprehen-
sive semantic/commonsense knowledge bases. While differ-
ent semantic approaches based on logical frameworks have
been proposed, such as Semantic Web databases, these ap-
proaches are limited in addressing the trade-off between pro-
viding an expressive semantic representation and the ability
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to acquire comprehensive knowledge bases under that rep-
resentation model. Logical frameworks are highly sensitive
to problems from the consistency and from the performance
perspectives, which emerge in large-scale knowledge bases.

This work proposes the use of distributional semantic
models (DSMs) to address these limitations, where the sim-
plification of the semantic representation in DSMs facili-
tates the construction of large-scale and comprehensive se-
mantic/commonsense knowledge bases, which can be used
to support effective semantic approximations for databases.
Distributional semantics provides a complementary perspec-
tive to the formal perspective of database semantics, which
supports semantic approximation as a first-class database
operation.

A distributional semantics approach implies extending the
formal database semantics with a distributional semantic
layer. In the hybrid model, the crisp semantics of query
terms and database elements are extended and grounded
over a distributional semantic model (Figure 1). The distri-
butional layer can be used to abstract the database user from
the specific conceptualization of the data.

Distributional Semantics
Distributional semantics is built upon the assumption that
the context surrounding a given word in a text provides im-
portant information about its meaning (Harris 1954), (Tur-
ney and Pantel 2010). Distributional semantics focuses on
the construction of a semantic representation of a word
based on the statistical distribution of word co-occurrence
in unstructured data. The availability of high volume and
comprehensive Web corpora brought distributional seman-
tic models as a promising approach to build and represent
meaning at scale.

One of the major strengths of distributional models is
from the acquisitional point of view, where a semantic
model can be automatically built from large unstructured
text. In Distributional Semantic Models (DSMs) the mean-
ing of a word is represented by a weighted vector, which can
be automatically built from contextual co-occurrence infor-
mation in unstructured data. The distributional hypothesis
(Harris 1954) assumes that the local context in which a term
occurs can serve as discriminative semantic features which
represent the meaning of the term. While this simplification
makes distributional semantics a coarse-grained semantic
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model, not suitable for all tasks, the scale in which seman-
tic knowledge and associations can be captured makes them
effective models for calculating semantic approximations, a
fact which is supported by empirical evidence (Gabrilovich
and Markovitch 2007).

DSMs are represented as a vector space model, where
each dimension represents a context pattern C for the lin-
guistic or data context in which the target term T occurs.
A context can be defined using documents, data tuples, co-
occurrence window sizes (number of neighboring words) or
syntactic features. The distributional interpretation of a tar-
get term is defined by a weighted vector of the contexts in
which the term occurs, defining a geometric interpretation
under a distributional vector space. The weights associated
with the vectors are defined using an associated weighting
scheme W , which calibrates the relevance of more generic
or discriminative contexts. The semantic relatedness mea-
sure s between two words is calculated by using different
similarity/distance measures such as the cosine similarity,
Euclidean distance, mutual information, among others. As
the dimensionality of the distributional space grows, dimen-
sionality reduction approaches d can be applied.

Distributional-Relational Models (DRMs)
The semantics of a database element e (e.g. constants, pred-
icates) is represented by the set of natural language descrip-
tors associated with it. This typically does not include con-
cept associations outside the scope of the specific task that
the database was designed to address, limiting its use for
semantic approximation to concepts outside the designed
database representation. Semantic approximation operations
are a fundamental operation to support schema-agnosticism
(Freitas, Silva, and Curry 2014), i.e. the ability to interact
with a database without a precise understanding of the con-
ceptual model behind it.

In this work, the formal semantics of a database symbol is
extended with a distributional semantics description, which
captures the large-scale symbolic associations within a large
reference corpora. The distributional semantics representa-
tion captures large-scale semantic, commonsense and do-
main specific knowledge, using it in the semantic approxi-
mation process between a third-party information need and
the database (Figure 3). The hybrid distributional-structured
model is called Distributional-Relational Model (DRM). A
DRM embeds the structure defined by relational models in
a distributional vector space, where every entity and rela-
tionship have an associated vector representation. The dis-
tributional associational information embedded in the dis-
tributional vector space is used to semantically complement
the knowledge expressed in the structured data model. The
distributional information is then used to support semantic
approximations, while preserving the semantics of the struc-
tured data.

A Distributional-Relational Model (DRM) is a tuple
(DSM,DB,RC,F ,H), where: DSM is the associated
distributional semantic model; DB is the database with ele-
ments E; RC is the reference corpora which can be unstruc-
tured, structured or both. The reference corpora can be inter-
nal (based on the co-occurrence of elements within the DB)
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Figure 1: Depiction of distributional relations, contexts and
different representation views for distributional semantics.

or external (a separate reference corpora); F is a map which
translates the elements ei ∈ E into vectors −→ei in the the dis-
tributional vector space V SDSM using the natural language
descriptor of ei; and H is the set of thresholds above which
two terms are semantically equivalent.
Definition (Distributional-Relational Model (DRM)): A distri-
butional relational model is a tuple (DSM,DB,RC,F ,H) such
that:
• DSM is the associated distributional semantic model.
• DB is an structured dataset with DB elements E and tuples T .
• RC is the reference corpora which can be unstructured, struc-

tured or both. The reference corpora can be internal (based on
the co-occurrence of elements within the DB) or external (a sep-
arate reference corpora).

• F is a map which translates the elements ei ∈ E into vectors −→ei

in the the distributional vector space V SDSM using the string
of ei and the data model category of ei.

• H is the set of semantic thresholds for the distributional seman-
tic relatedness s in which two terms are considered semantically
equivalent if they are equal and above the threshold.
In this work we assume a simplified data model with a

signature Σ = (P,C) formed by a pair of finite set of sym-
bols used to represent binary and unary predicates p ∈ P
between constants c ∈ C. The semantics of the DB is
defined by the vectors in the distributional space used to
represent the elements. The set of all distributional con-
texts Context = {χ1, · · · ,χt} are extracted from a ref-
erence corpus and each context χi ∈ Context is mapped
to an identifier which represents the co-occurrence pattern
in the corpus. Each identifier χi defines a set which tracks
the context where a term t mapping to the database ele-
ment e occurred. This set is used to construct the basis
Contextbase = {−→χ1, · · · ,−→χt} of vectors that spans the dis-
tributional vector space V Sdist (Figure 1). Once the DSM
is built, the elements of the signature Σ of the DB are trans-
lated into vectors in V Sdist. The vector representation of E,
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V Sdist is defined by:

V Sdist = {−→e : −→e =
t∑

i=1

we
i
−→χ i, for each e ∈ E} (1)

where we
i are defined by a co-occurrence weighting scheme.

The last step refers to the translation of DB tuples into
V Sdist elements. As each relation and entity symbol has a
vector representation, we can define the vector representa-
tion of an atom r in the concept vector space by the follow-
ing definition.
Definition (Distributional Representation of a Tuple): Let −→p ,
−→c1 and −→c2 be the vector representations, respectively, of the binary
predicate p and its associated constants c1 and c2. A tuple vector
representation (denoted by −→r ) is defined by: (−→p − −→c1) if p(c1);
(−→p −−→c1,−→c2 −−→p ) if p(c1, c2).

Semantic Approximation & Context
The computation of the distributional semantic relatedness
is a semantic approximation process in which the distribu-
tional semantic knowledge and relatedness measure serves
as surrogates for the rules, axioms and inference in a de-
ductive logic approach. The assumption is that the knowl-
edge that would be expressed as rules and axioms in a
logical commonsense KB is partially embedded in an un-
structured way in the reference corpora, and that an initial
query-database alignment provides the contextual and scop-
ing mechanism in which the distributional knowledge can be
applied as a semantic/commonsense approximation mecha-
nism.

The distributional alignment (d-alignment) tq ˜DSM tDB

between a query term tq and a database term tDB is de-
fined when srel(tq, tDB) ≥ η. A d-alignment is not equiv-
alent to tq ≡ tDB in absolute terms, i.e. for all possible
inference contexts. However, we argue that given an initial
query-database alignment context (a semantic pivot), the d-
alignment can be locally equivalent to tq ≡ tDB .
Contextual Distributional Equivalence Hypothesis: Let tq be a
query term and tDB be a database term. Let κ(tq) and κ(tDB) be
the contextual information associated with the query and database
terms respectively (i.e. previous alignments). If tq is d-aligned with
tDB under the context (κ(tq), κ(tDB)) then tq ≡ tDB , i.e. can be
assumed to be semantically equivalent.

For a semantic approximation process, the context sets
should be selected in a way which minimizes the probability
of a semantic mismatching using a heuristic function which
prioritizes the easiest alignment to address, i.e., the query
term with lower semantic entropy (i.e. less subject to ambi-
guity, vagueness and synonymy) and provides a higher prob-
ability of a correct semantic matching (Freitas and Curry
2014). This first alignment is called a semantic pivot and
typically maps to a named entity (rigid designator) in the
query (which most likely maps to a constant in the database)
and can be determined using linguistic-based heuristics (e.g.
Part-of-Speech, corpus-based specificity/entropy measures
such as IDF (Freitas and Curry 2014)) (Figure 2).

The selection of a semantic pivot provides a drastic re-
duction of the symbolic matching space (and the associated
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...
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Figure 2: Distributional semantics approximation after the
semantic pivot selection.

semantic entropy) for the semantic approximation mecha-
nism of the following alignments, since they are restricted
by the syntactic constraints of the semantic pivot.

D-DBMS Architecture
From an architectural perspective, a database management
system (DBMS) can be enriched with a separate distribu-
tional semantics approximation layer. A high-level architec-
ture diagram for the distributional DBMS (D-DBMS) is de-
picted in Figure 3. The distributional semantic model com-
ponent builds the semantic model from the reference cor-
pora, which can coincide with the target dataset. Different
distributional models have different approximation proper-
ties, allowing broader or narrower semantic approximations,
depending on the configuration of their parameters. Addi-
tionally, different reference corpora can be used according
to the domain of discourse covered in the database. The se-
mantic relatedness measure can be computed in two scenar-
ios: (i) dynamically: where the semantic approximation op-
erator ζ calculates the semantic relatedness between a query
term and database elements, (ii) using a distributional index:
where the distributional vectors of the database elements are
represented in an inverted index (Freitas and Curry 2014).
The semantic approximation layer can be implemented as
an external, distinct layer from the database component, not
requiring direct adaptation of the database internals.

Application Patterns
The convergence between distributional semantics and
databases is a recent development which has been used in
different application scenarios:

Schema-agnostic Queries: In this category the RC is un-
structured and it is distinct from the DB. (Freitas and Curry
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Figure 3: A distributional semantics layer to complement
structured data semantics.

2014) define a DRM (τ − Space) for supporting schema-
agnostic queries over large-schema databases, where users
are not aware of the representation of the data. The DSM
used is Explicit Semantic Analysis (ESA). The approach
was evaluated using natural language queries (QALD 2011
test collection) over DBpedia, a large-schema RDF graph
dataset containing 45,767 properties, 9,434,677 instances
and over 200,000 classes achieving avg. recall=0.81, mean
avg. precision=0.62 and mean reciprocal rank=0.49, with
interactive-level query execution time (most queries are
answered in less than 2s).

Selective Commonsense Reasoning over Incomplete
KBs: (Freitas et al. 2014) uses a DRM to support selective
reasoning over incomplete commonsense KBs. Distri-
butional semantics is used to select the facts which are
semantically relevant under a specific (abductive-style)
reasoning context, allowing the scoping of the reasoning
context and also coping with incomplete knowledge of the
commonsense KBs.

Approximative Logic Programming over Incomplete
KBs: (da Silva and Freitas 2014) used a DRM to support
approximate reasoning in logic programs, defining predicate
substitutions to support the application of schema-agnostic
queries and rules. The approach supports a runtime predi-
cate integration within logic programs.

Knowledge Discovery: In this category, the structured DB
is used as a distributional reference corpora (where RC =
DB). Implicit and explicit semantic associations are used
to derive new meaning and discover new knowledge. The
use of structured data as a distributional corpus is a pattern
used for knowledge discovery applications, where knowl-
edge emerging from similarity patterns in the data can be
used to retrieve similar entities and expose implicit associa-
tions. In this context, the ability to represent the KB entities’
attributes in a vector space and the use of vector similarity
measures as way to retrieve and compare similar entities can
define universal mechanisms for knowledge discovery and
semantic approximation. (Novacek, Handschuh, and Decker
2011) describe an approach for using web data as a bottom-
up phenomena, capturing meaning that is not associated with
explicit semantic descriptions. They apply it to entity con-

solidation in the life sciences domain. (Speer, Havasi, and
Lieberman 2008) proposed AnalogySpace, a DRM over a
commonsense KB using Latent Semantic Indexing target-
ing the creation of the analogical closure of a semantic net-
work using dimensional reduction. AnalogySpace was used
to reduce the sparseness of the KB, generalizing its knowl-
edge, allowing users to explore implicit associations. (Co-
hen, Schvaneveldt, and Rindflesch 2009) introduced PSI,
a predication-based semantic indexing for biomedical data.
PSI was used for similarity-based retrieval and detection of
implicit associations.

Conclusion
Preliminary results for Distributional Relational Models
(DRMs) have been encouraging, showing the effectiveness
of distributional semantics as a semantic model comple-
mentary to structured data semantics. Distributional seman-
tics have been used to support semantic approximations for
schema-agnostic queries, coping with knowledge bases’ in-
completeness for reasoning, and for knowledge discovery
(entity consolidation, link discovery) in structured data.
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