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Abstract—The vision of creating a Linked Data Web brings
together the challenge of allowing queries across highly hetero-
geneous and distributed datasets. In order to query Linked Data
on the Web today, end-users need to be aware of which datasets
potentially contain the data and also which data model describes
these datasets. The process of allowing users to expressively
query relationships in RDF while abstracting them from the
underlying data model represents a fundamental problem for
Web-scale Linked Data consumption. This article introduces
a multidimensional semantic space model which enables data
model independent natural language queries over RDF data.
The center of the approach relies on the use of a distributional
semantic model to address the level of semantic interpretation
demanded to build the data model independent approach. The
final multidimensional semantic space proved to be flexible
and precise under real-world query conditions achieving mean
reciprocal rank = 0.516, avg. precision = 0.482 and avg. recall =
0.491.

I. INTRODUCTION

The vision behind the construction of a Linked Data Web
[1] where it is possible to consume, publish and reuse data
in a new granularity and scale steps into a fundamental
problem in the semantic computing space. In order to query
highly heterogeneous and distributed data at Web-scale, it is
necessary to reformulate the current paradigm on which users
interact with datasets, which is highly dependent on an a priori
understanding of the data model behind the datasets. In order
to query datasets today, users need to articulate their infor-
mation needs in a query containing explicit representations
of the relationships present in the dataset data model (i.e. the
dataset ‘vocabulary’). This query paradigm, deeply attached to
the traditional perspective of structured queries over databases,
does not suit the heterogeneity, distributiveness and the scale
of the Web, where it is impractical for data consumers to
have a previous understanding of the structure and location
of available datasets.

Behind this problem resides a fundamental limitation of
information systems today to provide a semantic interpretation
approach that could bridge the semantic gap between users’ in-
tentions and the ‘vocabulary’ used to describe systems’ objects
and actions. This semantic gap, defined by Furnas et al. [6]
as the vocabulary problem in human-system communication,
is associated to the dependency on human language (and
its intrinsic variability) in the construction of systems and
information artifacts. At Web-scale, the vocabulary problem
for querying existing Web data represents a fundamental

barrier which ultimately limits the utility of Linked Data for
data consumers.

For many years the level of semantic interpretation needed
to address the vocabulary problem was associated with deep
problems in the Artificial Intelligence space, such as knowl-
edge representation and commonsense reasoning. However,
the solution to these problems also depends upon some prior
level of semantic interpretation, creating a self-referential de-
pendency. More recently, promising results related to research
on distributional semantics [9][7] are showing a possible
direction to solve this conundrum by bootstrapping on the
knowledge present on large volumes of Web corpora.

This work proposes a multidimensional semantic space fo-
cused on providing a data model independent query approach
over RDF data. The multidimensional semantic space intro-
duced in this paper builds upon the Treo query mechanism,
introduced in [8]. The center of the approach relies on the use
of distributional semantics and on a hybrid search strategy
(entity-centric search and spreading activation search) to build
the semantic space. The proposed approach generalizes the
previous Treo query mechanism, introducing a new entity
search strategy and a multidimensional index structure based
on distributional semantics. The final semantic space, named
T-Space (tau space), proved to be flexible and precise under
real-world query conditions.

The construction of a semantic space based on the principles
behind Treo (discussed in section 3) defines a search/index
generalization which can be applied into different problem
spaces, where data is or could be represented as labeled
graph data, including graph databases and semantic-level
representations of unstructured text. The description of the
features present in the proposed semantic space, together with
the analysis of emerging related approaches, provides the
opportunity for the reader to understand fundamental trends
in semantic search.

The paper is organized as follows: section 2 introduces the
central concept of distributional semantics and describes one
specific distributional approach, Explicit Semantic Analysis
(ESA), describing how the distributional model is used to
compute a semantic relatedness measure; section 3 covers the
basic principles behind the semantic search approach; section
4 describes the construction of the multidimensional semantic
space; section 5 covers the evaluation of the approach; section
6 describes the related work and finally section 7 provides the
conclusion and future work.
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II. DISTRIBUTIONAL SEMANTICS

A. Motivation

Distributional semantics is built upon the assumption that
the context surrounding a given word in a text provides impor-
tant information about its meaning [9]. Another rephrasing of
the distributional hypothesis is that words that occur in similar
contexts tend to have similar meanings [9]. Distributional
semantics focuses on the construction of a semantic represen-
tation of a word based on the statistical distribution of word
co-occurrence in texts. The availability of high volume and
comprehensive Web corpora brought distributional semantic
models as a promising approach to build and represent mean-
ing. The fact that distributional semantic models are naturally
represented by Vector Space Models, where the meaning of a
word is represented by a weighted concept vector, brings an
additional strength to these approaches.

However, the proper use of the model of meaning provided
by distributional semantics implies understanding its character-
istics and limitations. As Sahlgren [7] notes, the distributional
view on meaning is non-referential (does not refer to extra-
linguistic representations of the object related to the word),
being inherently differential: the differences of meaning are
mediated by differences of distribution. As a consequence,
distributional semantic models allows the quantification of the
amount of difference in meaning between linguistic entities.
This differential analysis can determine the semantic related-
ness between words [7]. Therefore, the applications of the
meaning defined by distributional semantics should be con-
strained to a space where its differential nature is suitable. The
computation of semantic relatedness and similarity measures
between pair of words is one instance in which the strength
of distributional models and methods is empirically supported
[5]. This work focuses on the use of distributional semantics
in the computation of semantic relatedness measures as a key
element to address the level of semantic flexibility necessary
for the provision of data model independent queries over
RDF data. In addition, the differential nature of distributional
semantics also fits into a best-effort query strategy which is
the focus of this work.

B. Semantic Relatedness

The concept of semantic relatedness is described [10] as a
generalization of semantic similarity, where semantic similar-
ity is associated with taxonomic relations between concepts
(e.g. car and airplane share vehicle as a common taxonomic
ancestor) and semantic relatedness covers a broader range of
semantic relations (e.g. car and driver). Since the problem
of matching natural language terms to concepts present in
datasets can easily cross taxonomic boundaries, the generic
concept of semantic relatedness is more suitable to the task of
semantic matching for queries over the RDF data.

Until recently WordNet, an interlinked lexical database, was
the main resource used in the computation of similarity and
relatedness measures. The limitations of the representation
present in WordNet, including the lack of a rich representation

of non-taxonomic relations, fundamental for the computation
of relatedness measures and the limitation in the number of
modeled concepts, motivated the construction of approaches
based on distributional semantics. Additionally, the availability
of large amounts of unstructured text on the Web and, in partic-
ular, the availability of Wikipedia, a comprehensive and high-
quality knowledge base, motivated the creation of relatedness
measures based on Web resources, focusing on addressing the
limitations of WordNet-based approaches, trading structure for
volume of commonsense knowledge. Comparative evaluations
between WordNet-based and distributional approaches for the
computation of relatedness measures have shown the strength
of the distributional model, reaching a high correlation level
with human assessments.

C. Explicit Semantic Analysis

The distributional approach used in this work is defined
by the Explicit Semantic Analysis (ESA) semantic space [5],
which is built using Wikipedia corpora. The ESA space pro-
vides a distributional model which can be used to compute an
explicit semantic interpretation of a term as a set of weighted
concepts. In the case of ESA, the set of returned weighted
concept vectors associated with the term is represented by
titles of Wikipedia articles. A universal ESA space is created
by building a vector space of Wikipedia articles using the tra-
ditional TF/IDF weighting scheme. In this space, each article
is represented as a vector where each component is a weighted
term present in the article. Once the space is built, a keyword
query over the ESA space returns a list of ranked articles
titles, which define a concept vector associated with the query
terms (where each vector component receives a relevance
weight). The approach also allows the interpretation of text
fragments, where the final concept is the centroid of the vectors
representing the set of individual terms. This procedure allows
the approach to partially perform word sense disambiguation
[5]. The ESA semantic relatedness measure between two terms
or text fragments is calculated by comparing the concept
vectors representing the interpretation of the two terms or text
fragments. The use of the ESA distributional approach in the
construction of the proposed semantic space is covered in the
next two sections.

III. SEMANTIC SEARCH APPROACH

The multidimensional semantic space introduced in this
paper generalized and improves the approach used in the Treo
query mechanism [8]. The construction of a semantic space,
based on the principles behind Treo, defines a search/index
generalization which can be applied into different problem
spaces, where data is represented as labeled graph data,
such as RDF/Linked Data, graph databases and semantic-
level representation of unstructured text. This section first
introduces the strategies and principles behind the Treo search
approach, followed by an instantiation of the search model for
an exemplar natural language query.
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A. Strategies behind the Semantic Search

In order to build the data model independent query mecha-
nism, five main strategies are employed:
Best-effort search model: The proposed approach targets a
best-effort solution for queries over Linked datasets. Instead
of expecting the query mechanism to return exact results as
in structured SPARQL queries, it returns an approximate and
ranked answer set which can be later cognitively assessed by
human users. An explicit requirement in the construction of
the best-effort approach is the conciseness of the answer set,
where a more selective cut-off function is defined, instead
of an exhaustive ranked list of results (as in most document
search engines).
Use of semantic relatedness measures to match query terms to
dataset terms: Semantic relatedness and similarity measures
allow the computation of a measure of semantic proximity
between two natural language terms. The measure allows
query terms to be semantically matched to dataset terms by
their level of semantic relatedness. While semantic similarity
measures are constrained to the detection of a reduced class
of semantic relations and are mostly restricted to compute the
similarity between terms which are nouns, semantic related-
ness measures are generalized to any kind of semantic relation,
being more robust to the heterogeneity of the vocabulary
problem at Web-scale.
Use of a distributional semantic relatedness measure built
from Wikipedia: Distributional relatedness measures are built
using comprehensive knowledge bases on the Web, by taking
into account the distributional statistics of a term, i.e. the co-
occurrence of terms in its surrounding context. The use of
comprehensive knowledge Web sources allows the creation of
a high coverage distributional semantic model.
Query dependency (structure and ordering) as a fundamental
carrier of semantic information: The approach builds upon
the concept of using partial ordered dependency structures
(PODS) as the query input. PODS are an intermediate form
between a natural language query and a structured graph
pattern that is built upon the concept of dependency grammars
[11]. Dependency grammar is a syntactic formalism that
has the property of abstracting over the surface word order,
mirroring semantic relationships and creating an intermediate
layer between syntax and semantics [11]. The idea behind
the PODS query representation is to maximize the matching
probability between the natural language query and triple-like
(subject, predicate and object) structure present in the dataset.
Additional details are covered in [8].
Two phase search process combining entity search with
spreading activation search: The search process over the
graph data is split into two phases. The first phase consists
in searching in the datasets for instances or classes (entity
search) which are expressed as terms in the query, defining
pivot entities as entry points in the datasets for the semantic
matching approach. The process is followed by a semantic
matching phase based on a spreading activation search based
on semantic relatedness, which matches the remaining query

Fig. 1. The semantic relatedness based spreading activation search model
for the example query

terms. This separation allows the search space to be pruned in
the first search step by the less ambiguous part of the query
(the key entity in the query), followed by a search process over
the properties of the pivot entities (attributes and relations).

The next section details how the strategies described above
are implemented in a search procedure over RDF data.

B. Semantic Search Steps

The semantic search approach assumes that the user natural
language query is pre-processed into a partial ordered depen-
dency structure (PODS), a format which is closer from the
triple-like (subject, predicate and object) structure of RDF. The
construction of the PODS demands an entity recognition step,
where key entities in the query are determined by the appli-
cation of named entity recognition algorithms, complemented
by search over the lexicon defined by dataset instances and
classes labels, followed by a query parsing step, where the
partial ordered dependency structure is built by taking into
account the dependency structure of the query, the position of
the key entity and a set of transformation rules. An example
of PODS for the example query ’From which university did
the wife of Barack Obama graduate?’ is shown as gray nodes
in figure 1. For additional details on the entity recognition and
the query parsing steps the reader is directed to [8].

The semantic search process takes as input the PODS
representation of the query and consists of two steps:
Entity Search and Pivot Entity Determination: The key entities
represented in the PODS (which were detected in the entity
recognition step) are sent to an entity-centric search engine
which maps the natural language terms for the key entities
into dataset entities (represented by URIs). In the entity-
centric search engine, instances are indexed using TF/IDF
for the terms in the labels, while classes are indexed using
the ESA semantic space for its terms (see section 4). The
URIs define the pivot entities in the datasets, which are the
entry points for the semantic search process. In the exam-
ple query, the term Barack Obama is mapped to the URI
http://dbpedia.org/resource/Barack Obama in the dataset.
Semantic Matching (Spreading Activation using Semantic Re-
latedness): Taking as inputs the pivot entities URIs and the
PODS query representation, the semantic matching process
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starts by fetching all the relations associated with the top
ranked pivot entity. In the context of this work, the semantics
of a relation associated with an entity is defined by taking
into account the aggregation of the predicate, associated range
types and object labels. Starting from the pivot node, the
labels of each relation associated with the pivot node have
their semantic relatedness measured against the next term
in the PODS representation of the query. For the example
entity Barack Obama, the next query term wife is compared
against all predicates/range types/objects associated with each
predicate (e.g. spouse, child, religion, etc). The relations with
the highest relatedness measures define the neighboring nodes
which will be explored in the search process. The search
algorithm then navigates to the nodes with high relatedness
values (in the example, Michelle Obama), where the same
process happens for the next query term (graduate). The
search process continues until the end of the query is reached,
working as a spreading activation search over the RDF graph,
where the activation function (i.e. the threshold to determine
the further node exploration process) is defined by a semantic
relatedness measure.

The spreading activation algorithm returns a set of triple
paths, which are a connected set of triples defined by the
spreading activation search path, starting from the pivot en-
tities over the RDF graph. The triple paths are merged into a
final graph and a visualization is generated for the end user
(figure 4). The next section uses the elements of the described
approach to build a multidimensional semantic space.

IV. MULTIDIMENSIONAL SEMANTIC SPACE

A. Introduction

The main elements of the approach described in the previous
section are used in the construction of a multidimensional
semantic space, named here a T-Space (tau-space). The final
semantic space is targeted towards providing a vocabulary/data
model independent representation of RDF datasets. This work
separates the discussion between the definition of the semantic
space model and the actual implementation of its correspond-
ing index. Despite the implementation of an experimental
index for evaluation purposes, this article concentrates on the
definition and description of the semantic space model.

The multidimensional semantic space is composed by an
entity-centric space where instances define vectors over this
space using the TF/IDF weighting scheme and where classes
are defined over an ESA entity space (the construction of the
ESA space is detailed further). The construction strategy for
the instance entity-centric space benefits a more rigid and
less semantically flexible entity search for instances, where
the expected search behavior is closer to a string similarity
matching scenario. The rationale behind this indexing ap-
proach is that instances in RDF datasets usually represent
named entities (e.g. names for people and places) and are
less constrained by lexico-semantic variability issues in their
dataset representation.

Classes demand a different entity indexing
strategy and since they represent categories (e.g.

yago:UnitedStatesSenators) they are more bound to a
variability level in their representation (e.g. the class
yago:UnitedStatesSenators could have been expressed
as yago:AmericanSenators). In order to cope with this
variability, the entity space for classes should have the
property of semantically matching terms in the user queries
to dataset terms. In the case of the class name United States
Senators it is necessary to provide a semantic match with
equivalent or related terms such as American Senators or
American Politicians. The desired search behavior for a
query in this space is to return a ranked list of semantically
related class terms, where the matching is done by providing
a semantic space structure which allows search based on a
semantic interpretation of query and dataset terms. The key
element in the construction of the semantic interpretation
model is the use of distributional semantics to represent
query and dataset terms. Since the desired behavior for the
semantic interpretation is of a semantic relatedness ranking
approach, the use of distributional semantics is aligned with
the differential meaning assumption (section 2.2). Despite
exemplifying with classes, the same distributional approach
can be used for indexing entity relations which, in the scope
of this work, consists of both terminological-level (properties,
ranges, and associated types) and instance-level object data
present in the set of relations associated with an entity.

B. Building the Semantic Space

The semantic space construction for terms present in the
classes and entity relations starts by first creating a universal
Explicit Semantic Analysis (ESA) space (step 1, figure 2).
A universal ESA space is created by indexing Wikipedia
articles using the traditional TF/IDF vector space approach.
Once the space is built, a keyword query over the ESA space
returns a set of ranked articles titles which define a concept
vector associated with query terms (where each component of
this vector is a Wikipedia article title receiving a relevance
score) (figure 2). The concept vector is called the semantic
interpretation of the term and can be used as its semantic
representation.

In order to build the class and entity relation spaces, the
ESA universal space is used to generate an ESA semantic
vector space which is used to index the dataset terms (classes
and relations). The construction of the ESA semantic vector
space is done by taking the concept vectors (containing the
TF/IDF scores associated with each vector component) of each
dataset term and by creating a vector space where each defined
point in the vector space represents a term being semantically
indexed. This space has the desired property of returning a
list of semantically related terms for a query (ordered from
the most to the less semantically related). This procedure is
described in the step 3 of figure 2 for the construction of
the class entity space. The final entity space is a space with
a double coordinate basis where instances are defined using
a TF/IDF term basis and classes with an ESA concept basis
(steps 2, 3, figure 2).

347



Fig. 2. Construction of the base spaces

C. Semantic Space Structure

Once the entity space is built, it is possible to assign for each
point defined in the entity vector space, a linear vector space
for representing the relations associated with an entity. For the
example entity Barack Obama, a relation is defined by the set
of properties, associated types and objects which are associated
with this entity in its RDF description. The procedure is similar
to the construction of the class space, where the terms present
in the relations (properties, range types and objects) are used
to create a linear vector space associated with the entity. One
property of entity relation spaces is the fact that each entity
has an independent number of dimensions, being scoped to
the number of relations specific for each entity (figure 3).
The property of associating a vector space for each entity
reduces the associated query execution time by reducing the
dimensionality of each relation space.

The final multidimensional T-Space has the topological
structure of two linear vector spaces (ETF/IDF

I and EESA
C )

defined for the individuals and entities respectively. Each en-
tity defined over these spaces has an associated vector bundle

Fig. 3. Construction of the final multidimensional semantic vector space

RESA(E) which is the space of relations. The spaces of
relations, however, have a variable number of dimensions and a
different coordinate basis. Each vector defined in RESA(E) is
associated with a specific object resource and has an associated
tensor mapping into an instance on the E

TF/IDF
I space. This

mapping reflects the graph structure in the RDF.
With the final multidimensional semantic vector space built,

it is necessary to define the search procedure over the space.
The query input is a partial ordered dependency structure
(PODS) with the key query entity defined. The key query
entity is the first term to be searched on the entity space
(it is searched in the instances entity space in case it is a
named entity; otherwise it is searched over the class space).
The return of the query is a set of activated URIs mapping
to entities in the space (e.g. dbpedia:Barack Obama is one
example). The next term of the PODS structure sequence is
taken (‘wife’) and it is used to query each relation subspace
associated with the set of entities. The set of relations with
high relatedness scores is used to activate other entities in
the space (e.g. dbpedia:Michelle Obama). The same process
follows for the activated entities until the end of the query
is reached. The search process returns a set of ranked triple
paths where the rank score of each triple path is defined by
the average of the relatedness measure. Figure 4 contains a set
of merged triple paths for the example query.

In the node selection process, nodes above a relatedness
score threshold determine the entities which will be activated.
The activation function is given by an adaptive discriminative
relatedness threshold which is defined based on the set of
returned relatedness scores. The adaptive threshold has the
objective of selecting the relatedness scores with higher dis-
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Fig. 4. Screenshot of the returned graph for the implemented prototype for
the example query.

crimination. Additional details are available in [8].
The best-effort nature of the approach allows addressing

semantic tractability problems by returning an answer set
which users can quickly assess to determine the final answer.
As an example consider the query ‘Is Albert Einstein a PhD?’.
In the current version of DBPedia there is no explicit statement
containing this information. However, the proposed approach
returns an answer set containing the relation ‘Albert Einstein
doctoralAdvisor Alfred Kleiner’ from which users can derive
the final answer.

The final multidimensional semantic space unifies into a sin-
gle approach important features which are emerging as trends
in the construction of new semantic and vector space models.
The first feature is related to the adoption of a distributional
model of meaning in the process of building the semantic
representation of the information. The second feature is the
use of third-party available Web corpora in the construction of
the distributional model, instead of just relying on the indexed
information to build the distributional semantic base. The third
important feature is the inclusion of a compositional element
in the definition of the data semantics, where the ordering
given by the RDF data structure and by the PODS are used to
define the semantic interpretation of the query, together with
the individual distributional meaning of each word. Finally,
another important feature which is a contribution of this
work is the inclusion of the additional structure given by the
RDF graph data into a multidimensional semantic space. This
additional structure, embedded in the semantic structure of
the space, defines a generic semantic space model with both
distributional and compositional semantic features.

V. EVALUATION & DISCUSSION

An experimental evaluation of the proposed multidimen-
sional semantic space was implemented to evaluate the answer
quality of the approach using 50 natural language queries over
DBPedia [2], defined in the QALD evaluation query set [3].
Since the final approach returns answers as triple-paths and
considering that some queries requires the application of post-
processing operations (e.g. such as aggregation), a definition of
a correct answer for the triple path format had to be generated.
In the experimental set-up a correct answer is given by a triple

Query Set Type MRR Avg. Precision Avg. Recall

Full DBPedia Query Set 0.516 0.482 0.491
Partial DBPedia Query Set 0.680 0.634 0.645

TABLE I
QUALITY OF RESULTS FOR THE SEMANTIC SPACE MEASURED USING 50

NATURAL LANGUAGE QUERIES OVER DBPEDIA. THE FIRST ROW

REPRESENTS THE RESULTS FOR THE FULL QALD QUERY SET WHILE THE

SECOND ROW CONTAINS A REDUCED QUERY SET WHERE SOME CLASSES

OF QUERIES WERE REMOVED.

path containing the URI supporting the final answer. For the
example query ‘How many films did Leonardo DiCaprio star
in?’ the triple paths containing the URIs for the films were
considered as the correct answer instead of the number of
movies.

For evaluation purposes the entity indexes corresponding
to the class and instance entity spaces were generated for
all DBPedia instances and classes. In order to simplify the
experimental set-up, only relation vector spaces associated
with entities which were effectively explored by the algorithm
were generated, without any impact on the results reported
on the evaluation of the approach. The final approach was
able to answer 58% of the queries. The results were collected
with a minimum level of post-processing. The final mean
reciprocal rank, avg. precision and avg. recall are given on
the table 1. The measurements for each query and the output
data generated from the experiment can be found online [4].

In order to understand the collected measures, the errors
for the set of unanswered queries were classified into 5
categories: PODS Error (where the final PODS query form
did not match the dataset structure), Literal Pivot Error
(queries in which the main entity was a literal instead
of an object resource), Overloaded Pivot Error (queries in
which the main entity is a class with more than 3 terms
e.g. yago:HostCitiesOfTheSummerOlympicGames), Related-
ness Error (where the relatedness measure lead to a wrong
answer) and Combined Pre/Post-Processing Error (queries
which demanded more sophisticated query interpretation and
post-processing). Table 2 contains the distribution of error
types. The complementary error analysis for each query can
be found online [4].

The error analysis shows that the distributional approach
was able to cope with the semantic variation of the dataset
(low level of Relatedness Error). The low level of PODS Error
also shows that PODSs provide a primary query representation
suitable for the proposed query approach and for the dataset
representation. Queries referring to literal objects as key query
entities are currently not addressed by the approach (Literal
Pivot Error) since only object resources are mapped into pivot
entities in the entity space. This limitation can be addressed
by generating object resources for data properties in the index
construction. Most of the errors in the evaluation are in the
Combined Pre/Post-Processing Error category, which concen-
trates errors relative to the lack of a pre/post-processing anal-
ysis necessary to cope with a natural language query scenario,
such as answer type detection, more comprehensive linguistic
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Error Type % of Queries
PODS Error 8%

Literal Pivot Error 4%
Overloaded Pivot Error 8%

Relatedness Error 2%
Combined Pre/Post-Processing Error 20%

TABLE II
ERROR TYPES AND DISTRIBUTION

analysis of the query, post-processing filters, etc. Despite the
relevance of evaluating the suitability of the proposed semantic
space as a natural language query scenario, this error category
does not reflect directly the effectiveness of the semantic
representation and query approach as a supporting structure for
the natural language query process. The second line in table 1
provides a comparative basis of quality measures removing the
category containing errors which are considered addressable in
the short term (Literal Pivot Error) and the category which
does not reflect the core of the evaluation for this work
(Pre/Post-Processing Error). Compared to the results using the
approach described in [8] but using the full QALD dataset,
there is an improvement of 5.2% over mrr, 18% over avg.
precision, and 8.2% over avg. recall. The individual analysis
of the entity and spreading activation queries shows that the
introduction of the proposed refinements for the semantic
space construction led to a quantitative improvement which
might be overshadowed by errors present in the Combined
Pre/Post-Processing Error category.

The evaluation focused on the determination of the quality
of the approach. No rigorous index construction performance
evaluation was considered since, to be comparatively meaning-
ful with existing approaches, a minimum level of optimization
in the index construction process was necessary. One clear
strength of the approach from the index construction perspec-
tive is the fact that the intrinsic nature of the index makes
its construction process straightforward to parallelize, where
the creation of index entries associated with relation vector
bundles can be easily distributed.

VI. RELATED WORK

The related work section concentrates on the analysis of
works proposing new vector space based models and structure
indexes. The motivation for this section is both to provide to
the reader a perspective over existing trends in the semantic
search space [13][14] and also to provide a comparative basis
with existing work for RDF structure indexes [16][17].

In [13] Clark et al. provide a formal description of a
compositional model of meaning, where distributional mod-
els are unified with a compositional theory of grammatical
types (using Labek’s pregroup semantics [12]). The approach
attempts to unify the quantitative strength of distributional
approaches with the compositionality provided by symbolic
approaches. The final mathematical structure uses vectors to
represent word meanings, grammatical roles represent types in
a pregroup and the tensor product to allow the composition of

meaning and types. The work concentrates on the mathemati-
cal formalization of the abstract model and does not provide an
instantiation in a more specific distributional semantic space.
The model proposed by Clark et al. share with the proposed
T-Space the multidimensional aspect in the representation
of the distributional meaning and the compositional model
used in the construction of the semantic space. However, the
compositional approach used in the T-Space is defined over
the order given by the RDF data and by the PODS structure.
In addition, the work presented on this paper concentrates on
the instantiation and evaluation of the proposed model, while
[13] concentrates on the formalization of the approach.

In [14] van Rijsbergen proposes the use of the formalism
behind quantum physics to provide a principled theoretical
framework for the investigation of new information retrieval
models. The idea behind these approaches is to use the support
provided by the probabilistic, logical and geometrical aspects
of Hilbert spaces to create a user-oriented search model.
Different quantum-inspired IR approaches have emerged from
this motivation. In [15], Piwowarski et al. proposes a quantum-
based IR framework which relies on a multidimensional
representation of documents, where each document defines a
subspace built by segmenting the document into fragments and
by associating each fragment to a weighted set of information
need states based on document terms. The query vector is
built by getting the context window of the term for each
incidence in the document collection, building a distributional
representation for that specific collection. Compared to the
approach of Piwowarski et al., the T-Space model also uses
a multidimensional representation of information. However,
the structure of the final semantic space and the distributional
approach used are fundamentally different. In addition, the
approach introduced by Piwowarski et al. does not define a
compositionality model.

The proposed approach converges three trends, where the
representational power provided by multidimensional vector
spaces implementing semantic compositionality meets the flex-
ibility of distributional semantics. In addition, the application
of the T-Space model over RDF data provides a bidirectional
bootstrap benefit, where the additional structure typing pro-
vided by RDF data can improve the semantics of the space
for different applications (e.g. unstructured text indexing).

In the space of structure indexes for RDF, Semplore [16] is
a search engine for Linked Data which uses a hybrid query
formalism, combining keyword search with structured queries.
The Semplore approach consists in indexing entities of the
Linked Data Web (individuals, classes, properties and objects)
using the associated tokens and sub/superclasses as indexing
terms. In addition to entity indexing, Semplore focuses on
indexing relations using a position-based index approach to
index relations and join triples. In the approach, relation names
are indexed as terms, subjects are stored as documents and the
objects of a relation are stored in the position lists. Based on
the proposed index, Semplore reuses the IR engine’s merge-
sort based Boolean query evaluation method and extends it
to answer unary tree-shaped queries. Also in the structure
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index space, Dong & Halevy [17] proposes an approach for
indexing triples allowing queries that combine keywords and
structure. The index structure is designed to cope with two
query types: predicate queries and neighborhood keyword
queries. The first type of queries covers conjunctions of
predicates and associated keywords. Dong & Halevy propose
four structured index types which are based on the introduction
of additional structure information as concatenated terms in
the inverted lists. Taxonomy terms are introduced in the
index using the same strategy. Schema-level synonyms are
handled using synonyms tables. Both approaches [16][17]
provide limited semantic matching strategies and are built
upon minor variations over existing inverted index structures.
By avoiding major changes over existing search paradigms,
these approaches can inherit the implementation of optimized
structures used in the construction of traditional indexes.

Compared to the previous Treo query approach [8], this
work generalizes the basic elements present in [8], to build
a multidimensional semantic space. The multidimensional
semantic space generalization allows the conceptual align-
ment between the proposed approach and existing works and
trends in semantic spaces and multidimensional vector spaces.
The generalization also includes a change from the previous
semantic relatedness approach, which was based on a link-
based relatedness measure (Wikipedia Link Measure [18]), to
a distributional approach based on Explicit Semantic Analysis
(ESA). An additional refinement includes the entity indexing
strategy which moved from a uniform entity indexing to
an entity index which differentiates instances (TF/IDF) and
classes (ESA). Differently from the previous approach which
had to compute the semantic relatedness for each relation
during query time, this work proposes the introduction of a
relation subspace which is materialized into a relation index
associated with each entity, bringing a principled solution to
reduce the original associated query execution time.

VII. CONCLUSION & FUTURE WORK

This work proposes a semantic space focused on addressing
a fundamental challenge for RDF data queries, where the data
model heterogeneity of the Web demands a query approach
focused on abstracting users from an a priori understanding
of the data model behind datasets. Key elements in the con-
struction of the approach are the application of distributional
semantics, which in this work is defined by Explicit Semantic
Analysis (ESA), a compositional semantic model based on
the structure of RDF and on the use of dependency analysis
and a hybrid search model where entity-centric search is
complemented by spreading activation search. The final mul-
tidimensional semantic space allows data model independent
and expressive natural language queries over the RDF data,
achieving mean reciprocal rank = 0.516, avg. precision =
0.482 and avg. recall = 0.491, evaluated using 50 natural
language queries over DBPedia. By introducing an additional
semantically-rich structure provided by RDF data into the
construction of a semantic space, the proposed model also
points into a promising direction for investigation, where RDF

data embedded in a flexible semantic space can be used to
bootstrap the creation of more complex semantic spaces.

Future work will include the implementation of optimiza-
tions in the index construction process and evaluation of
the index construction time, the elimination of limitations
which are considered addressable in the short term and the
implementation of a question answering (QA) system over
RDF data using the proposed index. The implementation of
QA features will allow the comparative evaluation against
existing QA systems [3].
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