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The vision of creating a Linked Data Web brings together the challenge of allowing queries

across highly heterogeneous and distributed datasets. In order to query Linked Data on the

Web today, end users need to be aware of which datasets potentially contain the data and also

which data model describes these datasets. The process of allowing users to expressively query

relationships in RDF while abstracting them from the underlying data model represents a

fundamental problem for Web-scale Linked Data consumption. This article introduces a dis-

tributional structured semantic space which enables data model independent natural language

queries over RDF data. The center of the approach relies on the use of a distributional semantic

model to address the level of semantic interpretation demanded to build the data model

independent approach. The article analyzes the geometric aspects of the proposed space,

providing its description as a distributional structured vector space, which is built upon the

Generalized Vector Space Model (GVSM). The final semantic space proved to be flexible and

precise under real-world query conditions achieving mean reciprocal rank ¼ 0.516, avg. pre-

cision ¼ 0.482 and avg. recall ¼ 0.491.

Keywords: Linked data queries; semantic search; distributional semantics; semantic web;

linked data.

1. Introduction

The vision behind the construction of a Linked Data Web [1] where it is possible to

consume, publish, and reuse data at Web scale steps into a fundamental problem in

the databases space. In order to query highly heterogeneous and distributed data at

Web-scale, it is necessary to reformulate the current paradigm onwhich users interact

with datasets. Current query mechanisms are highly dependent on an a priori

understanding of the data model behind the datasets. Users querying Linked Datasets

today need to articulate their information needs in a query containing explicit rep-

resentations of the relationships in the data model (i.e. the dataset ‘vocabulary’). This

query paradigm is deeply attached to the traditional perspective of structured queries
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over databases. This query model does not suit the heterogeneity, distributiveness,

and scale of the Web, where it is impractical for data consumers to have a previous

understanding of the structure and location of available datasets.

Behind this problem resides a fundamental limitation of current information

systems to provide a semantic interpretation approach that could bridge the

semantic gap between users’ information needs and the ‘vocabulary’ used to

describe systems’ objects and actions. This semantic gap, defined by Furnas et al. [6]

as the vocabulary problem in human-system communication, is associated to the

dependency on human language (and its intrinsic variability) in the construction of

systems and information artifacts. At Web-scale, the vocabulary problem for

querying existing Linked Data represents a fundamental barrier, which ultimately

limits the utility of Linked Data for data consumers.

For many years the level of semantic interpretation needed to address the voca-

bulary problem was associated with deep problems in the Artificial Intelligence space,

such as knowledge representation and commonsense reasoning. However, the solution

to these problems also depends upon some prior level of semantic interpretation,

creating a self-referential dependency. More recently, promising results related to

research on distributional semantics [7, 9] are showing a possible direction to solve

this conundrum by bootstrapping on the knowledge present in large volumes of

Web corpora.

This work proposes a distributional structured semantic space focused on pro-

viding a datamodel independent query approach over RDF data. The semantic space

introduced in this paper builds upon the Treo query mechanism, introduced in [8].

The center of the approach relies on the use of distributional semantics together with

a hybrid search strategy (entity-centric search and spreading activation search) to

build the semantic space. The proposed approach refines the previous Treo query

mechanism, introducing a new entity search strategy and structured vector space

model based on distributional semantics. The construction of an index from the

elements present on the original Treo querymechanism also targets the improvement

of the scalability of the approach. The final semantic space, named T-Space (tau

space), proved to be flexible and precise under real-world query conditions. This

article extends the original discussion of the T-Space presented in [28], providing a

more comprehensive description and analysis of the T-Space.

The construction of a semantic space based on the principles behind Treo (dis-

cussed in Sec. 3) defines a search/index generalization which can be applied to

different problem spaces, where data is represented as labelled data graphs,

including graph databases and semantic-level representations of unstructured text.

The paper is organized as follows: Sec. 2 introduces the central concepts of

distributional semantics and semantic relatedness measures describing one specific

distributional approach, Explicit Semantic Analysis (ESA); Sec. 3 covers the

basic principles behind the query processing approach; Sec. 4 describes the con-

struction of the distributional structured semantic space; Sec. 5 formalizes and

analyzes the geometric aspects of the proposed approach; Sec. 6 covers the
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evaluation of the approach; Section 7 describes related work and Sec. 8 provides

conclusion and future work.

2. Distributional Semantics

2.1. Motivation

Distributional semantics is built upon the assumption that the context surrounding

a given word in a text provides important information about its meaning [9].

A rephrasing of the distributional hypothesis states that words that occur in similar

contexts tend to have similar meaning [9]. Distributional semantics focuses on the

construction of a semantic representation of a word based on the statistical distri-

bution of word co-occurrence in texts. The availability of high volume and com-

prehensive Web corpora brought distributional semantic models as a promising

approach to build and represent meaning. Distributional semantic models are

naturally represented by Vector Space Models, where the meaning of a word is

represented by a weighted concept vector.

However, the proper use of the simplified model of meaning provided by dis-

tributional semantics implies understanding its characteristics and limitations. As

Sahlgren [7] notes, the distributional view on meaning is non-referential (does not

refer to extra-linguistic representations of the object related to the word), being

inherently differential: the differences of meaning are mediated by differences of dis-

tribution. As a consequence, distributional semantic models allow the quantification

of the amount of difference in meaning between linguistic entities. This differential

analysis can be used to determine the semantic relatedness between words [7].

Therefore, the applications of the meaning defined by distributional semantics should

focus on a problem space where its differential nature is suitable. The computation of

semantic relatedness and similaritymeasures between pairs of words is one instance in

which the strength of distributional models and methods is empirically supported [5].

Thiswork focuses on theuse of distributional semantics in the computation of semantic

relatedness measures as a key element to address the level of semantic flexibility

necessary for the provision of data model independent queries over RDF data. In

addition, the differential nature of distributional semantics also fits into a semantic

best-effort/approximate ranked results query strategy which is the focus of this work.

2.2. Semantic relatedness

The concept of semantic relatedness is described [10] as a generalization of semantic

similarity, where semantic similarity is associated with taxonomic relations between

concepts (e.g. car and airplane share vehicle as a common taxonomic ancestor) and

semantic relatedness covers a broader range of semantic relations (e.g. car and driver).

Since the problem of matching natural language terms to concepts present in datasets

can easily cross taxonomic boundaries, the generic concept of semantic relatedness is

more suitable to the task of semantic matching for queries over the RDF data.
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Until recently WordNet, an interlinked lexical database, was the main resource

used in the computation of similarity and relatedness measures. The limitations of

the representation present in WordNet include the lack of a rich representation

of non-taxonomic relations (fundamental for the computation of relatedness

measures) and a limitated number of modeled concepts. These limitations motiv-

ated the construction of approaches based on distributional semantics. The avail-

ability of large amounts of unstructured text on the Web and, in particular, the

availability of Wikipedia, a comprehensive and high-quality knowledge base,

motivated the creation of relatedness measures based on Web resources. These

measures focus on addressing the limitations of WordNet-based approaches by

trading structure for volume of commonsense knowledge [5]. Comparative evalu-

ations between WordNet-based and distributional approaches for the computation

of relatedness measures have shown the strength of the distributional model,

reaching a high correlation level with human assessments [5].

2.3. Explicit semantic analysis

The distributional approach used in this work is given by the Explicit Semantic

Analysis (ESA) semantic space [5], which is built using Wikipedia as a corpus. The

ESA space provides a distributional model which can be used to compute an explicit

semantic interpretation of a term as a set of weighted concepts. In the case of ESA,

the set of returned weighted concept vectors associated with the term is represented

by the titles of Wikipedia articles. A universal ESA space is created by building

a vector space containing Wikipedia articles’ document representations using the

traditional TF/IDF weighting scheme. In this space, each article is represented as a

vector where each component is a weighted term present in the article. Once the

space is built, a keyword query over the ESA space returns a list of ranked articles

titles, which define a concept vector associated with the query terms (where each

vector component receives a relevance weight). The approach also allows the

interpretation of text fragments, where the final concept is the centroid of the

vectors representing the set of individual terms. This procedure allows the approach

to partially perform word sense disambiguation [5]. The ESA semantic relatedness

measure between two terms or text fragments is calculated by comparing the con-

cept vectors representing the interpretation of the two terms or text fragments. The

use of the ESA distributional approach in the construction of the proposed semantic

space is covered in the next three sections.

3. Query Approach

3.1. Motivation

The distributional structured semantic space introduced in this paper generalizes

and improves the approach used in the Treo query mechanism [8]. The construction
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of a semantic space, based on the principles behind Treo, defines a structured vector

space generalization which can be applied into different problem spaces, where data

is represented as a labelled graph, such as RDF/Linked Data, graph databases and

semantic-level representation of unstructured text. This section first introduces the

strategies and principles behind the Treo query approach, followed by an instan-

tiation of the search model for an exemplar natural language query.

The characteristics of the query approach merges elements from both the

Information Retrieval (IR) and from the Database perspectives. In the proposed

query model, users are allowed to input queries referring to structures and relations

present in the data (database perspective) while a ranked list of results is expected

(IR perspective). Additionally, since the proposed approach is formulated using

elements from IR (such as a Vector Space Model), many operations involved in the

query processing are mapped to search operations. These two perspectives are

reflected in the discourse of this work.

3.2. Principles behind the query approach

In order to build the data model independent query mechanism, five main guiding

principles are employed:

(1) Approximate query model: The proposed approach targets an approximate

solution for queries over Linked datasets. Instead of expecting the query

mechanism to return exact results as in structured SPARQL queries, it returns

a semantically approximate and ranked answer set which can be later cogni-

tively assessed by human users. An explicit requirement in the construction of

an approximate approach for queries over structured data is the conciseness of

the answer set, where a more selective cut-off function is defined, instead of an

exhaustive ranked list of results (as in most document search engines).

(2) Use of semantic relatedness measures to match query terms to dataset terms:

Semantic relatedness and similarity measures allow the computation of a

measure of semantic proximity between two natural language terms. The

measure allows query terms to be semantically matched to dataset terms by

their level of semantic relatedness. While semantic similarity measures are

constrained to the detection of a reduced class of semantic relations, and are

mostly restricted to compute the similarity between terms which are nouns,

semantic relatedness measures are generalized to any kind of semantic relation.

This makes them more robust to the heterogeneity of the vocabulary problem at

Web-scale.

(3) Use of a distributional semantic relatedness measure built from Wikipedia: Dis-

tributional relatedness measures are built using comprehensive knowledge bases

on the Web, by taking into account the distributional statistics of a term, i.e. the

co-occurrence of terms in its surrounding context. The use of comprehensive
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knowledge sources allows the creation of a high coverage distributional semantic

model.

(4) Compositionality given by query dependency structure and data (s, p, o) struc-

ture: The approach builds upon the concept of using Partial Ordered Depen-

dency Structures (PODS) as the query input. PODS are an intermediate form

between a natural language query and a structured graph pattern that is built

upon the concept of dependency grammars [11]. A dependency grammar is a

syntactic formalism that has the property of abstracting over the surface word

order, mirroring semantic relationships and creating an intermediate layer

between syntax and semantics [11]. The idea behind the PODS query rep-

resentation is to maximize the matching probability between the natural

language query and triple-like (subject, predicate and object) structure present

in the dataset. Additional details are covered in [8].

(5) Two phase search process combining entity search with spreading activation

search: The search process over the graph data is split into two phases. The first

phase consists of searching in the datasets for instances or classes (entity search)

which are expressed as terms in the query, defining pivot entities as entry points

in the datasets for the semantic matching approach. The process is followed by a

semantic matching phase using a spreading activation search based on semantic

relatedness, which matches the remaining query terms. This separation allows

the search space to be pruned in the first search step by the part of the query

which has higher specificity (the key entity in the query), followed by a search

process over the properties of the pivot entities (attributes and relations).

The next section details how the strategies described above are implemented in a

query approach over RDF data.

3.3. Query processing steps

The query processing approach starts with the pre-processing of the user’s natural

language query into a partial ordered dependency structure (PODS), a format

which is closer to the triple-like (subject, predicate, and object) structure of RDF.

The construction of the PODS demands an entity recognition step, where key

entities in the query are determined by the application of named entity recognition

algorithms, complemented by a search over the lexicon defined by dataset instances

and classes labels. This is followed by a query parsing step, where the partial ordered

dependency structure is built by taking into account the dependency structure of

the query, the position of the key entity and a set of transformation rules. An

example of PODS for the example query ‘From which university did the wife of

Barack Obama graduate?’ is shown as gray nodes in Fig. 1. For additional details on

the query preprocessing, including entity recognition and the query parsing steps,

the reader is directed to [8].
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The semantic search process takes as input the PODS representation of the query

and consists of two steps:

(1) Entity Search and Pivot Entity Determination: The key entities in the PODS

(which were detected in the entity recognition step) are sent to an entity-centric

search engine, which maps the natural language terms for the key entities into

dataset entities (represented by URIs). In the entity-centric search engine,

instances are indexed using TF/IDF over labels extracted from URIs, while

classes are indexed using the ESA semantic space for its associated terms (see

Sec. 4). The URIs define the pivot entities in the datasets, which are the entry

points for the semantic search process. In the example query, the term Barack

Obama is mapped to the URI http://dbpedia.org/resource/Barack Obama in

the dataset.

(2) Semantic Matching (Spreading Activation using Semantic Relatedness): Taking

as inputs the pivot entities URIs and the PODS query representation, the

semantic matching process starts by fetching all the relations associated with

the top ranked pivot entities. In the context of this work, the semantics of a

relation associated with an entity is defined by taking into account the aggre-

gation of the predicate, associated range types and object labels. Starting from

the pivot node, the labels of each relation associated with the pivot node have

their semantic relatedness measured against the next term in the PODS rep-

resentation of the query. For the example entity Barack Obama, the next query

term wife is compared against all predicates/range types/objects associated

with each predicate (e.g. spouse, child, religion, etc.). The relations with the

highest relatedness measures define the neighboring nodes which are explored in

the search process. The search algorithm then navigates to the nodes with high

Fig. 1. The semantic relatedness based spreading activation search model for the example query.
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relatedness values (in the example, Michelle Obama), where the same process

happens for the next query term (graduate). The search process continues until

the end of the query is reached, working as a spreading activation search over

the RDF graph, where the activation function (i.e. the threshold which deter-

mines the further node exploration process) is defined by a semantic relatedness

measure.

The spreading activation algorithm returns a set of triple paths, which are a con-

nected set of triples defined by the spreading activation search path, starting from

the pivot entities over the RDF graph. The triple paths are merged into a final graph

and a visualization is generated for the end user (see Fig. 5). The next section uses

the elements of the described approach to build a distributional structured semantic

space.

4. Distributional Structured Semantic Space

4.1. Introduction

The main elements of the approach described in the previous section are used in the

construction of a distributional structured semantic space, named here a T-Space

(tau-space). The final semantic space is targeted towards providing a vocabulary/

data model independent semantic representation of RDF datasets. This work sep-

arates the discussion between the definition of the semantic space model and the

actual implementation of its corresponding index. Despite the implementation of

an experimental index for evaluation purposes, this article concentrates on the

definition and description of the semantic space model.

The distributional semantic space is composed by an entity-centric space where

instances define vectors over this space using the TF/IDF weighting scheme and

where classes are defined over an ESA entity space (the construction of the ESA

space is detailed later). The construction strategy for the instance entity space

benefits a more rigid and less semantically flexible entity search for instances, where

the expected search behavior is closer to a string similarity matching scenario. The

rationale behind this indexing approach is that instances in RDF datasets usually

represent named entities (e.g. names for people and places) and are less constrained

by lexico-semantic variability issues in their dataset representation.

Classes demand a different entity indexing strategy and since they represent

categories (e.g. yago:UnitedStatesSenators) they are more bound to a variability

level in their representation (e.g. the class yago:UnitedStatesSenators could have

been expressed as yago:AmericanSenators). In order to cope with this variability,

the entity space for classes should have the property of semantically matching terms

in the user queries to dataset terms. In the case of the class name United States

Senators it is necessary to provide a semantic match with equivalent or related

terms such as American Senators or American Politicians. The desired search

behavior for a query in this space is to return a ranked list of semantically related
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class terms, where the matching is done by providing a semantic space structure

which allows search based on a semantic interpretation of query and dataset terms.

The key element in the construction of the semantic interpretation model is the use

of distributional semantics to represent query and dataset terms. Since the desired

behavior for the semantic interpretation is of a semantic relatedness ranking

approach, the use of distributional semantics is aligned with the differential

meaning assumption (Sec. 2.2). The same distributional approach can be used for

indexing entity relations which, in the scope of this work, consists of both termi-

nology-level (properties, ranges, and associated types) and instance-level object

data present in the set of relations associated with an entity.

4.2. Building the T-Space

The steps in the construction of the distributional structured semantic space

(T-Space) are:

(1) Construction of the Universal Explicit Semantic Analysis (ESA) Space: The

distributional structured semantic space construction starts by creating a uni-

versal Explicit Semantic Analysis (ESA) space (step 1, Fig. 3). A universal ESA

space is created by indexing Wikipedia articles using the TF/IDF vector space

approach. Once the space is built, a keyword query over the ESA space returns a

set of ranked articles titles which defines a concept vector associated with query

terms (where each component of this vector is a Wikipedia article title receiving

a relevance score). Figure 2 depicts two ESA interpretation vectors. The con-

cept vector is called the semantic interpretation of the term and can be used as

its semantic representation.

(2) Construction of the Entity Space (Instances and Classes): As previously men-

tioned, instances in the graph are indexed by calculating the TF/IDF score over

Fig. 2. Examples of ESA interpretation vectors for United States Senators from Illinois and spouse.
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the labels of the instances (step 2, Fig. 3). The ESA universal space is used

to generate the class space. The construction of the ESA semantic vector space

is done by taking the interpretation vectors for each graph element label and

by creating a vector space where each dimension of the coordinate basis of

the space is defined by a concept component present in the interpretation

vectors. The dimensions of the class space correspond to the set of distinct

concepts returned by the interpretation vectors associated with the terms which

describe the classes. Each class can then be mapped to a vector in this vector

space (the associated score for each component is given by the TF/IDF scores

associated with each interpretation component). This space has the desired

property of returning a list of semantically related terms for a query (ordered

from the most to the less semantically related). This procedure is described in

the step 3 of Fig. 3 for the construction of the class entity space. The final entity

space can be visualized as space with a double coordinate basis where instances

are defined using a TF/IDF term basis and classes with an ESA concept basis

(Fig. 3).

(3) Construction of the Relation Spaces: Once the entity space is built, it is possible

to assign for each point defined in the entity vector space, a linear vector space

which represents the relations associated with each entity. For the example

instance Barack Obama, a relation is defined by the set of properties, types and

objects which are associated with this entity in its RDF representation. The

procedure for building the relation spaces is similar to the construction of the

class space, where the terms present in the relations (properties, range, types

and objects) are used to create a linear vector space associated with the entity.

One property of entity relation spaces is the fact that each space has an inde-

pendent number of dimensions, being scoped to the number of relations specific

for each entity (step 4, Fig. 3).

4.3. T-Space structure

The use of an orthogonal coordinate basis to depict the instance, class and relation

spaces in Fig. 3 has the purpose of simplifying the understanding of the figure. The

coordinate basis for these spaces follows a Generalized Vector Space Model

(GVSM), where there is no orthogonality assumption.

At this point the T-Space has the topological structure of two linear vector

spaces (E
TF=IDF
I and E ESA

C ) defined for the instances and classes respectively. Each

point over these spaces defined by an entity vector has an associated vector bundle

RESAðEÞ which is the space of relations. The relations’ spaces, however, have a

variable number of dimensions and a different coordinate basis. Despite the fact that

this topological model of the T-Space can be easily mapped to an inverted index

structure, it can introduce unnecessary complexity to its mathematical model.

Section 5 provides a simplification of this model, translating and formalizing the

T-Space to a Generalized Vector Space Model (GVSM).
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4.4. Querying the T-Space

With the final T-Space built, it is necessary to define the search procedure over the

space. The query input is a partial ordered dependency structure (PODS) with the

key query entity defined (Fig. 4). The key query entity is the first term to be

searched on the entity space (it is searched in the instances entity space in case it is a

named entity; otherwise it is searched over the class space). The entity search

Fig. 3. Construction of the base spaces and of the final distributional structured semantic space

(T-Space).
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operation is defined by the cosine similarity between the query vector and the

entities vectors. For queries over the ESA entity space, the ESA interpretation

vector for the query is defined using the Universal ESA space. The return of the

query is a set of URIs mapping to entities in the space (e.g. dbpedia:Barack Obama

in the example). After, the next term of the PODS structure sequence is taken

(‘wife’) and it is used to query each relation space associated with the set of entities

(cosine similarity of the interpretation vector of the query term and the relation

vectors in the space). The set of relations with high relatedness scores is used to

Fig. 4. Querying the T-Space using the example query.
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activate other entities in the space (e.g. dbpedia:Michelle Obama). The same pro-

cess follows for the activated entities until the end of the query is reached. The

search process returns a set of ranked triple paths where the rank score of each triple

path is defined by the average of the relatedness measures. Figure 5 contains a set of

merged triple paths for the example query.

In the node selection process, nodes above a relatedness score threshold deter-

mine the entities which will be activated. The activation function is given by an

adaptive discriminative relatedness threshold which is defined based on the set of

returned relatedness scores. The adaptive threshold has the objective of selecting the

relatedness scores with higher discrimination. Additional details on the threshold

function are available in [8]. A more recent investigation on the use of ESA semantic

relatedness as a ranking function and a better semantic threshold function for ESA

can be found in [22].

4.5. Analysis

The approximative nature of the approach allows the improvement of semantic

tractability [17] by returning an answer set which users can quickly assess to

determine the final answer to their information needs. The concept of semantic

tractability in natural language queries over databases can be described as the

mapping between the terms and syntactic structure of a query to the lexicon and

data model structure of a database. Typically, semantically tractable queries are

Fig. 5. Screenshot of the returned graph for the implemented prototype for the example query.
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queries which can be directly mapped to database structures, and the improvement

of semantic tractability of queries have been associated with difficult problems such

as commonsense reasoning (the concept of semantic tractability is a rephrasing of

the vocabulary problem for natural language interfaces to databases). As an ex-

ample consider the query ‘Is Albert Einstein a PhD?’. In the current version of

DBPedia there is no explicit statement containing this information. However, the

proposed approach returns an answer set containing the relation ‘Albert Einstein

doctoral-Advisor Alfred Kleiner’ from which users can quickly derive the final

answer. Differently from Question Answering systems which aims towards a precise

answer to the user information needs (in this case ‘Yes/No’), the proposed approach

uses the semantic knowledge embedded on the distributional model to expose the

supporting information, delegating part of the answer determination process to the

end user. The approach, however, improves the semantic tractability of the queries

by finding answers which support the query.

The final distributional structured semantic space unifies into a single approach

important features which are emerging as trends in the construction of new semantic

and vector space models. The first feature is related to the adoption of a distribu-

tional model of meaning in the process of building the semantic representation of the

information. The second feature is the use of third-party available Web corpora in

the construction of the distributional model, instead of just relying on the indexed

information to build the distributional semantic base. The third important feature is

the inclusion of a compositional element in the definition of the data semantics,

where the structure given by the RDF graph and by the PODS are used to define the

semantic interpretation of the query, together with the individual distributional

meaning of each word.

5. Distributional Semantics and the Geometric

Structure of the T-Space

5.1. Motivation

This section provides a formal description of the structure defined by the T-Space.

A formal model of the T-Space is created based on the Generalized Vector Space

Model (GVSM) for Explicit Semantic Analysis (ESA) [18� 20]. The analysis focuses

on the description of a principled connection between the semantics of the T-Space

and its geometric properties. The geometric properties which arise in the model can

provide a principled way to model the semantics of RDF or, more generally, labelled

data graphs, adding to the vector space model structures and operations which

support an approximate semantic matching.

While the previous section covered the basic principles of the T-Space which can

be used to build an inverted index, this section focuses on the description of the

T-Space as a vector space model. The description of the T-Space in the previous

section generates a complex topological model, due to the differences between the
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nature of the coordinate systems and the dimensionality of the instance, entity and

relation spaces. The T-Space, however, can be unified into a single coordinate

system. The objective of this unified description is twofold: (i) the reduction of the

T-Space to a mathematical model which can support the understanding of its

properties and (ii) casting the T-Space into existing information retrieval models.

The strategy for unifying the T-Space into a single coordinate system consists in

using the connection between ESA and TF/IDF, where the distributional reference

frame (defined by the ESA concept vectors) can be defined from the TF/IDF term

space. This allows the unification of the instance, class and relation spaces into a

base TF/IDF coordinate system. In the unified space, relations between entities are

defined by the introduction of a vector field over each point defined by an entity.

The vector field, defined over the ESA distributional reference frame, preserves the

RDF graph structure, while the distributional reference frame allows a semantic

matching over this structure.

This section is organized as follows: Sec. 5.2 introduces a formalization for the

ESA model based on a Generalized Vector Space Model which serves as the basis for

the construction of the space; Sec. 5.3 builds the geometric model behind the

T-Space; Sec. 5.4 defines operations over the T-Space and Sec. 5.5 discusses the

implications of the geometric model of meaning supported by the T-Space.

5.2. Generalized vector space model for ESA

This work uses the formalization of ESA introduced in [20] and [19]. Anderka and

Stein [20] describe the ESA model using the Generalized Vector Space Model

(GVSM). In the GVSM model, Wong et al. [18] propose an interpretation of the

term vectors present on the index as linearly independent but not pairwise

orthogonal. Anderka and Stein also analyzes the properties of ESA which affects its

retrieval performance and introduce a formalization of the approach. Gottron et al.

[19] proposes a probabilistic model for Explicit Semantic Analysis (ESA), using this

model to provide deeper insights into ESA. The following set of definitions adapted

from [18�20] and [23] are used to build the structure of the T-Space.

Definition 1. Let K ¼ k1; . . . ; kT be the set of all terms available in a document

collection (index terms). Let wi;j > 0 be a weight associated with each term ki
contained in a document dj (pair ½ki; dj �), where j ¼ 1; . . . ;N . For a ki term not

contained in a document dj, wi;j ¼ 0. A document d and a query q are represented as

weighted vectors dj ¼ w1;j ;w2;j ; . . . ;wT ;N and q ¼ q1; q2; . . . ; qM in a t-dimensional

space.

The set of ki terms defines a unitary coordinate basis for the vector space.

Representing the document in relation to the set of basis term vectors:

dj ¼
XT

i¼1

wi;jki; ðj ¼ 1; . . . ;NÞ ð1Þ
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and the query:

q ¼
XT

i¼1

qiki: ð2Þ

Definition 2. Let freqi;j be the frequency of term ki in the document dj. Let

countðdjÞ be the number of terms inside the document dj. The normalized term

frequency tfi;j is given by:

tfi;j ¼
freqi;j

countðdjÞ
: ð3Þ

Definition 3. Let nki be the number of documents containing the term ki and N the

total number of documents. The inverse document frequency for the term ki is given by:

idfi ¼ log
N

nki
: ð4Þ

Definition 4. The final TF/IDF weight value based on the values of tf and idf is

defined as:

wi;j ¼ tfi;j � log
N

nki
ð5Þ

where the weight given by TF/IDF provides a measure on how a term is dis-

criminative in relation to the relative distribution of other terms in the document

collection.

The process of searching a document for a query q consists in computing the

similarity between q and dj which is given by the inner product between the two

vectors:

simVSMðq;djÞ ¼ hq;dji ¼
XT

i¼1

XT

l¼1

wi;jqlki � kl; ðj ¼ 1; . . . ;NÞ: ð6Þ

In the traditional VSM the term vectors have unit length and are orthogonal.

Embedded in these conditions is the assumption that there is no interdependency

between terms (non-correlated terms) in the corpus defined by the document col-

lection [18]. The generalized vector space model (GVSM) takes into account term

interdependency, generalizing the identity matrix which represents ki � kl into a

matrix G with elements gi;l . The similarity between two vectors q and d in the

GVSM using the matrix notation (W is defined as the matrix wi;j) is:

simGVSMðq;dÞ ¼ qGW T : ð7Þ

Definition 5. Let D 0 be a collection representing the set of documents where each

document d 0
i is a Wikipedia article with a vector representation defined by a

TF/IDF weighting scheme in a GVSM space. Let d be an arbitrary document.
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The representation of the document d in the ESA model is a concept vector c which

is given by:

c ¼
XN

i¼1

hd 0
i;di ð8Þ

where hd 0
i;di defines the computation of similarity between d 0

i and d.

In the ESA model the similarity between two documents da and db is given by the

inner product between their associated concept vectors ca and cb:

simESAðda;dbÞ ¼ cosðca; cbÞ ¼
hca; cbi
jcaj; jcbj

: ð9Þ

simESAðda;dbÞ ¼
1

jcaj; jcbj
Xm

i¼1

Xm

j¼1

wa;jwb;jgi;j : ð10Þ

For a set of documents D (di 2 D) it is possible to build a vector space spanned by

the set of ESA concept vectors associated with each document, where the concept

vectors define the coordinate basis for the vector space.

dj ¼
XT

i¼1

vj;ici; ðj ¼ 1; . . . ;NÞ: ð11Þ

A query in this vector space also needs to be formulated in relation to its

associated concept vectors. Alternatively it is possible to reformulate the coordinate

basis to the original term coordinate basis. Using the Einstein summation conven-

tion, a document have its associated concept vector:

d ¼ V ici ð12Þ
where the document vector can be transformed to the TF/IDF basis:

d ¼ W 0iki ð13Þ
W 0i ¼ � i 0

i V
i ð14Þ

where � i 0
i is a second-order transformation tensor which is defined by the set of TF/

IDF vectors of ESA concepts. Figure 6(a) depicts the relation between the document

vector d in relation to its concept basis c and term basis k.

The distributional formulation of the vector spacemodel supports the application of

different distributional models (different corpora or metrics) to support the semantic

interpretation of the document. A second-order tensor can be used to define the

transportability between different distributional vector spaces (Figs. 6(a) and 6(b)).

5.3. The structure of the T-Space

The construction of the T-Space is targeted towards labelled data graphs. This work

focuses on a model of graph defined by RDF. The Resource Description Framework
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(RDF) provides a structured way of publishing information describing entities and

its relations through the use of RDF terms and triples. RDF allows the definition of

names for entities using URIs. RDF triples supports the grouping of entities into

named classes, the definition of named relations between entities, and the definition

of named attributes of entities using literal values. This section starts by providing a

simple formal description of RDF. This description is used in the construction of the

T-Space structure.

5.3.1. RDF elements

Definition 6 (RDF Triple). Let U be a finite set of URI resources, B a set of

blank nodes and a L a finite set of literals. A triple t ¼ ðs; p; oÞ 2 ðU [ BÞ � U �
ðU [ B [ LÞ is an RDF triple where s is called the subject, p is called the predicate

and o the object.

Definition 7 (RDF Graph). An RDF graph G is a subset of G, where

G ¼ ðU [ BÞ �U � ðU [ B [ LÞ.
RDF Schema (RDFS) is a semantic extension of RDF. By giving special meaning

to the properties rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain, rdfs:range, rdfs:

Class, rdfs:Resource, rdfs:Literal, rdfs:Datatype, etc., RDFS allows to express

simple taxonomies and hierarchies among properties and resources, as well as

domain and range restrictions for properties. The following definitions based on the

notation of Eiter et al. [21] cover an incomplete description of specific RDFS aspects

that are necessary to the description of the T-Space. A more complete formalization

of the RDFS Semantics can be found in [21].

(a) (b)

Fig. 6. Depiction of the relation between ESA and TF/IDF coordinate systems and transformation from

different distributional models. The two coordinate systems represent different sets of terms, concepts

and weights for the same resource in two different distributional models.
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Definition 8 (Class). The set of classes C is a subset of the set of URIs U such

that 8 c 2 C :

8 cðtripleðc; rdf : type; rdfs : ClassÞÞ
� tripleðc; rdfs : subClassOf ; rdfs : ResourceÞ: ð15Þ

Definition 9 (Domain and Range). The rdfs:domain and rdfs:range of a

property p in the triple t in relation to a class c are given by the following axioms:

8 s; p; o; cðtripleðs; p; oÞÞ ^ tripleðp; rdfs : domain; cÞ � tripleðs; rdf : type; cÞ ð16Þ
8 s; p; o; cðtripleðs; p; oÞÞ ^ tripleðp; rdfs : range; cÞ � tripleðo; rdf : type; cÞ: ð17Þ

Definition 10 (Instances). The set of instances I is a subset of the set of URIs U

such that 8 i 2 I :

8 iðtripleði; rdf : type; rdfs : ClassÞÞ � tripleði; rdf : type; rdfs : ResourceÞ: ð18Þ
Definition 11 (Effective Range). An effective range e 2 E for a predicate p in a

triple t is defined as the set of classes C associated as ranges of the corresponding

predicate p and an instance i corresponding to the object of p.

Definition 12 (Relation). A relation r is given by a property p and its effective

range e.

Every p, c, i and e has an associated literal identifier which is built by removing

the namespace of the URI string, spliting the remaining string into separated terms.

The T-Space is built by embedding the set of associated literal identifier of

instances, classes and relations into a ESA distributional vector space. Instances are

resolved into the T-Space using the TF/IDF coordinate term basis, while classes

and relations are resolved using the ESA coordinate concept basis, which can be

transformed into the TF/IDF basis.

5.3.2. Instances resolution

Let I 0 be the set of literal identifiers associated with instances in an RDF graph G.

The vector space ETF=IDF containing the embedding of the instances i 0a is built by

the determination of the associated term vector ki 8 i 0 2 I 0.

i 0j ¼ W i
j ki; ðj ¼ 1; . . . ;M Þ ð19Þ

where W i is defined by the TF/IDF weighting scheme and M is the number of

instances.

5.3.3. Classes resolution

Let C 0 be the set of literal identifiers associated with classes in an RDF graph

G. The vector space EESA containing the embedding of the classes c 0
a is built

by determining the associated concept vector cj from the terms tu associated
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with each c 0 2 C 0.

c 0
j ¼ V i

j ci; ðj ¼ 1; . . . ;NÞ: ð20Þ
Alternatively the vectors in EESA can be mapped to the TF/IDF coordinate basis by

the application of the following transformation:

c 0
j ¼ � i 0

i V
i
j ki; ðj ¼ 1; . . . ;NÞ ð21Þ

where � i 0
i is a second-order transformation tensor which is defined by the set of TF/

IDF term vectors of ESA concepts.

5.3.4. Relations resolution

Let R 0 be a set of literal identifiers r 0
i for the relations associated with instances I 0 or

classes C 0 in a RDF graph G. For all vectors i 0a and c 0b in ETF=IDF , exists a vector

field r 0ðnÞðPÞ, 8P 2 RN and defined by i 0a and c 0b, such that:

r 0ðmÞði 0aÞ ¼ i 0a þ U iðmÞki ð22Þ
r 0ðnÞðc 0bÞ ¼ c 0b þV jðnÞcj ð23Þ

where U i and V j are the weights in relation to the term and concept components

and m, n are indexes for the relation vectors. The set of vectors r 0ðnÞðPÞ represent
the distance to the neighboring graph nodes and can be grouped as a second-order

tensor in relation to the concept coordinate basis. Figure 7 depicts the construction

of the representation of relations from the elements in the data graph and the

associated concept representation, while Fig. 8 shows the vector field structure of

the T-Space defined by the relations.

5.4. Operations over the T-Space

5.4.1. Input query

An input query is given by three sets Q;C 0Q; I 0Q where Q is an ordered set repre-

senting the qb query terms in a partial ordered dependency structure (PODS), I 0Q is

Fig. 7. Construction of the relation vectors associated with each instance or class.
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a set of candidate instances’ terms i 0Qb and C 0Q is a set of candidate classes’ terms c 0Q
a

in the query, where 8 c 0Q
a and 8 i 0Qb exists a corresponding qb 2 Q.

5.4.2. Instance search

Let ETF=IDF be the space containing instance vectors i 0. An instance query q I 0
is

given by the q I 0
i query terms in ðQ \ I 0QÞ. The instance search operation is defined

by the computation of the cosine similarity simGVSM ðq I 0
; i 0aÞ for each instance q I 0

i

and the instance vectors i 0 in ETF=IDF .

5.4.3. Class search

Let EESA be the space containing class vectors c 0. A class query qC 0
is given by the

qC 0
i query terms in ðQ \ C 0QÞ. The class search operation is defined by the com-

putation of the cosine similarity simESAðqC 0
; c 0

aÞ between the ESA interpretation

vector of each class query qC 0
i and the class vectors c 0 in EESA, where references to

the EESA can be transported to the ETF=IDF coordinate basis.

5.4.4. Relation search

Let EESA be a vector space containing the relation vector field r 0ðmÞðe 0aÞ. A relation

query qR 0
is given by the elements in the ordered set ðQnI 0QÞ \ ðQnC 0QÞ. The

relation search operation is composed by the following operations:

(1) Determination of the concept vector cq for the query qR 0
:

cq ¼ T ici ð24Þ
(2) Translation of r 0ðmÞðe 0

aÞ, to the origin of the coordinate system:

r 00ðmÞðe 0
aÞ ¼ r 0ðmÞðe 0

aÞ � e 0
a: ð25Þ

Fig. 8. Vector field representation for entities and relations.
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(3) Computation of the similarity simESAðcq; r 00ðmÞðe 0
aÞÞ between cq and each

relation vector r 00ðmÞðe 0
aÞ.

(4) Selection of a set of relation vectors r 00
c through a threshold function

r 00
c ¼ thrðsimESAðq; r 00

bÞÞ.
where references to the EESA can be transported to the ETF=IDF coordinate basis.

Examples of threshold functions can be found in [8, 22].

5.4.5. Spreading activation

The spreading activation is defined by a sequence of translations in the ETF=IDF

space which is determined the computation of the i þ 1 transversal iteration vector

r 00
c ¼ thrðsimESAðqiþ1; r

00
bÞÞ.

5.5. Analysis

The proposed approach introduced in this work embeds an RDF graph into a vector

space, adding geometry to the graph structure. The vector space is built from a

distributional model, where the coordinate reference frame is defined by

interpretation vectors mapping the statistical distribution of terms in the reference

corpora. This distributional coordinate system supports a representation of the

RDF graph elements which allows a flexible semantic search of these elements

(differential aspect of distributional semantics). The distributional model enriches

the original semantics of the topological relations and labels of the graph. The

distributional model, collected from ustructured data, provides a supporting com-

monsense semantic reference frame which can be easily built from available text.

The use of an external distributional data source which provides this semantic

reference frame is a key difference between the T-Space and more traditional VSM

approaches.

The additional level of structure is introduced as a vector field which is applied

over points in the vector space, defined by vectors of instances and classes. Each

vector in the vector field points to other instances and classes. The process of query

answering through entity search and spreading activation, maps to a set of cosine

similarity computations and translations over the vector field. The set of vectors

associated with each point which is defined by an entity vector can also be modeled

as a tensor field attached to each point (the set of vectors can be grouped into a

second order tensor). The vector field nature of the objects in the T-Space is another

difference in relation to traditional VSMs, allowing the preservation of the graph

structure. Comparatively, traditional VSMs represent documents as (free) vectors

at the origin of the vector space. The vector field connecting the entities in the

graph, combined with the distributional reference frame and with the cosine

similarity and translation operations, supports the trade-off between structure

mapping (compositionality) and semantic flexibility.
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Vector and tensor quantities can be represented in relation to a reference frame

(coordinate system). Under this representation, however, changes of reference

frame imply a change in the representation of the object. However, the trans-

formation rules associated with the changes of reference frame are well defined

objects and the representation of the object in a different reference frame can be

recalculated. Tensors can be seen as geometric objects represented by numeric

arrays that transform according to certain rules under a change of coordinates. This

definition, which allows a flexible description in relation to coordinate systems

supports a generalized description of geometric objects and spaces.

This capacity to transform objects in the T-Space across different coordinate

systems can support the transportability across different distributional models.

Data graphs from different domains can be supported by different distributional

models, instead of a one size fits all solution. While an open domain data graph like

DBPedia can be supported by a distributional model derived from Wikipedia,

a domain specific data graph covering financial data can use a domain specific

financial distributional model. Spaces with different distributional models can form

patches in a more complex distributional manifold. Additionally, different dis-

tributional models can be used in parallel to support multiple interpretation of the

elements embedded in the space. In case the concept vectors of multiple distribu-

tional models can be described in a common coordinate system, the parallel

interpretation can be done by the transformation among the concept vectors,

without the need to index the graph elements in both distributional models. Tensor

calculus allows a unified scheme to model and formalize the transformation of

vectors and tensors in the distributional space. In the basis of the tensor calculus lies

the ability to transport the structure across different reference frames, allowing the

application of different distributional models.

The proposed model for the T-Space coordinate system allows addressing the

following challenges for Vector Space Models: (i) embedding the RDF graph

structure, (ii) adding meaning from distributional models and (iii) supporting

different models of meaning.

6. Evaluation

6.1. Setup and analysis

An experimental evaluation of the proposed semantic space was implemented to

evaluate the answer quality of the approach using 50 natural language queries over

DBPedia [2], defined in the QALD evaluation query set [3]. Since the final approach

returns answers as triple-paths and considering that some queries require the

application of post-processing operations (e.g. such as aggregation), a definition of

a correct answer for the triple path format had to be generated. In the experimental

set-up a correct answer is given by a triple path containing the URI supporting the

final answer. For the example query ‘How many films did Leonardo DiCaprio star in?’
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the triple paths containing the URIs for the films were considered as the correct

answer instead of the number of movies.

For evaluation purposes the entity indexes corresponding to the class and

instance entity spaces were generated for all DBPedia instances and classes. In order

to simplify the experimental set-up, only relation vector spaces associated with

entities which were effectively explored by the algorithm were generated, without

any impact on the results reported on the evaluation of the approach. The dis-

tributional model was built from a 2006 version of Wikipedia. The final approach

was able to answer 58% of the queries. The results were collected with a minimum

level of post-processing. The final mean reciprocal rank, avg. precision and avg.

recall are given in Table 1. The measurements for each query and the output data

generated from the experiment can be found online [4].

In order to evaluate the role of each element in the query approach, the errors for

the set of unanswered queries were classified into 5 categories:

(1) PODS Error : Queries where the final PODS query form did not match the

dataset structure.

(2) Literal Pivot Error : Queries in which the main entity was a literal instead of an

object resource.

(3) Overloaded Pivot Error : Queries in which the main entity is a class with more

than 3 terms e.g. yago:HostCitiesOfTheSummerOlympicGames.

(4) Relatedness Error : Queries where the relatedness measure leads to a wrong

answer.

(5) Combined Pre/Post-Processing Error : Queries which demanded more sophis-

ticated query interpretation and post-processing.

Table 2 contains the distribution of error types. The complementary error analysis

for each query can be found online [4].

The error analysis shows that the distributional approach was able to cope with

the semantic variation of the dataset (low level of Relatedness Error). The low level

of PODS Error also shows that PODSs provide a primary query compositional

representation suitable for the proposed query approach and for the dataset rep-

resentation. Queries referring to literal objects as key query entities are currently

not addressed by the approach (Literal Pivot Error) since only URI resources are

mapped into pivot entities in the entity space. This limitation can be addressed by

Table 1. Quality of results for the semantic space measured using 50

natural language queries over DBPedia. The first row represents the

results for the full QALD query set while the second row contains a

reduced query set where some classes of queries were removed.

Query Set Type MRR Avg. Precision Avg. Recall

Full DBPedia Query Set 0.516 0.482 0.491

Partial DBPedia Query Set 0.680 0.634 0.645
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mapping literals to the entity space. Most of the errors in the evaluation are in the

Combined Pre/Post-Processing Error category, which concentrates errors relative

to the lack of a pre/post-processing analysis necessary to cope with a natural

language query scenario, such as answer type detection, more comprehensive lin-

guistic analysis of the query, post-processing filters, etc. Despite the relevance of

evaluating the suitability of the proposed semantic space as a natural language

query scenario, this error category does not reflect directly the effectiveness of the

semantic representation and query approach as a supporting structure for the

natural language query process.

The second line in Table 1 provides a comparative basis of quality measures

removing the category containing errors which are considered addressable in the

short term (Literal Pivot Error) and the category which does not reflect the core of

the evaluation for this work (Combined Pre/Post-Processing Error). Compared to

the results using the approach described in [8] but using the full QALD DBPedia

training dataset, there is an improvement of 5.2% over mrr, 18% over avg. pre-

cision, and 8.2% over avg. recall. The individual analysis of the entity and spreading

activation queries shows that the introduction of the proposed refinements for the

semantic space construction led to a quantitative improvement which might

be overshadowed by errors present in the Combined Pre/Post-Processing Error

category.

6.2. Discussion

The evaluation focused on the determination of the quality of the approach. No

rigorous index construction performance evaluation was considered since, to be

comparatively meaningful with existing approaches, a minimum level of optimiz-

ation in the index construction process was necessary. One clear strength of the

approach from the index construction perspective is the fact that the intrinsic

nature of the distributional semantic space makes the index construction process

straightforward to parallelize, where different regions of the graph can be indexed

independently and distributed across different machines. From the query/search

perspective, the index structures corresponding to the individuals, classes and

entity relations can be distributed across different machines. Query results can be

merged once the ranking behavior of the distributional relatedness measure is well

defined [22].

Table 2. Error types and distribution.

Error Type % of Queries

PODS Error 8%

Literal Pivot Error 4%

Overloaded Pivot Error 8%

Relatedness Error 2%

Combined Pre/Post-Processing Error 20%
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7. Related Work

The related work section concentrates on the analysis of works proposing new vector

space based models with emphasis on distributional semantics [13, 24�26] and

search/indexing strategies for structured graph data (structure indexes) [14, 15].

The motivation for this section is to provide to the reader a perspective over existing

trends in the space of distributional semantics, new vector space models and

structured data search, also providing a comparative basis with existing work.

7.1. Distributional compositional semantics

Clark and Pulman [13] provide a formal description of a compositional model of

meaning, where distributional models are unified with a compositional theory of

grammatical types (using Labek’s pregroup semantics [12]). The approach focuses

on the unification of the quantitative strength of distributional approaches with the

compositionality provided by symbolic approaches. The final mathematical struc-

ture uses vectors to represent word meanings, grammatical roles represent types in a

pregroup, and the tensor product to allow the composition of meaning and types.

Coecke et al. [26] addresses some of the shortcommings present in the model of Clark

and Pulman [13] proposing a generalized mathematical framework for a compo-

sitional distributional model of meaning. Grefenstette [24] proposes a concrete

method for implementing the approach described in [26]. The proposed structured

vector space is the tensor product of two noun spaces, in which the basis vectors are

pairs of words each augmented with a grammatical role. Meaning of sentences are

compared by computing the inner product of their vectors.

Erk and Pado [25] introduce a structured vector space model which integrates

syntax into the computation of word meaning in its syntactic context. The model is

intended to address the limitations of vector composition models, which reduce the

structure of complex sentences to single vectors. The model proposed by Erk and

Pado [25] takes into account syntax, by introducing, in addition to the word’s

lexical meaning, vectors representing the semantic expectations/selectional pre-

ferences for relations that the word supports.

One common aspect between the T-Space and [13, 24�26] is the use of dis-

tributional semantics in conjunction with the compositional element provided by

syntax. The T-Space approach, however, focuses on a Generalized Vector Space

Model (GVSM) formalization, defining the process of semantic matching as search

operations over the distributional structured space. Additionally, this work also

concentrates on an experimental verification of the suitability of the proposed model

as a semantic information retrieval model.

7.2. Query and search mechanisms for RDF

Different works have focused on searching and querying RDF data. This section

concentrates on index structures which preserve the graph structure (structure
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indexes). For a more comprehensive discussion on existing query/search approaches

for RDF data, the reader is directed to [28]. Semplore [14] is a search engine for

Linked Data which uses a hybrid query formalism, combining keyword search with

structured queries. The Semplore approach consists in indexing entities of the

Linked Data Web (instances classes and properties) using the associated tokens

and sub/superclasses as indexing terms. In addition to entity indexing, Semplore

uses a position-based index approach to index relations and join triples. In the

approach, relation names are indexed as terms, subjects are stored as documents

and the objects of a relation are stored in the position lists. Based on the proposed

index, Semplore reuses the IR engine’s merge-sort based Boolean query evaluation

method and extends it to answer unary tree-shaped queries. Dong and Halevy [15]

propose an approach for indexing triples allowing queries that combine keywords

and structure. The index structure is designed to cope with two query types: pre-

dicate queries and neighborhood keyword queries. The first type of queries covers

conjunctions of predicates and associated keywords. Dong and Halevy propose four

structured index types which are based on the introduction of additional structure

information as concatenated terms in the inverted lists. Taxonomy terms are

introduced in the index using the same strategy. Schema-level synonyms are

handled using synonyms tables. Both approaches [14, 15] provide limited semantic

matching strategies and are built upon minor variations over existing inverted index

structures. By avoiding major changes over existing search paradigms, these

approaches can inherit the implementation of optimized structures used in the

construction of traditional indexes.

This work generalizes the basic elements present in the query approach intro-

duced in [8], building a distributional structured vector space model. This model is a

fundamental step towards bringing scalability to the basic elements of the query

approach described in [8]. The generalization also includes a change from the pre-

vious semantic relatedness approach, which was based on a link-based relatedness

measure (Wikipedia Link Measure [16]), to a distributional approach based on

Explicit Semantic Analysis (ESA). An additional refinement includes the entity

indexing strategy which moved from a uniform entity indexing to an entity index

which differentiates instances (TF/IDF) and classes (ESA). Differently from the

previous approach [8], which performed a query execution time navigation over the

graph and a pairwise computation of the semantic relatedness measure between

query terms and each relation, this work proposes the introduction of a relation

index associated with each entity, bringing a principled solution to reduce the

original query execution time.

8. Conclusion and Future Work

This work proposes a distributional structured semantic space (T-Space) focused on

addressing a fundamental challenge for RDF data queries, where the data model

heterogeneity of the Web demands a query approach focused on abstracting users
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from an a priori understanding of the data model behind datasets. Key elements in

the construction of the approach are: (i) the application of distributional semantics,

which in this work is defined by Explicit Semantic Analysis (ESA); (ii) a compo-

sitional semantic model based on the structure of RDF and on the partial ordered

dependency structures for natural language queries and (iii) a hybrid search model

where entity-centric search is complemented by spreading activation search. The

final distributional structured semantic space allows data model independent

natural language queries over the RDF data, achieving mean reciprocal rank =

0.516, avg. precision = 0.482 and avg. recall = 0.491, evaluated using 50 natural

language queries over DBPedia. The elements of the proposed approach are for-

malized in a distributional vector space model based on the Generalized Vector

Space Model (GVSM). The construction of the T-Space preserves the semantic

information present in the graph structure, while keeping the scalability of the

vector space model and the flexibility of the semantic matching provided by the

distributional semantic model.

Future work will include the implementation of optimizations in the index

construction process and evaluation of the index construction/query execution

time, the elimination of limitations which are considered addressable in the short

term and the implementation of a question answering (QA) system over RDF data

using the proposed index. The implementation of QA features (e.g. answer tye

detection) will allow the comparative evaluation against existing QA systems [3].
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