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ABSTRACT
Event-based systems follow an interaction model based on
three decoupling dimensions: space, time, and synchroniza-
tion. However, event producers and consumers are tightly
coupled by event semantics: types, attributes, and values.
That limits scalability in large-scale heterogeneous environ-
ments with significant variety such as the Internet of Things
(IoT) due to difficulties in establishing semantic agreements
at such scales. This paper studies this problem and inves-
tigates the suitability of different traditional and emerging
approaches for tackling the issue.

Categories and Subject Descriptors
C.2.5 [Computer-Communication Networks]: Local and
Wide-Area Networks—Internet ; H.3.3 [Information Stor-
age and Retrieval]: Information Search and Retrieval—
information filtering ; H.3.4 [Information Storage and
Retrieval]: Systems and Software—Distributed systems

General Terms
Theory

Keywords
event processing systems, semantics, coupling, thingsonomy,
Internet of Things

1. INTRODUCTION
Recent trends of Big Data and the Internet of Things pose

challenges to current computational paradigms such as event
processing systems. Three dimensions of Big Data are iden-
tified (Volume, Velocity, and Variety) [17]. While Volume
and Velocity are active areas of research, we think that more
attention needs to be given to the Variety aspects within
distributed event based systems. This paper sheds light on
the suitability of the semantic assumptions in the current
event processing paradigm. The contribution of this paper
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is the analysis of the event processing paradigm in terms of
a communication problem that crosses system boundaries,
together with a literature review and analysis of the suit-
ability of various models of semantics such as symbolic, sub-
symbolic, and non-symbolic models.

In Section 2 we identify some new trends in the data land-
scape. Section 3 revisits a set of computational paradigms
and traces the evolution to event processing systems. Sec-
tion 4 provides a theory to event exchange based on com-
munication and crossing systems boundaries. In Section 5
we analyze semantic models and their relation to the theory
of event exchange and semantic coupling. Section 6 reviews
current approaches in event processing to address semantic
coupling. Section 7 outlines the thematic event processing
approach while Section 8 shows how an architecture to IoT
can be built based on the idea of thingsonomies and the-
matic event processing. We conclude the paper along with
future challenges in Section 9.

2. THE INTERNET OF THINGS AND NEW
TRENDS

In the recent years, there has been a tremendous increase
in information sources and volume. The Organization for
Economic Co-operation and Development (OECD) estimates
that by 2020 there will be about 50 billion devices connected
to the Internet [32]. This leads to challenges in information
processing solutions as the volume, velocity, and variety of
data increase. Smart cities, smart grids, and cyber-physical
systems have been the topics of active research throughout
the last decade. A technology enabler for such areas is rep-
resented by the Internet of Things [2].

2.1 The Internet of Things
From a high-level architectural perspective, IoT can be

divided into three tiers [2]:

1. Sensing and communication technologies form the
basic infrastructure for IoT to map the world of things
into the world of computationally processable infor-
mation. Radio-frequency Identification (RFID) plays
a key role within this tier where RFID tags are at-
tached to real world things and RFID readers are re-
sponsible for instrumenting their information into the
Internet. Communication and networking standards
such as the IPv6 over Low power Wireless Personal
Area Networks (6LoWPAN) and the CoAP protocols
[2] serve this layer of IoT.
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2. Middleware layer which encompasses common func-
tionalities and abstracts application developers and
users from IoT infrastructure details. Among the tech-
nologies to contribute to this layer are Service-Oriented
Architectures (SOA) [2] and event processing systems
which support functionalities such as early filtering of
events, spatio-temporal correlation, sequencing, event
enrichment, and complex event processing.

3. Application layer which builds upon the middleware
to provide direct and potentially domain specific bene-
fits to users. IoT promises new domains of applications
in transportation and logistics, healthcare, smart envi-
ronments, analytics, and more futuristic applications
such as robo-taxis and virtual reality.

2.2 IoT and Big Data
While significant efforts in the area of IoT come from com-

munication and networking communities, there is a growing
realization that the challenges will be more prevalent at the
data level [1] including data collection, management, and
analytics. At this level, IoT can be linked with the area of
Big Data. In a report by McKinsey [30], it has been esti-
mated that in 2010 alone enterprises and users stored more
than 13 exabytes of new data, which is around 50, 000 times
the size of the Library of Congress. Nonetheless, the Big
Data trend should not be understood just in terms of data
volume. In fact, one of the most commonly used analysis
recognizes three dimensions of the phenomena [17]:

• Volume: refers to a sheer size of the data.

• Velocity : refers to the rate of incoming data, and the
need for low latency to act upon it.

• Variety : refers to heterogeneity of data representation,
types, and semantic interpretation.

2.3 Significant Trends in the Data Landscape
The trends of IoT and Big Data signify a considerable

shift in the characteristics of information production, com-
munication, and consumption, as follows:

• Number of sources that can create data has been sig-
nificantly increasing. For example, the International
Telecommunication Union (ITU), a United Nations or-
ganization, reports that the number of worldwide mo-
bile subscribers has increased from 2, 205 millions in
2005 to 6, 662 millions in 2013, i.e. more than 200%
increase in 8 years [26].

• Heterogeneity is increasing in various forms including
different types of networks, protocols, devices, data
formats and representation [2]. Semantic heterogene-
ity in IoT follows partially from the number of devices
and manufacturers of these devices. In the Semantic
Web, for instance, the Falcons search engine could dis-
cover in 2008 about 4, 000 ontologies on the Web [7],
this number has increased to more than 6, 400 in 2015
[12], i.e. more than 50% increase in 7 years. Similar
phenomena can be assumed to happen in IoT.

• Number of users who have access to data has been
drastically increasing. The ITU reports an increase
in the number of individuals using the Internet from

1, 024 millions in 2005, to 2, 710 millions in 2013 [26],
i.e. more than 160% increase in 8 years. Most of those
users come from a non-technical background.

• Organization of users in large-scale environments is
minimal and users are decoupled and autonomous. An
example is the creation of Wikipedia, a very compre-
hensive encyclopedia created by distributed users from
all over the world. Studies of the demographics of
crowdsourcers reveal a global diversity and geograph-
ical distributions of crowdsourcers [36]. We suggest
that similar characteristics can be assumed in IoT set-
tings where users will have a minimal organization.

• Timeliness or velocity is a challenge due to the large
volume of data available in Big Data settings such
as IoT. It becomes very important to filter important
data items as early as possible.

Given this shift in the data landscape, there has been an
evolution in the information processing paradigms required
to meet these new challenges.

3. COMPUTATIONAL PARADIGMS
Throughout the last few years, there has been a realiza-

tion that a new class of information processing systems is
needed. The new class, or paradigm, has been motivated by
a plethora of distributed applications that require on-the-fly
and low latency processing of information items. Example
applications include environmental monitoring from sensors,
stock market analysis, RFID-based anomaly detection in in-
ventories, security systems, etc.

Hinze et al. [25] analyze various applications that could
justify the need for the new paradigm. They developed a
framework that correlates features to application classes.
They include for example: spatio-temporal correlation, event
sequencing, out of order events, derived events, event enrich-
ment, mobility of event subscriber, etc.

An analysis by Cugola and Margara [9] can be used to
complement this picture and grasp the essence to justify a
new paradigm. They state that “The concepts of timeliness
and flow processing are crucial for justifying the need for a
new class of systems.” The event processing paradigm has
evolved through the work of several communities in whose
artifacts elements of the paradigm can be detected.

3.1 Active Databases
Active databases started to appear during the late twenti-

eth century [33]. The term active is put in contrast with the
term passive that was assumed to exist in database systems
prior to the appearance of active databases.

3.2 Reactive Middleware
In a distributed heterogeneous application network of dif-

ferent operation systems, applications need a homogeneous
view so developers are abstracted from low level issues of
distributions and focus on the application logic [31, p. 2].
Within the context of static networks, middleware systems
view data and services stationary in objects of databases
allowing an interaction model of request/reply to and from
the stationary nodes, e.g. the Remote Procedure Call (RPC)
paradigm and its derivative client/server architecture.

When the stationary assumption of networked applica-
tions is not valid, the request/reply paradigm is limited as
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it imposes a tight coupling between the communicating par-
ties [11]. Thus, asynchronous and decoupled extensions have
been added to the existing middleware systems such as the
extension of J2EE and the Real-time CORBA Event Service.

3.3 Event-based Software Engineering
Complex software systems consist of many integrated com-

ponents that collaborate to achieve the overall system goal.
In object-oriented architectures for instance the classical way
of components to interact with each other is via explicit
invocation. An alternative is implicit invocation which is
widely used now in enterprise application integration, graph-
ical user interfaces, and aspect-oriented programming.

3.4 Message-Oriented Middleware
In the Internet architecture, nodes can communicate via

a coupled, synchronous, and end-to-end interaction scheme
[11]. The Internet has become a platform for distributed ap-
plications that exchange information in a way that the loca-
tion and behavior of these applications are dynamic. Thus,
a decoupled interaction scheme has become crucial to the
development of large-scale applications.

Eugster et al. [11] give decoupling high importance with
respect to scalability. They recognize three dimensions of
decoupling: space, time, and synchronization which are con-
cerned with addresses, activity time, and blocking respec-
tively. Communication paradigms such as remote proce-
dure call and shared spaces are coupled on one or more di-
mensions. The publish/subscribe paradigm evolved to over-
come this issue [11]. Various publish/subscribe schemes ex-
ist including: topic-based, content-based, type-based, and
concept-based publish/subscribe systems.

3.5 Data Stream Management Systems
Active databases do not scale under high rates of database

updates or large number of rules [9]. Thus, the database
community developed Data Stream Management Systems
(DSMSs) to cope with this issue. Streams form the ba-
sic concepts in DSMS as opposed to tables in conventional
databases. DSMSs adopt an interaction paradigm based on
continuous queries which are registered by users.

Example DSMS engines include: TelegraphCQ, OpenCQ,
NiagaraCQ, Tribeca, CQL/Stream, Aurora/Borealis, Gigas-
cope, and Stream Mill. Commercial DSMSs also exist such
as Sybase Coral8 Engine, SteamBase, and IBM System S. In
DSMS data items are homogeneous in a stream, they do not
typically have temporal or causal semantics, and languages
are typically of a transformation nature.

3.6 Complex Event Processing
Data stream management systems do not associate a par-

ticular semantics to their data items. They serve as generic
systems that process generic data items similarly to the case
of conventional database systems. On the other hand, event
processing systems associate a specific semantics to their
data items. They are computer objects which represent no-
tifications of actual or virtual happenings as gathered by
sources. That is, events are the most atomic data items in
event processing systems as opposed to streams in DSMSs.

Publish/subscribe systems [11] form the basis for event
processing systems, with processing focused on filtering and
routing. Typical publish/subscribe systems would process
one event at a time. Events are matched against subscrip-

tions without looking at what previous events occured before
in the history. These systems have been extended with the
notion of matching multiple events against a single subscrip-
tion, or rule. This set of events is called a pattern and they
signify a composite or complex event.

A Complex Event Processing (CEP) engine thus empha-
sizes the matching of event patterns specifically with or-
dering conditions such as temporal sequencing and causal
relationships. Examples of CEP engines include: Rapide,
GEM, Padres, DistCED, Cayuga, NextCEP, Raced, Amit,
PB-CED, Sase, Sase+, Peex, and TESLA/T-Rex. Commer-
cial systems also exist such as SAP Event Stream Processor,
Oracle Event Processing, Esper, TIBCO Business Events,
and IBM WebSphere Business Events. In CEP systems,
data items are heterogeneous, they typically have tempo-
ral or causal semantics, and languages are typically with a
detection nature of clearly distinguished parts for condition
and action.

4. A THEORY FOR EVENT EXCHANGE
A theory for event exchange is useful to abstract the char-

acteristics of the discussed computational paradigms. We
start this discussion with an analysis of three main techni-
cal traits of large-scale event processing systems.

4.1 Traits of Large-Scale Event Processing Sys-
tems

We suggest that the following traits are fundamental char-
acteristics for event processing systems at large scales:

• Distribution: distribution can be understood from two
complementary aspects. The first aspect is the place-
ment of processing workloads on different nodes and
thus making use of parallel computing. The second as-
pect is that large-scale environments are inherently dis-
tributed with event production and consumption hap-
pening at distributed components. Thus, even when
dealing with a centralized event processing engine, con-
siderations of the innate nature of distribution of the
environment of event producers and consumers shall
be taken into account.

• Heterogeneity : heterogeneity occurs in terms of differ-
ences in hardware components, protocols, operating
systems, middleware, and data. This paper is con-
cerned with data heterogeneity in event systems as de-
scribed by Mühl et al. [31]: “Syntax and semantics of
notifications are likely to vary and there are inevitably
different data models in use.” We do not deal with
syntax heterogeneity within this work. To define het-
erogeneity, we start by defining semantics first. We
draw here on Gärdenfors [16, p. 151], and define se-
mantics as the mapping S between symbolic words and
expressions of a language L and their meanings M.

Two crucial aspects can be found in this definition
which are discussed in Section 5. The first is the set
of meanings M, and the other is the language L which
is used to describe event content. A language can be
understood as a set of terms, or lexicons, and a syntax
to connect these terms and form sentences. We deal
mainly with terms in event systems, with very little
focus on syntax. Semantic heterogeneity, or variety,
can then be defined as the use of different mappings
Si from M to L by different event agents ai.
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Figure 1: Decoupling dimensions.

• Openness: While the term “open” has been used fre-
quently in the literature to describe distributed event
systems at large scales, it has not been defined pre-
cisely. Herein we draw upon the definition used in
systems theory [40, p. 139–153] as a system that has
external interactions in form of information, energy,
or matter transfer through its boundary. We define an
open event system from the semantics perspective as
the event environment where an agent can exchange
events with other agents that use different event se-
mantics, i.e. event agent x which has semantics map-
ping Sx can in theory exchange events with another
event agent y which has semantics mapping Sy.

4.2 The Principle of Decoupling
A fundamental principle to the event-based interaction

paradigm is the use of the event to decouple producers and
consumers. Eugster et al. [11] define decoupling as “remov-
ing all explicit dependencies between the interacting partic-
ipants.” The true impact of this principle is the increase of
scalability [11]. Eugster et al. [11] recognize three dimen-
sions of decoupling as shown in Figure 1:

• Space decoupling suggests that participants do not need
to know each other. Producers do not hold references
to consumers or know how many of them are actually
interacting and vice versa.

• Time decoupling means that participants do not need
to be active at the same time.

• Synchronization decoupling suggests that event pro-
ducers and consumers are not blocked while producing
or consuming events.

Decoupling is also called implicit interaction [31, p. 150],
where the control over an event-based system has been de-
centralized into an autonomous version. We argue that
the hypothesis that removing explicit dependencies between
event producers and consumers leads to an increased scala-
bility needs to take into consideration that dependencies in
fact have been moved to events and thus extra importance
and meaning is put inside the event objects. Thus, this hy-
pothesis can not be accepted in an absolute sense, and needs
to take other assumptions into considerations.

The now autonomous events may lead to ambiguities in
semantics that requires participants to collaborate again in
order to resolve. Because that leads to limitations in scal-
ability, it undermines the fundamental reason why partic-
ipants are decoupled. Thus, any computational paradigm

that tackles event processing in a large-scale, distributed,
open, and heterogeneous environment must take into con-
sideration that it has valid assumptions that do not break
the principle of decoupling, and thus do not affect scalability.

4.3 The Model of Communication
Large-scale event processing systems are distributed, open,

and heterogeneous, with decoupled components which ex-
change messages. This requires an abstraction which helps
better analyze these systems and their challenges. A useful
abstraction is a communication model. One of the earliest
models is the mathematical model of communication devel-
oped by Shannon and Weaver [39]. The model consists of six
elements: an information source, a transmitter, a channel,
noise, a receiver, and a destination.

Chandler [6] in his work on semiotics, the theory of signs
and meanings, analyzes communication models. He recog-
nizes transmission as a basic level of moving signs, or sym-
bols, between participants but which by itself constitutes a
small and mechanical fraction of communication [6, p. 178–
179]. Chandler describes the Shannon-Weaver model as a
model of information transmission rather than of informa-
tion communication. That is due to the fact that it ignores
semantic aspects of communication, which is crucial for com-
munication to succeed. In fact, this has been left out of the
model deliberately as stated by Shannon and Weaver [39]:

“The fundamental problem of communication
is that of reproducing at one point either exactly
or approximately a message selected at another
point. Frequently the messages have meaning;
that is they refer to or are correlated according to
some system with certain physical or conceptual
entities. These semantic aspects of communica-
tion are irrelevant to the engineering problem.”

We argue that the current event processing paradigm puts
much focus on the transmission aspect of the problem of
communication, while it should in the end serve the bigger
problem, consequently human agents have to step into the
loop considerably in order to complement the event-based
paradigm. That leads to issues on the paradigm itself, such
as when human agents have to agree on semantics to com-
plement the communication purpose. As a result, they in-
troduce coupling into the paradigm, which in principle con-
tradicts its basic premise of “decoupling for scalability” as
discussed in Section 4.2.

4.4 Event Exchange as Crossing Boundaries
Another useful abstraction which we use here is the view

of event processing systems from the perspective of a knowl-
edge exchange framework. Such a framework has been pro-
posed by Carlile [3] within the field of organization science.
Carlile recognizes three main levels of boundaries that may
exist in a given knowledge exchange scenario:

• Syntactic boundary between systems focuses on the
sharing and establishment of a common syntax across
a given boundary. This view has been established with
Shannon and Weaver [39]. Carlile [3] sees that crossing
such boundaries is synonymous to transferring knowl-
edge across those boundaries.

• Semantic boundary starts to appear when some mean-
ings become unclear or ambiguous. Even with a syn-
tax, interpretations can be different between the two
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boundary sides. The essential premise is that a mes-
sage conveys meanings rather than mere symbols, which
is the emphasis of linguists such as Reddy [35] in his
theory of the “metaphor of conduit” stating that lan-
guage reveals metaphors about communication as mean-
ings are conveyed through language containers. Carlile
[3] sees crossing such boundaries as synonymous to
translating knowledge across those boundaries.

• Pragmatic boundary appears when assessing the ex-
changed knowledge needs a bigger picture of the in-
teracting parties’ interests and contexts. The origin
of the pragmatic view can be traced back to works by
semioticians such as Peirce [6]. Carlile [3] sees cross-
ing such boundaries as synonymous to transforming
knowledge across those boundaries.

4.5 Coupling and Scalability Trade-off
Event agents, i.e. systems, have boundaries that they have

to cross in order to communicate with other systems. Such
boundaries are syntactic, semantic, and pragmatic. Events
are not mere exchange of symbols, but rather meanings sig-
nified by symbols (hence the semiotics view [35]).

Events must effectively cross the three levels of bound-
aries in order to establish communication and collaboration
between event agents. We argue that the current event pro-
cessing paradigm is focused on crossing lower boundaries, i.e.
syntactic, for achieving the task of event transfer rather than
that of event-based communication. Thus, human agents are
needed in the loop to cross semantic and pragmatic bound-
aries which leads to limiting the paradigm as these tasks are
external to it rather than being at the core of it.

The space, time, and synchronization decoupling dimen-
sions of Eugster et al. [11] contribute to event transfer across
syntactic boundaries only. Semantic and pragmatic bound-
aries are inherent in large-scale, open and heterogeneous en-
vironments such as the IoT. This in turn leads to magnify-
ing the problematic nature of semantic coupling, as shown in
Figure 1, which contradicts the fundamental basis of event
systems as decoupled and scalable systems.

5. SEMANTICS AND APPROXIMATION
Semantics generally refer to a relationship between two

spaces (or worlds or sets): the meanings, and the symbols.
This view is mostly apparent in the field of semiotics [6]
where the focus is on signs and sign systems. The domain of
meanings can be classified into objects, properties, and con-
cepts. Objects are individuals like a specific laptop used by
Alice. Properties are a “way of abstracting away redundant
information about objects” [16, p. 59]. For instance, Alice’s
laptop is “black” which is a property. Concepts are the most
generic form of objects and properties. A concept clusters
similar properties and objects such as the concept “Laptop”.
We discuss these notions with respect to the three levels of
meaning representation in the following sections.

5.1 Symbolic Representation of Meaning
The key principle of symbolism is that information is rep-

resented by symbols, and processing of information is by def-
inition a manipulation of symbols through rules [16, p. 35–
36]. Symbols can be gathered into sentences of a language of
thought. What a sentence means is a belief of an agent. Var-
ious beliefs are connected by logical or inferential relations

such as first-order logic in Artificial Intelligence (AI). Thus,
meanings are purely the result of logical, syntactic relations
of symbols, rather than the states they refer to.

This tradition extends beyond AI to other areas such as
databases and event-based systems where semantic assump-
tions are quite derived from those of databases. For instance,
in the relational model Codd [8] proposes a “a relational
view of data” such that cells generally contain constants,
which is the data naming for symbols. Schema is handled
similarly. Another indication of the symbolic paradigm in
databases comes from the Unique Name Assumption (UNA)
which states that two distinct symbols designate two differ-
ent objects in the universe.

Due to the tight relationship between symbols and mean-
ings in the symbolic paradigm, it is difficult to separate a
meaning model from a model of semantics. There are three
directions to tackling the question of what a property, or a
concept, is in symbolic semantics [16, p. 60–62]:

• Extensional Semantics where a property is defined by
the set of objects in the world that have the property.

• Intensional Semantics alters the concept of one world
to the case of multiple possible worlds.

• Situation Semantics uses one world model, but instead
of truth functions from symbols or sentences to possi-
ble worlds, it uses a polarity function from symbols or
sentences to a subset of the world, called situation.

In ontologies for instance, properties and concepts are de-
scribed using TBox statements. Objects on the other hand
are described using ABox statements which are compliant
with the TBox terminological description.

Symbolic semantics have been criticized from various as-
pects, as summarized by Gärdenfors [16, p. 37–40, 62–66]:

1. They do not explain how a person can perceive two
properties to be similar.

2. Their limited account for inductive reasoning.

3. The frame problem which states that representing all
necessary knowledge about the world requires a com-
binatorial explosion of logical axioms and inferences.

4. The symbol grounding problem which states that in
the symbolic paradigm the meanings of symbols are
actually grounded in symbols themselves [19].

We add to this critique that symbolism does not largely
separate the symbolic level from the meaning level. When
event agents need to agree on the meanings, the essence of
information exchange, they have to agree on symbols due
to the tight relationship between meanings and symbols.
Agreeing on symbols is a highly costly process and thus
hinders the loose semantic coupling requirement. This is
a result of the lack of a natural account for similarity in the
symbolic models of meanings. The existence of similarity
and topology between meanings can lower the amount of
information that two parties need to agree on.

5.2 Conceptual Representation of Meaning
At the conceptual level come various alternatives of mean-

ing models that fundamentally leverage topological features
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Table 1: Characteristics of Semantic Models
Symbolic Conceptual Connectionist

Conceptual Spaces [16] LSA [10] ESA [14]
Loose semantic coupling - + ++ ++ +
Efficiency +++ ++ ++ ++ +
Effectiveness + ++ ++ +++ ++
Support for similarity - +++ +++ +++ ++
Easy to build - - + +++ +++ +
Easy to interpret +++ ++ - + - -

Legend
the model excellently (+++), moderately (++), slightly (+) has the characteristic
the model moderately (- -), mildly (-) lacks the characteristic

of meanings. What distinguishes these approaches is a ge-
ometrical nature of the meaning space. In such a geome-
try, distances and closeness between meanings can be estab-
lished.

An example of conceptual representation of meaning is
the Conceptual Spaces proposed by Gärdenfors [16]. Gär-
denfors starts from the observation that concepts are not in-
dependent from each others, but rather are structured into
domains, e.g. the domain of colors, the spatial domain, etc.
Conceptual spaces are then built up from quality dimen-
sions which serve the purpose of building the domains. For
instance, the colors domain can be built up from three di-
mensions: hue, chromaticness or saturation, and brightness.

We think that the computational challenge with Gärden-
fors’ conceptual spaces is building quality dimensions, and
to agree on quality dimensions can be hard to achieve at
a large scale. A computational implementation of concep-
tual spaces is needed such that it builds a geometrical space
which supports the basic notions of distance and similarity.
Let us assume that we have a large number of textual doc-
uments, if two terms such as ‘water’ and ‘fluid’ frequently
occur with each other, one can assume that they are close
within the meaning space. This particular observation is
the tenet of a class of approaches within computational lin-
guistics known as statistical semantics or distributional se-
mantics. Statistical semantics is based on the distributional
hypothesis which states that words that occur in the same
contexts tend to have similar meanings [20]. We describe it
as subsymbolic to emphasize its relative relationship to the
symbolic approach.

5.2.1 Vector Space Models
One of the widely used mathematical tools to formal-

ize and deal with distributional semantics are Vector Space
Models (VSM). The premise is that a multi-dimentional vec-
tor space is built out of some textual corpora that reflect the
usage of terms in a domain agnostic of domain specific set-
ting. A term or a meaning becomes a vector in the space
with coordinates for each component. VSM has a highly
automatic nature to build knowledge.

Matrices are the basic elements used to encode terms sta-
tistical occurrences. For instance, a term-document matrix
encodes the number of times a term occurs in a document
of the corpus. Weighting schemes such as Term Frequency
Inverse Document Frequency (TF/IDF) gives more weight
to a term if it appears more often in a document and less
often in other documents. One example widely used in cog-
nitive science and information retrieval is the Latent Se-
mantic Analysis (LSA) [29, p. 369–383]. LSA builds upon
a term-document matrix and reduces space dimensionality

using an algebraic approach named Singular Value Decom-
position (SVD).

5.2.2 Explicit Semantic Analysis
Gabrilovich and Markovitch [14] introduced an Explicit

Semantic Analysis (ESA) approach for computing semantic
similarity and relatedness where the dimensions of the vector
space are human defined and easy to interpret. For instance,
they applied their approach on Wikipedia and proved it to
outperform LSA in computing words semantic relatedness
with 75% vs. 56% of correlation with human judgment. In
a nutshell, Wikipedia-based esa builds an index of words
based on the Wikipedia articles they appear in. A word
becomes a vector of articles and the more common articles
between two words exist, the more related the words are.
For example, esa(‘water’, ‘fluid’) > esa(‘water’, ‘car’) as
the formers appear frequently in common articles. Semantic
relatedness between a pair of terms can be measured using
cosine distance between their corresponding vectors.

Distributional semantics and similar models are criticized,
as discussed by Lenci [28], on the grounds of compositional-
ity. That is they mainly concern lexical meanings, i.e. mean-
ings of individual terms, rather than complex sentences. We
argue that the compositionality problem is not an issue for
event matching. That is due to the fact that linguistic struc-
tures and syntax is not the kind of data model used in event
processing systems to represent events and subscriptions. In
fact, models such as the attribute-value data model reduces
the meaning representation problem to the individual items
of attributes and values, thus making lexical meaning suit-
able for the problem at hand.

5.3 Subconceptual Representation of Meaning
At this level lie a class of non-symbolic approaches to

meaning representation such as connectionism. Connection-
ist systems are Artificial Neural Networks (ANNs) and con-
sist of a large number of units, the neurons, connected to-
gether. The state of the network at a specific point could
be thought of as a meaning or idea [37]. A geometrical in-
terpretation can be given to ANNs as in conceptual spaces.
Critics to connectionist models come from two main aspects
[16, p. 42-43]: learnability which states that ANNs need a
large training set to learn structure and adjust weights, and
the difficulty to interpret what an emerging network means.

The vector space distributional model based on explicit
semantic analysis appears to meet the main requirement of
loose semantic coupling. It also has the favorable character-
istics of efficiency, effectiveness, support of similarity, and
ease of building and interpretation as discussed in the pre-
vious sections and summarized in Table 1.
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Table 2: Current Approaches to Semantic Coupling
Content-based

[5]
Concept-based

[34, 41]
Approximate

Semantic Event
Processing [21, 24]

Thematic Event
Processing [22]

Matching exact string
matching

Boolean semantic
matching

approximate
semantic matching

approximate semantic
matching

Semantic
coupling

term-level full
agreement

concept-level
shared agreement

loose agreement loose agreement

Semantics not explicit top-down
ontology-based

statistical
distributional

semantics

statistical distributional
semantics

Domain
specificity

cost

defining a large
number of domain

rules

defining a
domain-specific

ontology

indexing a
domain-specific

corpus

parametrizing the vector
space of an open domain

corpus
Effectiveness

(F1Score)
100% depends on the

domains and
number of

concept models

depends on the
corpus

depends on the corpus and
the themes tags.

Outperforms non-thematic
approximate approach

Cost defining a large
number of rules and
establishing shared
agreement on terms

establishing
shared agreement

on ontologies

minimal agreement
on a large textual

corpus

minimal agreement on a
large textual corpus and

associating good themes tags

Efficiency
(throughput)

high medium to high medium to high medium to high

5.4 Free Tagging and Thingsonomies
While subsymbolic or non-symbolic communication can

be a good solution to semantic coupling, humans are still
symbolic in nature. Tagging is a mechanism by which hu-
mans behind event producers and consumers can add some
information to events and subscriptions to enhance the mean-
ing expressed by subscriptions and exchanged with events
via a better symbolic approximation.

In Web 2.0 users can tag content such as images, tweets,
blog posts, etc. [18]. Websites supporting social tagging has
emerged and become popular, e.g. Delicious, Flicker, Twit-
ter, etc. It has been found within the research on social
media that fixed static taxonomies are not a suitable ap-
proach within a social tagging context [18]. That is mainly
because fixed taxonomies are rigid and centralized, cannot
easily keep up with an evolving corpus, a controlled vocabu-
lary is expensive to build and maintain in terms of develop-
ment time, and they present a steep learning curve to users.

We argue that top-down organization of semantic models
increases the problem of semantic coupling, which already
exists due to the granularity of such models which are sym-
bolic in nature. Folksonomies, (folk (people) + taxis (clas-
sification) + nomos (management)), use terms, freely gen-
erated by users, and freely used by users to tag resources.
To this end, we argue that bottom-up free tagging of events
and subscriptions is a good way to manage their semantics
in a loosely coupled way. We proposed in [23] an approach
where this concept is applied on things within an IoT con-
text, leading to the concept of thingsonomies.

5.5 Approximation in Event Processing
The need for approximate models stems from loosening

the coupling on the semantic level. Coupling is important
to cross semantic and pragmatic boundaries, but it limits
scalability. Loosening coupling at these levels is a compro-
mise to tackle the tradeoff between decoupling for scalability

and crossing the boundaries. The cost of this compromise is
a loss in effectiveness while crossing the boundaries, i.e. loss
of some precision and context when processing the events.

Approximate computing has been investigated in the lit-
erature as a response to various problems: time efficiency
such as approximation algorithms where finding an optimal
solution can have a combinatorial time [27], and full integra-
tion such as uncertain schema matching with the realization
that matchers are inherently uncertain [15]. We proposed in
previous work an approximate approach to event processing
that leverages probabilistic matching of events [21, 24].

6. CURRENT APPROACHES TO SEMAN-
TIC COUPLING

Current approaches to semantic coupling are shown in Ta-
ble 2. In the content-based approach, event sources and con-
sumers use the same event types, attributes and values as
assumed in traditional content-based publish/subscribe sys-
tems such as SIENA [5]. The approach has high semantic
coupling between parties and works well in environments
with a low level of data heterogeneity. In the concept-based
approach, participants can use different terms and still ex-
pect event matchers to match them properly thanks to an
explicit knowledge representation that encodes semantic re-
lationships between terms. Examples of knowledge repre-
sentations are thesauri and ontologies as in S-TOPSS [34]
and semantic pub/sub [41]. Building such knowledge repre-
sentations is a time consuming process.

Freitas et al. proposed an approximate query processing
approach for databases based on distributional semantics
[13]. In our previous work [21, 24], we proposed an approx-
imate semantic event processing approach and showed that
the model is suitable when participants agree on some event
types, attributes, or values while performance decreases when
an absolute 100% degree of approximation is required.
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Figure 2: Evaluating IoT semantic normalization: effectiveness (left) and time efficiency (right) [22].
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Figure 3: Thematic event matching model.

7. THEMATIC EVENT PROCESSING
In [22] we proposed an approach for loose semantic cou-

pling based on the use of distributional semantics, free tag-
ging, and approximation. The thematic event processing ap-
proach suggests associating thematic tags that describe the
themes of types, attributes, and values to clarify their mean-
ings as shown in Figure 3. An approximate matcher exploits
the associated tags to parametrize the vector space model
and improve approximations of the meanings in events and
subscriptions.

Evaluation of the matching quality can be achieved by
establishing a gold standard set of subscriptions, events,
and thematic tags, along with known ground truth of true
event matchings. For each subscription, the set of relevant
events is identified. Precision represents the ratio of cor-
rectly matched events versus all the matched events. Recall
represents the ratio of correctly matched events versus all
the relevant ones. The effectiveness of the built software
can be measured by precision, recall, and a derivative mea-
sure that combines both in one number such as the F1Score.
Efficiency can be measured using event throughput which
represents the amount of processed events per a unit of time
in the IoT middleware layer from the sensors to the appli-
cations.

Test events and subscriptions sets can be chosen based on
the use cases. For example, in [22] we have synthesized a
set of around 15, 000 events of up to 10 attribute-value pair
per event, and around 100 approximate subscriptions from

real world smart city deployments in Europe such as the
SmartSantander project [38] which employs a set of sensors
to monitor temperature, noise, traffic, parking, etc.

Figure 2 illustrates the resulting effectiveness and effi-
ciency of the approximate matcher working with a Wikipedia-
based esa. Each cell in the figure shows the result that
corresponds to a combination of numbers of thematic tags
associated with events (the X-axis), and subscriptions (the
Y-axis).

Results show that the thematic approach is limited when
users can provide only a small number of tags for subscrip-
tions, and when hard real-time deadlines are required. Oth-
erwise, results suggest that the use of less terms to describe
events, around 2 − 7, and more to describe subscriptions,
around 2 − 15, can achieve a good matching quality, up to
85%, and throughput, up to 800 events/sec, together with
lower error rates. That is concentrated in the middle left
part of squares in Figure 2 (more red cells). The 100 ap-
proximate subscriptions would cost users an equivalence of
around 48, 000 exact subscription rules. More details on the
approach can be found in [22].

8. BUILDING IOT EVENT SYSTEMS
In [23] an architecture for IoT is presented based on the

idea of thingsonomies and thematic event processing as shown
in Figure 4. The main steps to build the IoT thingsonomies
according to this proposal are:

1. Build a distributional semantic model which enables
the system to automatically establish relationships be-
tween various terms such as ‘water’ vs. ‘fluid’.

2. Use a semantic relatedness measure based on the built
semantic model through a conventional interface such
as REST and JSON [4].

3. Publishers annotate their events with a set of thematic
tags at the data collectors.

4. Subscribers annotate subscriptions with thematic tags.

5. The event engine normalizes events and matches them
to suitable subscriptions.

6. The event engine returns events matching a subscrip-
tion to the subscriber.
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Figure 4: An IoT architecture based on thingsonomies and thematic event processing [23].

9. SUMMARY AND FUTURE WORK
This paper has analyzed the problem of semantic variety

in event processing systems at large scales such as in the IoT.
It has shown how the symbolic semantics used for events and
subscriptions create a coupling of event producers and con-
sumers and thus limits scalability. To loosen semantic cou-
pling, we analyzed the suitability of vector space models of
semantics within approximate and thematic event process-
ing. These models are the basis for an IoT architecture that
tackles variety using the resulting concept of thingsonomies.

Future research challenges include the investigation of more
accurate approximations of meaning spaces, using thematic
projection and variations of it. Research into optimization
and indexing techniques of the proposed models are impor-
tant future work. The extension of the discourse in this
paper from semantic coupling into coupling by context can
further improve the decoupling of event systems. Propaga-
tion of uncertainty values from single event matching into
complex event patterns is also a future direction for research.
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