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To assure rapid adoption of Internet of Things (IoT) applications, it’s important 

to have scalable middleware that can abstract developers and users from the 

IoT infrastructure. Event processing systems could fill this gap between IoT 

infrastructure and application layers. However, semantic coupling poses a 

challenge to scalability in IoT’s highly semantically heterogeneous and dynamic 

environment. Here, the authors propose a solution based on loosely coupled 

producers and consumers enabled with approximate semantic matching of 

events. This approach emphasizes a practitioner’s perspective for building 

software that can tackle the heterogeneity of IoT events.

T he Internet of Things (IoT) builds 
on the success of Internet technol-
ogies to connect physical objects, 

or things, to the Internet and enable 
a plethora of applications such as 
assisted driving, augmented reality, or 
smart and comfortable homes.1 A basic 
requirement to realize the IoT is an 
infrastructure of communication solu-
tions and interoperability standards, 
such as the IETF’s Constrained Appli-
cation Protocol (CoAP).1 The IoT also 
needs middleware that can abstract the 
application developers from the under-
lying technologies; this is crucial to IoT 
applications’ adoption and evolution.1

Event-based technology has played 
an important role in the middleware 
space to enable scalable software archi-
tecture based on its loosely coupled inter-
action model. Nevertheless, event-based 
systems assume a high level of seman-
tic agreement between event producers 

and consumers, which is challenging for 
largely heterogeneous environments such 
as smart cities, because of the difficulties 
establishing common semantic agree-
ments. Current approaches use granular 
semantic models such as ontologies, but 
such models are time consuming to build 
and agree upon, and thus limit scalability.

To address these concerns, here we 
extend an event-based architecture to 
encompass the semantic normalization 
functionality needed in the IoT (crossing 
the semantic boundaries between sys-
tems). It guides practitioners to build IoT 
applications where exchanged events 
convey semantics, and at the same time 
frees parties from rigid agreements. The 
architecture includes a semantic model 
based on the statistical co-occurrence of 
terms in large textual corpora such as 
Wikipedia; thematic tagging of events 
and subscriptions; and an approximate 
probabilistic event matcher.
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The IoT and Event-Based Systems
From a high-level architectural perspective, we 
can divide the IoT into three tiers1:

•	 Sensing and communication. These technol-
ogies form the basic infrastructure for the 
IoT to map the world of things into the world 
of computationally processable information. 
RFID plays a key role within this tier, where 
RFID tags are attached to real-world things 
and RFID readers are responsible for instru-
menting their information into the Internet. 
Communication and networking standards 
such as the IPv6 over low-power wireless 
personal area networks (6LoWPAN) and the 
CoAP protocols1 serve this IoT layer.

•	 Middleware layer. This tier encompasses 
common functionalities and abstracts appli-
cation developers and users from IoT infra-
structure details. Among the technologies to 
contribute to this layer are service-oriented 
architectures (SOA)1 and message-oriented 
middleware (MOM). Event-processing sys-
tems are a more generic version of MOM, 
which supports functionalities such as early 
event filtering, spatiotemporal correlation, 
sequencing, event enrichment, event aggre-
gation, and complex event processing.

•	 Application layer. This layer builds on the 
middleware to provide users with direct and 
potentially domain-specific benefits. The IoT 
promises new domains of applications in 
transportation and logistics, healthcare, smart 
environments, analytics, and personal and 
social media.

In the following we present a concrete sce-
nario, to better explain the challenges of the 
IoT, as well as the advantages of our work.

Motivation
Bob works in the town hall planning department 
of a smart city. He’s interested in finding the 
energy usage of street lights during peak elec-
tricity usage in different areas. He can find such 
information using an expression of an Event 
Processing Language (EPL), such as Esper’s lan-
guage (see http://esper.codehaus.org), as follows:

every a=StreetLightsEvents(
    a.type= ‘energy consumption event’
    and a.area.consumptionPeak=‘true’)
Although the required information sources 

are available from the street lights, the event’s 

semantics differ from one area to another due 
to different sensor manufacturers. For instance, 
events contain terms such as energy consump-
tion and electricity usage to refer to the same 
thing. The scenario requires a large set of rules 
with high definition and maintenance costs to 
cover events’ semantic heterogeneity.

Cross-Boundary Information 
Exchange
In a system of systems such as the IoT, infor-
mation items such as events need to cross sys-
tem boundaries to enable cooperation. Paul 
Carlile2 recognizes two boundary levels that 
might exist in a given knowledge-exchange 
scenario:

•	 A syntactic boundary affects the basic knowl-
edge transfer mechanism between partici-
pants. In a broad sense, it’s concerned with 
data formats, participants’ interaction time, 
and addressing which of these exist in most 
event-based environments (see Figure 1).

•	 A semantic boundary starts to appear when 
new event sources or consumers make some 
meanings unclear or ambiguous. Semantic 
boundaries are inherent in large-scale, open, 
and heterogeneous environments, such as 
the IoT shown in Figure 1. Thus, it’s crucial 
to have semantic normalization, translat-
ing heterogeneous information items into a 
common meaning model for developers.

The IoT requires an open mode of informa-
tion exchange, in which system boundaries 
are crossed frequently. This puts openness as 
an inevitable requirement for IoT technolo-
gies. Event-based systems have great potential 
to contribute to realizing the IoT, due to their 
decoupled nature. Nonetheless, they don’t eas-
ily cross semantic boundaries due to assump-
tions of semantic agreements on terms within 
events and subscriptions. (See the related 
sidebar for others’ semantic normalization 
approaches.)

In the event-based paradigm, event sources 
fire instantaneous and atomic information 
items called events. Event consumers use rules 
or subscriptions to detect events and react to 
them. Events are the only means of interaction 
between sources and consumers. This results in 
decoupling event production and consumption, 
and thus increasing scalability by “removing 
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explicit dependencies between the interacting 
participants.”3

Event-based systems decouple participants 
on three dimensions3:

•	 space decoupling suggests that participants 
don’t need to know each other,

•	 time decoupling means that participants 
don’t need to be active at the same time, and

•	 synchronization decoupling suggests that 
event producers and consumers aren’t blocked 
while producing or consuming events.

The space, time, and synchronization decou-
pling dimensions that Patrick Eugster and his 

colleagues defined3 contribute to event transfer 
across Carlile’s syntactic boundaries.

However, event-based systems can simulta-
neously be tightly coupled by the semantics of 
exchanged events. Traditional deployments of 
event systems assume a mutual agreement on 
event types, attributes, and values to achieve 
semantic normalization, and this forms an 
explicit dependency between participants. For 
example, if a smart city event source marks an 
event with the type parking space occupied, all 
event consumers would have to use this exact 
event type in their rules. A new event consumer 
to the system can’t use a rule with the term 
garage spot occupied to handle such events.

Figure 1. Boundaries to event exchange in (a) a small-scale known environment, and (b) a large-scale open environment 
such as the Internet of Things (IoT). Because systems’ boundaries are crossed frequently, openness is an inevitable 
requirement for IoT technologies.
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Current Approaches for Semantic Normalization

We compiled a list of current semantic normalization 
approaches in Table 1. In the content-based approach, 

event sources and consumers use the same event types, attri-
butes, and values as assumed in traditional content-based pub-
lish/subscribe systems such as Scalable Internet Event Notification 
Architectures (SIENA).1 The approach has high semantic cou-
pling between parties and works well in environments with a 
low level of data heterogeneity.

In the concept-based approach, participants can use different 
terms and still expect event matchers to pair them properly, 
thanks to an explicit knowledge representation that encodes 
semantic relationships between terms. Examples of knowledge 
representations are thesauri and ontologies, as in the Seman-
tic Toronto Publish/Subscribe System (S-TOPSS)3 and semantic 
pub/sub.4 Building such knowledge representations is a time-
consuming process.

André Freitas and his colleagues proposed an approximate 
query-processing approach for databases based on distribu-
tional semantics.7 In our previous work,5,6 we proposed an 
approximate semantic event-processing approach and showed 
that the model is suitable when participants agree on some 
event types, attributes, or values, while performance decreases 

significantly with an absolute 100 percent degree of required 
approximation.
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Table 1. Approaches to semantic normalization.2

Criteria Content-based1 Concept-based3,4
Approximate semantic 
event processing5,6

Thematic event 
processing2

Matching Exact string matching Boolean semantic 
matching

Approximate semantic 
matching

Approximate semantic 
matching

Semantic

coupling

Term-level full  
agreement

Concept-level shared 
agreement

Loose agreement Loose agreement

Semantics Not explicit Top-down  
ontology-based

Statistical distributional 
semantics

Statistical distributional 
semantics

Domain specificity  
cost

Defining a large number 
of domain rules

Defining a domain-
specific ontology

Indexing a domain-
specific corpus

Parametrizing the 
vector space of an 
open domain corpus

Effectiveness  
(F1 score)

100% Depends on the 
domains and number  
of concept models

Depends on the  
corpus

Depends on the 
corpus and theme 
tags. Outperforms 
nonthematic 
approximate approach.

Cost Defining a large number 
of rules and establishing 
shared agreement on 
terms

Establishing shared 
agreement on 
ontologies

Minimal agreement on  
a large textual corpus

Minimal agreement on 
a large textual corpus 
and associating good 
thematic tags

Efficiency 
(throughput)

High Medium to high Medium to high Medium to high
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Requirements, Thematic Event 
Processing, and Thingsonomies
We tackle the following requirements to address 
event variety in IoT middleware and application 
layers:

•	 Low cost for integrating and accessing het-
erogeneous IoT devices. A main task for 
integration is normalizing several heteroge-
neous data items into common models.

•	 Effective and near real-time processing of 
IoT events. Processing middleware should be 
able to match items of interest with a high 
detection rate of true positives and negatives 
and with low latency.

Our thematic event-processing approach 
builds on the analogy of the widespread use 
of social tagging, or folksonomies.4 It has been 
observed that imposing fixed or agreed-upon 
top-down taxonomies on users to describe Web 
content (such as images) is unfeasible.4 Instead, 
users tag and discover content via bottom-up 
and user-generated tags called folksonomies. 
Consequently, many social-tagging platforms 
have flourished, such as Flicker, Twitter, and 
Delicious.

We suggest associating thematic tags that 
describe the themes of types, attributes, and 
values and clarify their meanings. We call these 
tags thingsonomies, for things and taxonomies. 
The hypothesis is that associating events and 
subscriptions with extra tags improves effec-
tiveness and time efficiency in heterogeneous 

environments and domain-specific knowledge 
exchange. Figure 2 shows an example thing-
sonomy for tagging energy-consumption events 
coming from a laptop.

Figure 3 illustrates the thematic event-
processing approach’s main components. 
Thematic events can cross semantic boundar-
ies because first, they free users from a pri-
ori semantic top-down agreements and thus 
enable event exchange across such boundar-
ies, and second, they carry approximations 
of event meanings composed of payloads and 
thematic tags, which when combined, carry 
less semantic ambiguities. An approximate 
matcher exploits the associated thematic tags 
to improve the quality of its uncertain match-
ing. In the following, we detail more about 
the components and their functions in steps 1 
through 6.

Step 1
The first step in designing an IoT architecture 
enabled with semantic normalization is to build 
a semantic model that enables the system to 
automatically establish relationships between 
various terms such as “computer” versus “lap-
top.” Our approach adopts a distributional 
model of semantics based on statistical index-
ing of a large corpus of textual documents (see 
the “Distributional Semantics” sidebar). Such a 
model is easy to build automatically,5 and the 
practitioner’s main task is selecting the corpus. 
We can start with an initial documents corpus, 
such as Wikipedia, and incrementally revise it 
to suit the use cases.

Step 2
The next step is to expose a semantic-relat-
edness measure based on the built semantic 
model through a conventional interface such as 
REST and JavaScript Object Notation (JSON).5 
For example, a request for relatedness between 
“electricity” and “energy” is invoked through 
the API

http://example.com/esa?term1=energy& 
term2=electricity
with the result being returned as a JSON object 
as follows:

{“relatedness” : 0.154}
Such a result makes sense only in compari-

son with the relatedness of other terms, such 
that “electricity” is closer to “energy” than to 
“office,” for instance. 

Figure 2. An example thingsonomy for tagging a 
device’s energy-consumption events. Associating 
events and subscriptions with extra tags 
improves effectiveness and time efficiency in 
heterogeneous environments and domain-specific 
knowledge exchange.
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Figure 3. Architecture for loosely coupled semantic normalization for Internet of Things software. We 
enumerate more about the components in steps 1 through 6 in the main text.
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Distributional Semantics

Distributional semantics is based on the hypothesis that 
similar and related words appear in similar contexts. Dis-

tributional models are quite useful for assessing semantic simi-
larity and relatedness between terms. A semantic measure Web 
service (see Figure 3 in the main text) is a function that quanti-
fies the similarity/relatedness between two terms and typically 
has its values in [0, 1]. We can construct distributional models 
automatically from the statistical co-occurrence of words in 
a corpus of documents. This model is formalized as a vector 
space, which provides a computationally efficient framework 
for calculating similarity scores and represents a good fit for 
the requirements of loose semantic coupling and real-time per-
formance for an event-based Internet of Things.

A widely used example is the distributional Explicit Seman-
tic Analysis semantic measure esa, constructed from a Wiki-
pedia corpus.1 In a nutshell, the Wikipedia-based esa builds an 
index of words based on the Wikipedia articles they appear 
in, hence the indexing in Figure 3.2 A word becomes a vector 

of articles, and the more that articles are shared between 
two words, the more related the words are. For example, 
esa(“parking”, “garage”) > esa(“parking”, “energy”), because 
the former appears frequently in common articles. Typically, 
semantic relatedness between a pair of terms is measured 
using cosine distance between the two vectors representing 
the two terms. In our thematic model, the esa measure is also 
parameterized with the theme tags. We use those tags to proj-
ect the terms’ vectors (to get more domain-specific meaning 
vectors), which we then pass to the distance function.
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Step 3
In the third step, publishers accompany their 
events with a set of thematic tags at the data 
collectors. Such tags represent approximately 
the domain and meaning of the terms used to 
describe the event attributes and values. Let an 

event of an increased energy consumption be 
represented as follows:

{type: increased energy consumption 
	 event,

measurement unit: kilowatt hour,
device: computer, office: room 112}

Evaluating IoT Semantic Normalization

We evaluate the normalization quality achieved by estab-
lishing a gold standard set of subscriptions and events of 

known ground truth for true matchings. For each subscription, 
we identify the set of relevant events. Precision represents the 
ratio of correctly matched events versus all matched events. 
Recall represents the ratio of correctly matched events versus 
all relevant ones. We measure the built software’s effective-
ness by precision, recall, and a derivative measure that com-
bines both in one number, such as the F1 score. We measure 
efficiency using event throughput, which represents the amount 
of processed events per time unit in the Internet of Things 
(IoT) middleware layer from the sensors to the applications.

We chose test events and subscription sets based on the 
use cases. For example, in previous work,1 we synthesized a 
set of around 15,000 events of up to 10 attribute-value pairs 
per event, and around 100 approximate subscriptions from 
real-world smart city deployments in Europe (such as the 
SmartSantander project,2 which employs a set of sensors to 
monitor temperature, noise, traffic, parking, and so on).

We expanded seed events into the final set, and generated 
ground truth matching and thematic tags. Figure A illustrates 
the resulting effectiveness and efficiency of the approximate 
matcher working with Wikipedia-based esa. Each cell in the 
figure shows the result that corresponds to a combination of 

numbers of thematic tags associated with events (the x-axis), 
and subscriptions (the y-axis).

Results show that the thematic approach is limited when 
users provide only a small number of tags for subscriptions, and 
when the approach requires hard real-time deadlines. Other-
wise, results suggest that the use of less terms to describe events 
(around 2–7), and more to describe subscriptions (around 2–15), 
achieves a good matching quality (up to 85 percent) and through-
put (up to 800 events/second), together with fewer error rates. 
Good performance results are concentrated in the middle left 
part of the squares in Figure A (more red cells).

Results also show that the approach is scalable to highly 
semantically heterogeneous environments, because of the 
lightweight amount of tagging required and the low number of 
approximate subscriptions, which is about 100 subscriptions. 
This would cost users an equivalent of around 48,000 exact 
subscription rules.
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Figure A. Evaluating Internet of Things semantic normalization: (1) effectiveness and (2) time efficiency. Performance varies with tags with 
effectiveness as high as 85 percent and efficiency of 800 events/second.

0 5 10 15 20 25 30
0

10

20

30

Number of event theme tags

N
um

be
r 

of
 s

ub
s.

 t
he

m
e 

ta
gs

20%

40%

60%

80%

F1 score
(%)

0 5 10 15 20 25 30
0

10

20

30

Number of event theme tags

N
um

be
r 

of
 s

ub
s.

 t
he

m
e 

ta
gs

200

400

600

800

Throughput
(events/sec)

(1) (2)



Thingsonomy: Tackling Variety in Internet of Things Events

MARCH/APRIL 2015� 17

An example of thematic tags for this event is
{computer, appliances, building, energy}

Step 4
Next, subscribers associate their subscriptions 
with thematic tags. We use a language that 
introduces the tilde ~ operator, which signi-
fies that the user wants the matcher to match 
the term used or any term semantically similar 
to it. We represent a subscription for increased 
energy consumption as follows:

{type= increased energy usage event~,
device~= laptop~, office= room 112}

Example thematic tags are
{power, computers}

Step 5
In the fifth step, the system normalizes events 
and matches them to suitable subscriptions. 
The example event and subscription don’t use 
exactly the same terms to describe the type 
or device, hence “energy consumption” versus 
“energy usage,” and “computer” versus “laptop.” 
Nevertheless, the matcher shouldn’t consider 
the event as a negative match to the subscrip-
tion. For this reason, our model employs a 
probabilistic matcher that uses a measure to 
estimate semantic similarity and relatedness 
between various terms. Functionally, it tries to 
establish possible mappings between subscrip-
tion predicates and event tuples. For example, 
the matcher establishes the most probable map-
ping of previous examples as follows:

σ* = {�(type = increased energy  
consumption event ↔ type: 
increased energy usage event), 
(device~ = laptop~ ↔ device: 
computer),(office = room 112 ↔  
office: room 112)}

Step 6
This final step represents the return of events 
matching a subscription to its initiator. The 
matcher establishes probabilistic matching, and 
as a result, forwards the normalized event along 
with an uncertainty value that reflects the 
amount of semantic normalization conducted 
all the way from publishers to subscribers.

To evaluate the proposed architecture, we 
used a framework conceived from evaluation 
methodologies of information retrieval search 
engines. The framework is built on the concepts 
of matching precision, recall, and F1 score along 

with throughput, as we discuss in the sidebar, 
“Evaluating IoT Semantic Normalization.”

Design Considerations
The degree of approximation is the number 
of tilde ∼ operators used in subscriptions. We 
use it to quantify the engine’s approximation 
during semantic normalization. The proposed 
approach works better and needs fewer tags 
with lower degrees of approximations, given 
that exact string matching can help filter many 
events. For example, in some applications, we 
assume several agreements, such as the units of 
measurements in smart grids.

Besides, using semantic-relatedness services 
instead of exact string comparison is costly 
from a time-performance viewpoint. Thus, 
applications with hard real-time deadlines (for 
example, some security systems) might not 
be ideal applications. It might be better to pay 
the cost of establishing semantic agreements 
and use a traditional publish/subscribe system 
rather than leaving semantic approximation to 
the matcher.

D espite the challenges of building IoT software 
that overcomes event semantic variety in a 

loosely coupled manner, there are many practical 
reasons to build such software via thingsonomies 
for semantic normalization in an event-based 
middleware. Future work is to test the suitability 
of various corpora with respect to each domain, 
such as energy and traffic. This also includes the 
use of cloud computing and parallel processing 
to improve efficiency within applications that 
have real-time constraints.�
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