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Abstract—Spatial crowdsourcing uses workers for performing
tasks that require travel to different locations in the physical
world. This paper considers the online spatial task assignment
problem. In this problem, spatial tasks arrive in an online
manner and an appropriate worker must be assigned to each
task. However, outcome of an assignment is stochastic since the
worker can choose to accept or reject the task. Primary goal of the
assignment algorithm is to maximize the number of successful as-
signments over all tasks. This presents an exploration-exploitation
challenge; the algorithm must learn the task acceptance behavior
of workers while selecting the best worker based on the previous
learning. We address this challenge by defining a framework for
online spatial task assignment based on the multi-armed bandit
formalization of the problem. Furthermore, we adapt a contextual
bandit algorithm to assign a worker based on the spatial features
of tasks and workers. The algorithm simultaneously adapts
the worker assignment strategy based on the observed task
acceptance behavior of workers. Finally, we present an evaluation
methodology based on a real world dataset, and evaluate the
performance of the proposed algorithm against the baseline
algorithms. The results demonstrate that the proposed algorithm
performs better in terms of the number of successful assignments.

Keywords—spatial crowdsourcing, task assignment, multi-
armed bandit

I. INTRODUCTION

The popularity of crowdsourcing has encouraged the use
of potentially large numbers of people for problem solving, in
areas such as human computation [9], citizen actuation [4], and
participatory sensing [13]. People contribute by performing
tasks in either the virtual or the physical environments. Spatial
crowdsourcing is a form of crowdsourcing that primarily
deals with the tasks in physical environment. A spatial task
requires the worker to travel to a specific location in order
to perform it. There are three types of interacting agents in
spatial crowdsourcing: requesters, workers, and the platform.
A requester submits tasks with their associated locations to
the platform. A worker receives and performs the spatial tasks,
after registering with the platform. The platform serves as a
mediator that provides services such as task-worker matching,
quality control, and reputation management.

Consider a scenario in which a requester is interested in
collecting high quality and representative photos of real life
events. The events are being reported at various locations in
a disaster hit region, as shown in Figure 1. The events are

Fig. 1: Example of spatial crowdsourcing on the map of Haiti
after the 2010 earth quake. A new spatial task (in blue) requests
recent photos of a building at the indicated location.

reported after irregular intervals, and the requester is interested
in the coverage of all events. After an event is reported,
the requester submits a corresponding spatial task. The task
requires a worker to visit a specific location, take photos,
and upload them. The platform assigns an appropriate worker
to the task and notifies her. The worker either accepts or
rejects the task depending on her situation. If accepted, the
worker uploads the photos after some time. This scenario
poses some specific challenges to the platform in terms of the
worker assignment. The dynamic arrival of tasks means that
the platform has no prior knowledge of the quantity and timing
of tasks. The passive nature of worker interaction dictates that
the workers do not actively visit the platform to seek tasks. The
outcome of an assignment is stochastic; therefore, the platform
must make assignment decisions under uncertainty.

Existing approaches have primarily focused on exploiting
the spatial features of tasks and workers in the assignment
process; either to maximize the quantity of assignments [12]
or to maximize the success rate of assignments [19]. These
approaches do not adapt the assignment process based on the
outcome of previous assignments. Adaptive assignment ap-
proaches in other domains, such as crowdsourced classification
tasks, do not consider the spatial context [10]. We consider the
spatial task assignment as an online learning and optimization
problem, by calling it the online spatial task assignment
problem. The problem requires designing an algorithm for
sequential assignment decisions. The objective of such an
algorithm is to maximize the number of successful assignments



over time, while learning from the outcomes of previous
assignments. This posses an exploration-exploitation trade-
off: the assignment algorithm must learn the task acceptance
behavior by sampling different workers, while selecting the
workers who have already shown willingness to accept.

The online spatial task assignment problem is closely
related to the multi-armed bandit problem. In the multi-armed
bandit model an agent simultaneously acquires knowledge
about the available choices while making optimum selection
decision among those choices. The contextual multi-armed
bandit uses information from external sources for improving
selection decisions; it has been successfully applied in domains
such as online news recommendation, online ad placement,
and adaptive packet routing [16]. Our proposed solution is
inspired by this literature and applies it to the domain of spatial
crowdsourcing. The specific contributions of this paper are
summarized as follows:

• We present IMIRT (Individualized Models for In-
telligent Routing of Tasks): a framework for online
spatial task assignment. The framework motivates the
need for online learning and optimization in spatial
crowdsourcing. We provide a multi-armed bandit for-
malization of the assignment problem. We detail the
exploitation-exploration trade-off for the assignment
decisions, and describe the performance metrics for
comparing different assignment algorithms.

• We propose an individualized linear model for learn-
ing task acceptance behavior of a worker, based on
the observed outcome of previous assignments. We
extend the multi-armed bandit algorithm with the
proposed worker model and spatial information. The
algorithm learns and exploits the worker preferences
for routing tasks to workers with a higher likelihood
of acceptance.

• We present an evaluation methodology to validate the
proposed algorithms based on a real-world dataset.
The goal of the experiments is to demonstrate the
effectiveness of the proposed assignment algorithm,
in terms of maximized success rate of assignments.
The results suggests that the proposed algorithm does
perform better than the baseline algorithms.

The rest of this paper is organized as follows. Section II
provides an overview of the task routing challenge in spatial
crowdsourcing. Section III describes the proposed IMIRT
framework. Section IV presents the multi-armed bandit for-
malization of the online spatial task assignment problem.
Section V describes the evaluation methodology and Sec-
tion VI discusses the results of the experiment. Section VII
summarizes the literature related to this work. Section VIII
concludes the paper and discusses plans for future work.

II. BACKGROUND

Intelligently matching tasks with the best workers is a
fundamental challenge of crowdsourcing, also known as task
routing [9], [8], [19]. The specific approach to task routing
depends on factors such as worker expectation, worker inter-
action, number of tasks, and requester objectives. The majority
of existing crowdsourcing platforms employ a pull approach

TABLE I: Comparison of existing frameworks for online
assignment in crowdsourcing based on the push approach.

Framework Optimization Learning Spatial Decision
Ho & Vaughan [11] Quality Reliability Choose Task

Kazemi & Shahabi [12] Coverage Yes Find Match

Mehta & Panigrahi [17] Coverage Find Match

IMIRT Coverage Acceptance Yes Choose Worker

to task routing, where workers self-assign the tasks through a
search and browse interface [5]. The pull approach is prone
to search friction and starvation issues [15], [8], possibly due
to the inherent design of the interaction mechanism. Search
friction arises when workers have difficultly finding the right
tasks for themselves or vice versa. Starvation occurs when
no worker chooses a task and eventually the task expires
without completion. These issues can be addressed through the
alternative push approach that algorithmically controls the task
routing process [12], [19]. The push approach relies upon the
knowledge about task attributes and worker characteristics to
find suitable matches, while optimizing an objective function.
We focus our attention on the push approach due to its
compatibility with the requirements of our motivating scenario.

Table I compares the existing frameworks for the push
approach of task routing. All of the frameworks assume an
online setting for assignment decisions, where either tasks or
workers arrive dynamically. The online setting of assignment
is characterized by the sequential decision making under un-
certainty. The knowledge about tasks and workers is revealed
iteratively in the online setting, as opposed to offline setting in
which case all information is available a priori. The specific
characteristics of each framework are described as follows:

• The online task assignment framework assumes that
workers actively visit the platform to request tasks
[11], [10]. The assignment decision is made on the
arrival of each worker. The objective of the assignment
algorithm is to choose a task such that the possibility
of a correct outcome is maximized. An adaptive
algorithm based on primal-dual technique has been
proposed for classification tasks [10]. Classification
tasks require a worker to identify the correct categories
for a set of items, such as images.

• The online stochastic matching framework assumes
that the tasks and workers are nodes in a graph [17].
When a node arrives it must be matched with another
node, where the stochastic outcome of matching is
considered as the weight of the edge between the
two matched nodes. The objective of the matching
algorithm is to maximize the number of successful
assignments.

• The maximum task assignment framework assumes
that worker announce their availability and locations
to the platform through mobile devices [12]. The
assignment process runs after a fixed interval, during
which the newly arrived tasks and worker are matched.
The objective of the assignment algorithm is to max-
imize the number of matchings, while considering
spatial features as well as the capacity constraints



Fig. 2: The architecture of IMIRT framework; designed for
online spatial task assignment in spatial crowdsourcing.

imposed by workers. A non-adaptive algorithm have
been proposed by formalizing the assignment problem
as the maximum flow problem [12].

Table I highlights that fact that none of the frameworks
satisfies all the requirements of our motivation scenario. To
address this gap we propose a new push-based framework for
task routing, as detailed in the next section.

III. IMIRT FRAMEWORK

We begin by describing the IMIRT framework that assumes
the online spatial task assignment problem. Figure 2 gives an
overview of the IMIRT framework and its main components.
The framework assumes submission of tasks from requesters,
through appropriate interfaces and protocols. The tasks ar-
rive in an online manner, therefore the framework has no
prior knowledge about the number of tasks arriving at any
instance in time. Each new task t is transformed to a local
representation and stored in the local database as a quadruple,
t = < desciption, location, expiry, type >. The description is
a textual attribute that lists the instructions to be followed for
correctly performing the task. The location attribute defines
the coordinates of the location associate with the task. The
expiry attribute is a time-stamp defining the deadline for task
completion, after which the task becomes invalid. The type
attribute indicates the type of task.

The profiler component is responsible for managing the
requisite information about all registered workers. The profiler
maintains a separate profile for each worker w as the following
triple, w = < history,model, location >. The history attribute
is a vector that stores the number of tasks assigned to the
worker and the number of tasks accepted by the worker. The
model is a set of the vectors that stores the variables specific
to the task acceptance behavior of the worker. The location
attribute stores the last reported location of the worker.

The primary function of the router component is to assign
workers to the arriving tasks. For each task t, the router uses
the worker profile to calculate the expectation of assignment
success for each worker; then it chooses a worker1 w such
that the assignment success rate is maximized in the long term.
Next, the router forwards the task t to the worker w and stores
the assignment tuple < t,w > in the local database.

The interface component resides on the worker’s personal
device, such as a mobile or a tablet. It receives the task
from the router and generates an alert. The worker can then
choose to accept or reject the assigned task. If the worker
ignores a task without providing any explicit response then the
task is considered to be rejected by default, after the expiry
time lapses. An accepted task is rendered on the worker’s
device using dynamic forms. The worker performs the task
by following the instructions and submits the response, that is
then forwarded back to the requester. It should be noted that if
a task is rejected before the deadline the router might re-assign
the task as a new arrival.

A. Router Design

The fundamental challenge of the router is to balance the
exploration-exploitation trade-off. The router could repeatedly
select a worker which seems to have the best acceptance rate
considering previous assignments, also known as exploitation.
However, due to the uncertainty of knowledge about workers
this seemingly best worker might be the suboptimal choice.
Alternatively, the router might choose another worker for the
purpose of exploration, hence deliberately making a potentially
suboptimal choice. This exploration might adversely affect the
task acceptance in the short term but the additional knowledge
about workers can help improve assignment choices in the
long-term. Understandably, neither a pure exploration nor
a pure exploitation strategy can produce the best results.
Therefore, a good assignment algorithm strikes the right
balance between exploration and exploitation.

B. Performance Metrics

The passive nature of worker interaction in the IMIRT
framework makes the success of assignment susceptible to
external factors. For instance, it is possible that no worker
is nearby the task location. A worker might be occupied with
some other work. A worker might even ignore the task due
to the communication problems e.g. delayed email, disabled
notifications, etc. We define worker success rate (WSR) as the
ratio of the number of tasks accepted and the number of tasks
assigned to a worker. The primary metrics of the algorithm
performance are

• Assignment Success Rate (ASR) is defined as the
ratio of the number successfully accepted tasks against
the total number of assigned tasks . We do not
consider the quality of tasks performed, as a factor
of assignment success, since it may not be directly
observable due to the open and spatial nature of tasks.

• Average Travel Distance (ATD) is defined as the ratio
of the sum of the distance traveled for all tasks against

1Assigning multiple workers to a task might also maximize the success rate;
however, we focus on single task-worker assignment in this work



the total number of assigned tasks . This distance can
also be considered as the cost of performing a task
in case of paid crowdsourcing. However, we focus
on the volunteered crowdsourcing hence distance is
a secondary performance metric.

IV. ONLINE SPATIAL TASK ASSIGNMENT

In this section, we describes the online spatial task assign-
ment problem in further detail. Each task t is spatial by nature,
that may require the worker to travel to a physical location.
There is a fixed set of workers W = {w1, ..., wm}, along with
their last known locations. If the worker wj is assigned to the
task ti, then the outcome of the assignment is a binary variable
yi,j that indicates the worker’s choice to accept or reject the
task.

yi,j =

{
1 with probability pi,j
0 otherwise

The probability pi,j defines the likelihood of assignment
success. A worker can be assigned to multiple tasks, meaning
that the assignment algorithm can identify the best workers and
choose them repeatedly. This raises the issue of overloading a
worker with many tasks. It should be noted that the worker can
choose to reject the tasks if already busy. We do not discuss
the details of implementation for the sake of brevity.

A. Offline Formalization

We first consider a simplified offline setting of the assign-
ment problem, to better our understanding. In this setting, the
router has access to a set of tasks T and a set of workers W ,
such that the number of task is |T | = n, the number of workers
is |W| = m, and n >> m. Additionally, the outcome yi,j of
each assignment is known a priori. The assignment algorithm
must find an assignment of tasks and workers such that the
maximum number of tasks are accepted. Let ai,j denote the
variable that is 1 if worker wj is assigned to the task ti and
0 otherwise. We express the offline assignment problem as a
linear program with the following objective function:

max
n∑
i=1

m∑
j=1

yi,jai,j (1)

s.t.
m∑
j=1

ai,j = 1 ∀i

ai,j ∈ {0, 1} ∀(i, j)

This mathematical programming based formalization of the
offline assignment problem can be solved optimally due to
the totally unimodular constraint matrix; although, finding an
optimal solution to integer programs is considered an NP-Hard
problem in general. For instance, the Hungarian method can
be used to find the solution in polynomial time [14].

B. Multi-armed Bandit Formalization

Now we formalize the online assignment problem, as
inspired by the multi-armed bandit (MAB) framework [18].
The MAB assumes a player who wishes to play a slot machine
that has multiple arms. The player chooses to play an arm and
receives the reward in return. If arms are stochastic then the

1: procedure SpatialUCB(α,W)
2: // INITIALIZATION
3: m← |W|
4: for all wj ∈ W do
5: Aj ← I2,2
6: bj ← 02,1

7: end for
8: // MAIN LOOP
9: for i← 1 to n do

10: Observe the distance vector Di = (di,1, ..., di,m)
11: Observe the type variable ei
12: for all wj ∈W do
13: Xi,j ← (di,j , ei)

>

14: β̂j = A−1j bj
15: end for
16: Choose worker w ∈ W that optimizes following

wa = arg max
wj∈W

β̂
>
j Xi,j + α

√
X>i,jA

−1
j Xi,j

17: Observe the outcome yi,a for worker wa
18: Aa ← Aa +Xi,jX

>
i,a

19: ba ← ba + yi,aXi,a

20: end for
21: end procedure

Fig. 3: The SpatialUCB algorithm.

value of the reward depends on the distribution of reward for
each arms. The primary goal of the player is to maximize her
reward over a fixed number of rounds. Naturally, this poses
an exploration-exploitation trade-off while choosing an arm to
play.

In our formalization, the pool of workers W is considered
the multi-armed bandit such that each arm corresponds to a
worker. An assignment ai,j is equivalent to playing an arm,
where as the outcome of assignment yi,j is the resulting
reward. For a dynamically arriving task, choosing a worker
with the highest expectation of yi,j leads to the maximization
of the assignment success rate. As opposed to the offline
setting, knowledge about tasks and workers is revealed on task
arrival in the online setting. The spatial features of task and
workers are revealed before assignment and the outcome of
the assignment is revealed afterwards.

The standard form of multi-armed bandit problem assumes
a fixed number of rounds, however we consider the case where
the number of incoming tasks is unknown. The standard form
does not consider any additional information, during each
round. Whereas our formulation is inspired by the contextual
bandit model [16], that includes external information into the
assignment process. For instance, the location attributes of task
and worker can be considered the contextual information that
might be useful for making assignment decisions.

The assignment process proceeds in discrete iterations i ∈
{1, 2, 3, ..., n}, where each iteration i is performed at the time
of task arrival. The following steps are performed during each
iteration:

1) The algorithm considers the current task ti and the
current pool of workers W together with a set of
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Fig. 4: Distributions of users against check-ins in the Gowalla dataset and comparison of distance with check-ins and highlights.

vectors Xi,j’s. Each vector Xi,j contains the features
defined according to the spatial attributes of the task
and workers.

2) The algorithm chooses a worker w ∈ W for the
current task ti, based on the spatial contextual and
the observed outcome of the previous iterations. For
each assignment the algorithm observes the outcome
yi,j ∈ {0, 1}, which depends on the current task and
the chosen worker.

3) The algorithm improves its assignment strategy based
on the outcome of the current assignment. The al-
gorithm does not observe any information from the
workers that are not chosen for assignment i.e. w 6=
wj , which is a fundamental assumption of the multi-
armed bandit.

In the above process, the assignment success rate of an
assignment strategy after I iterations is defined as

ASR(I) =
1

I

I∑
i=1

yi,w (2)

where yi,w is the outcome observed only for the assigned
worker. Similarly, the expected optimal success rate ASR∗(I)
is defined according to the outcome yi,w∗ for the worker w∗
chosen by the optimal offline solution. The regret after I
iterations is defined as

R(I) = ASR∗(I)−ASR(I) (3)

The assignment algorithm should employ an assignment
strategy which minimizes the regret. Alternatively, our goal is
to design an algorithm such that the ASR(I) is maximized.

C. Assignment Algorithm

The multi-armed bandit algorithms have been widely stud-
ied under the assumptions of stochastic arms [1]. It is assumed
that the reward for each arm is independent and identically
distributed, according to some known statistical distribution2.
Optimal arm selection strategies have been proposed under
Markov setting [6], which are considered to be computationally
expensive. Alternatively, most of the applied research work
has focused on approximate solutions [20]. We highlight some

2Adversarial arms do not make any assumptions of the reward distribution;
however, adversarial workers are not in scope of this work

of the most widely used algorithms employing approximation
strategies.

Algorithms based on semi-uniform strategies alternate be-
tween exploration and exploitation phases. The most simplest
algorithm within the semi-uniform strategies is the ε−greedy
algorithm, which selects the best arm during 1−ε proportion of
the iterations and a random arm is selected during ε proportion
[20]. Probability-matching strategies select arms based on the
probability distribution that measures the likelihood of each
arm being close to the optimal arm, for instance the SoftMax
algorithm [20]. Another group of algorithms calculate the
confidence interval on the expectation of reward; then select
the arm with the highest upper confidence bound, hence known
as UCB algorithms [1], [20]. All of the discussed strategies rely
entirely on the observed rewards of previous played arms for
the next iteration, therefore they are categorized as the context-
free algorithms.

We emphasize that the main source of uncertainty in online
spatial task assignment is the outcome of assignment yi,j .
An assignment algorithm could follow a simplistic approach
by assuming that each worker has fixed behavior of task
acceptance, i.e., pi,j = pi′,j for any i and i′. In such a case,
the success rate of each worker can be modeled as a Binomial
process with parameter pj . Given the spatial contextual Xi,j

for the task ti and worker wj , we exploit this information to
improve the assignment algorithm. We assume that the task
acceptance behavior, of each worker, is linear over spatial
contextual vector. Therefore, the expectation of assignment
success is defined as below

E[yi,j |Xi,j ] = β>j Xi,j (4)

The vector βj defines the unknown worker specific co-
efficients that need to be learned from observed outcomes.
On one hand, the objective of the assignment algorithm is to
choose a worker with highest expectation of yi,j . On the other
hand, the algorithm must learn the coefficient in βj for each
worker by assigning tasks to unexplored workers. One such
algorithm is the LinUCB algorithm, that uses ridge regression
over observed data for learning the coefficients on the linear
model [16]. We adapt the LinUCB algorithm with two variables
from the spatial context. The first is a numerical variable
di,j ∈ R+ that quantifies the distance between the current task
ti and a worker wj . The second a categorical variable ei that
indicates the type of task. We define the spatial context vector



as Xi,j = (di,j , ei)
> and propose the SpatialUCB algorithm,

as shown in Figure 3. The parameter α controls the intensity
of the confidence bound. A reasonable value of α can be found
with the help of domain specific experimentation.

V. EVALUATION METHODOLOGY

In this section, we present the details of an evaluation
methodology based on a real-world dataset. There is a general
lack of openly available datasets that describe the behavior of
workers in spatial crowdsourcing scenarios. More importantly,
the large scale deployment of prototypes for the purpose of
experimentation is prohibitively expensive and time consum-
ing. Existing research has generally circumvented this issue by
adopting datasets from location-based social networks, for the
purpose of evaluating spatial task assignment [19], [5], [12].
We follow a similar approach to evaluate the performance of
various assignment algorithms. First we describe our dataset
and the preprocessing steps of preparing it for the evaluation.
Then, we list the algorithms compared during the experiments.

A. Dataset

We used a real-world dataset based of a location-based
social network; Gowalla. This dataset contains data about
people who have voluntarily reported their visits to various
locations. The data was collected for locations in the New
York city during October 2011. The dataset contains 19,183
users, 30,367 spots, 2,767 highlights, and 357,753 check-ins.
Each spot is a geo-referenced location in New York city. A
highlight represents a particular tag associated to a spot by a
user. A check-in represents the visitor relationship between a
user and a spot.

Similar to the existing literature [12], [19], we use the
dataset to simulate a spatial crowdsourcing scenario. We
assume that the users in the dataset are the volunteering crowd
workers. We also consider all unique spots in check-ins data
as spatial tasks, requiring physical travel. A check-in indicates
that worker has traveled to the location and performed the task.
Furthermore, we consider all unique spots in highlights as a
spatial tasks which do not necessitate actual travel. A highlight
indicates that a worker has performed the task without travel.
Finally, we consider the last spot visited by each worker as
her current location. As discussed earlier, we consider two
spatial features i.e. distance and task type. The type feature is
represented as a binary indicator variable, 1 for check-in and
0 for highlight. The distance feature is based on the Euclidean
distance between coordinates of the task and the worker.

We analyzed the check-in and highlight behavior of users.
Figure 4a shows the distribution of the number of check-ins
by each user on a logarithmic scale. The distribution shows
the Zipf’s law behavior for the number of unique check-
ins by a user; the majority of users have very low activity.
This behavior is commonly observed in various physical and
social phenomena. We excluded the long tail of low activity
users by selecting top ranked users based on their check-
ins and highlights. The resulting dataset had 90 users with
relatively high levels of activity. The distribution of check-
ins, for selected users, is shown in Figure 4b. This group of
users forms the pool of worker in our spatial crowdsourcing
scenario. A worker’s stochastic behavior of task acceptance is
modeled by the corresponding check-ins and highlights [19].

We further analyzed the relationship between the distance
of a spot from users with their check-ins and highlights. Fig-
ure 4c shows the number of check-ins against the average dis-
tance from user’s current spot. Clearly, the check-in behavior
varies across users. Some users have higher number of check-
ins with in 5-10 kilometers, while other users have visited spots
as far as 25 kilometers away. Conversely, there are users who
visit very small number of spot irrespective of the distance.
The average distance shows a negative correlation with the
number of check-ins. Overall this behavior is representative of
worker dynamics in spatial crowdsourcing; more tasks tend to
be completed in the near vicinity of workers [12]. The behavior
for highlights is similar for all users, as shown in Figure 4d.
Again the majority of users are clustered around the bottom
left corner to indicate the majority of highlights are in the near
vicinity of workers.

B. Compared Algorithms

We compared the following algorithms during the experi-
ments to evaluate their relative performance:

• ε−greedy: This algorithm chooses a random worker
with probability ε, otherwise the worker with the
highest WSR is chosen. Each worker’s WSR is calcu-
lated from history of previous assignments [1]. The
parameter ε controls the rate of exploration. High
values of ε result in high exploration.

• Softmax: This algorithm chooses a worker with a
probability that is proportional to its previous WSR
[2]. It takes τ parameter, called the temperature, that
moderates the degree to which the worker with the
highest expectation is chosen. Higher values of τ
means more exploration of workers.

• Exp3: This algorithms is a variant of Softmax al-
gorithm. The parameter γ controls the degree of
probability matching [3]. The value of parameter
τ = 1 means all workers are equally likely to be
chosen. Generally it starts with a pure exploration
phase where a random worker is chosen for first γ
tasks, and starts to match the distribution of worker
WSR over time.

• UCB2: This algorithm chooses a worker who has
the highest upper confidence bound the on expected
success rate of worker. [1]. The confidence bound is
a function of the worker success rate. The parameter
α controls the intensity of the confidence bound.

• SpatialUCB: This algorithm chooses a worker based
on a linear function defined over spatial contextual
features. The parameter α for SpatialUCB behaves in
a similar way as the UCB2 algorithm [1].

VI. EXPERIMENTS & RESULTS

In this section, we discuss a set of experiments that
evaluate the effectiveness of the assignment algorithms. The
experiments utilize various properties of the Gowalla dataset
to generate representative spatial crowdsourcing scenarios. We
perform two experiments to analyze the effects of various
parameters on the performance of the algorithms.
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Fig. 5: Results of context-free assignment algorithms for 5000 tasks, with workers simulated as Binomial stochastic processes.

TABLE II: Comparison of algorithms for 5000 tuning tasks.

Assignment Algorithm ASR ATD
Softmax, τ = 0.01 0.09204 18.52864
Softmax, τ = 0.1 0.020880 15.950382
ε−Greedy, ε = 0.2 0.06326 17.058638
ε−Greedy, ε = 0.3 0.06232 18.604301
SpatialUCB, α = 0.2 0.1465 16.28432
SpatialUCB, α = 0.5 0.1465 15.85458
SpatialUCB, α = 1 0.09814 13.858756
SpatialUCB, α = 2 0.06608 14.271388

A. Assignment without Spatial Context

The first experiment compares the performance of assign-
ment algorithms without spatial context. We simulated the
task acceptance behavior of workers as Binomial process with
parameter pj . The parameter pj was set according to the WSR
of all 90 workers in the dataset. We ran each of the algorithm
for 5,000 simulated tasks without any spatial contextual. We
report the average ASR for 10 runs of each algorithm.

Figure 5 shows the comparison of algorithm parameter
values against the ASR. The results indicate that the ε−greedy
and Softmax algorithms achieve the highest ASR level. The
ε−greedy algorithm achieves the highest ASR at small values
of ε. Similarly, the highest ASR for Softmax is at τ = 0.01.
These results suggest that high exploration has negative effects
on the success rate. The better performing algorithm were
quickly able to identify the small set of workers with higher
acceptance level. By comparison, the optimistic exploration
strategy of the UCB2 algorithm resulted in necessary selection
of workers with lower acceptance level. We limited the context-
free algorithms to only ε−greedy and Softmax, for the later
experiments, with parameter values of ε ∈ {0.2, 0.3} and
τ ∈ {0.01, 0.1}.

B. Assignment with Spatial Context

In the second experiment, we evaluated the performance
of assignment algorithms with spatial context. Typically in
real life deployments the assignment algorithms are tested
offline with data sampled from running system, instead of
a live deployment. Therefore, we first fine tuned the pa-
rameter values of the context-based assignment algorithm
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Fig. 6: Comparison of algorithms on 26662 test tasks.

on a sample of tasks. We sampled a random set of 5,000
tasks from the dataset. We ran each algorithm 10 times and
report the ASR values for each algorithm. We compared the
SpatialUCB algorithm with the algorithms selected in previous
the experiment. The parameter value of SpatialUCB were set
according to the commonly found values in the literature i.e.
α ∈ {0.2, 0.5, 1, 2}. Table II lists the resulting ASR on the
tuning tasks. The results indicate that the SpatialUCB performs
better as compared to the other algorithms; both it terms of
the assignment success rate and the average travel distance.
This highlights the fact that the SpatialUCB was effective in
learning the linear relationship between contextual information
and the task acceptance behavior of a worker.

We compared the performance of tunned algorithms on the
rest of the tasks in dataset. Figure 6 shows the performance
of ε−Greedy, Softmax, and SpatialUCB algorithm with tuned
parameters. We ran each algorithm 10 times on 26,662 tasks
and report the number of completed tasks after each round of
assignments. The results show that the number of completed
tasks increases linearly with the number of assigned tasks.
The tuned SpatialUCB algorithm performs consistently better
that other algorithms. The difference in the performance of
algorithm is not in multiple orders of magnitude.

VII. RELATED WORK

Kazemi and Shahbi [12] proposed the maximum task as-
signment framework for spatial crowdsourcing. The objective
of their framework is to maximize the coverage of tasks i.e.
the number of tasks matched with workers. To et al. [19]
defined at privacy enabled framework for task assignment



in spatial crowdsourcing. Their framework is to hide the
actual locations of workers while maximizing the success
rate of assignments. Deng et al. [5] propose approximation
algorithms for scheduling task for pull based approach to
spatial crowdsourcing. In comparison, our framework aims
to maximize the success rate of assignments, by adapting
the assignment strategy according to the outcome of previous
assignments. Our framework is differentiated from these works
due to two reasons: our framework uses individualized task
acceptance models for workers and the assignment strategy is
adaptive with respect to observed outcomes of assignment.

Matching between tasks and workers has been an active
area of research among crowdsourcing and human computa-
tion. Ho and Vaughan [11] formalized the task assignment
problem in online setting for heterogeneous tasks in crowd-
sourcing markets. They also proposed an adaptive algorithm
that is competitive to the offline version of assignment al-
gorithm [10]. Hassan and Curry proposed a performance
prediction based approach for push routing of tasks, based
on a Bayesian approach for worker capability modeling [8].
The primary focus of these works have been the quality of
crowdsourcing tasks and reliability of workers, specifically
for classification tasks. By comparison, we focus on the
willingness of workers to perform spatial tasks.

VIII. CONCLUSION & FUTURE WORK

In this paper, we introduce the online spatial task assign-
ment problem within spatial crowdsourcing. In our setting, the
tasks arrive dynamically in an online manner and a worker
is assigned to each task. We proposed the IMIRT framework
that formulates the online spatial task assignment as the multi-
armed bandit problem. The objective of the framework is to
maximize the number of tasks accepted by assigned workers.
We include the spatial features of tasks and workers to improve
the assignment algorithm. We model the task acceptance
behavior, of a worker, as a linear function of the spatial
features. We presented a contextual bandit algorithm based on
the spatial features and evaluate it with a real-world dataset.
The results suggest that the algorithm performs best in terms
of the cumulative success rate of assignments

This work extends the existing research within spatial
crowdsourcing in several key ways. It provides new in-
sights into assignment strategies where the assumption of
task acceptance by workers is relaxed. The workers are not
considered to be actively searching for the tasks on the
crowdsourcing platform; instead, they passively receive tasks
chosen by an assignment algorithm. It provides evidence
for the effectiveness of assignment strategies for stochastic
acceptance behavior. The current formulation of online worker
assignment assumes one worker assigned per task. We plan to
extend this work with multiple workers assignment per task.
We also plan to improve the contextual algorithm by exploiting
spatial density of workers around a task. Finally, we plan to
explore its effectiveness within a smart environment [7].
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