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Abstract—Modelling complex events in unstructured data like 
videos not only requires detecting objects but also the 
spatiotemporal relationships among objects. Complex Event 
Processing (CEP) systems discretize continuous streams into fixed 
batches using windows and apply operators over these batches to 
detect patterns in real-time. To this end, we apply CEP techniques 
over video streams to identify spatiotemporal patterns by 
capturing window state. This work introduces a novel problem 
where an input video stream is converted to a stream of graphs 
which are aggregated to a single graph over a given state. 
Incoming video frames are converted to a timestamped Video 
Event Knowledge Graph (VEKG) that maps objects to nodes and
captures spatiotemporal relationships among object nodes.
Objects coexist across multiple frames which leads to the creation 
of redundant nodes and edges at different time instances that 
results in high memory usage. There is a need for expressive and 
storage efficient graph model which can summarize graph streams 
in a single view. We propose an Event Aggregated Graph (EAG),
a summarized graph representation of VEKG streams over a 
given state. EAG captures different spatiotemporal relationships
among objects using an Event Adjacency Matrix without 
replicating the nodes and edges across time instances. These
enable the CEP system to process multiple continuous queries and 
perform frequent spatiotemporal pattern matching computations
over a single summarised graph. Initial experiments show EAG 
takes 68.35% and 28.9% less space compared to baseline and state 
of the art graph summarization method respectively. EAG takes
5X less search time to detect pattern as compare to VEKG stream.

Keywords—Video Streams, Pattern Detection, Complex Event 
Processing, Spatiotemporal Operators, Graphs Summarization

I. INTRODUCTION

The world is now transitioning to an era of Internet of 
Multimedia Things (IoMT) [1], where visual sensors prevail 
everywhere. These media capturing sensors produce data in 
streaming fashion from different sources like smartphones, IoT 
devices, social media platforms and are generating an 
unprecedented volume of video data. For example, cities like 
London and New York have deployed thousands of CCTV 
cameras, streaming hours of videos daily [2]. Machine learning
techniques are used on these video streams to detect events of 
interest in different applications like business intelligence,
surveillance, and traffic monitoring [3].

During the last decade, Complex Event Processing (CEP) 
systems have been increasingly adopted in different domains 
like traffic and financial applications [4] to identify event patte-

Fig. 1. System Overview: Video Stream Graph processor converts input video 
frames into graphs which are captured over a window of given time length. 
Event Aggregator fetches different spatiotemporal queries and summarizes the 
graph stream into an Event Aggregated Graph (EAG). The EAG captures all 
the required spatiotemporal relationships for the query which is later passed to 
Event Matcher for pattern detection.

-rns and send notifications in real-time. Both CEP and Data 
Stream Management System (DSMS) work on massive data 
streams. DSMS supports continuous transformation analytics 
over streams while the CEP system detects complex pattern 
using a combination of simple patterns over the streams [4]. In 
CEP, patterns are defined using the event rules which are 
encapsulated as an operator using SQL like declarative query 
languages. These CEP operators execute over streams to detect 
simpler atomic events and combine them to form more 
meaningful high-level semantics, i.e. complex events. Present 
CEP systems like Esper [5] and FlinkCEP [6] are focused on 
structured data processing, and less attention is paid to video 
event processing. As shown in Fig.1, we use CEP techniques for 
spatiotemporal video detection.

A. Motivating Scenario
Traffic surveillance is typically a manual effort where traffic 

personnel continuously monitors video stream feeds from 
different cameras installed in the city. This type of manual 
inspection is error-prone as well as challenging for humans to 
correlate multiple events at different time instances. As shown 
in Fig. 2, the traffic authority has declared busy routes in the city 
as ‘no passing zones’ during rush hour to prevent any traffic jam. 
They subscribe to a CEP engine for a ‘Pass By’ pattern 
notification query (Q1) where a vehicle should not pass by
another vehicle at a specific time and place. Fig. 2 shows a ‘Pass 
By’ pattern [t=20-45], which is a complex event that constitutes 
atomic events like object(car) detection and its position with 
other objects at different time steps. Similarly, the authority may 
want to monitor high volume traffic flows (Q2) of a road at a 
given time of the day. Here ‘high volume traffic’ event (t=5) is
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composed of simple events like– a) Detection of ‘Car’ events 
and b) Counting the number of cars in each frame at different 
time instances.

Fig. 2. Motivational scenario

In CEP systems there can be different continuous user 
queries (like ‘High Volume Traffic’ and ‘Pass By’) at different
time instances. Within computer vision, Deep Neural Network 
(DNN) models need to be trained for pattern detection. It is
challenging to train every pattern where requirement changes 
due to subscriber’s query dynamicity. Training each pattern is 
costly in terms of resources and computation and is not feasible
in the highly dynamic videos where objects are in motion and
generate varying nature of events. We follow a hybrid approach 
where inductive reasoning methods like DNN models are used 
for simple event detection (like object detection). Later a
deductive reasoning approach is used to craft complex event rule 
patterns.

B. Problem Statement and Contribution
The objects in the video relate to the other objects across 

space and time and generate a complex network. In this work, 
we represent input video streams as a time-stamped graph 
termed as Video Event Knowledge Graph (VEKG) using DNN 
models. The same object can exist in multiple frames leading to 
the creation of thousands of nodes in just a few minutes of video.
This creates storage and a computational bottleneck for 
executing queries. The contribution of work are as follows:

We propose an Event Adjacency Matrix (EAM) to capture 
spatiotemporal relationships between objects.
We propose Event Aggregated Graph (EAG), a 
summarized representation of VEKG streams which 
explicitly captures the spatiotemporal changes of the 
objects over the CEP window without any loss of 
information using 68.35% less storage space. EAG handles 
multiple queries relationship in a single summarized graph.
We demonstrate different spatiotemporal query operators 
related to the traffic management domain to show the 
efficacy of EAG with 82.7% faster query execution.

The rest of the paper is organized as follows: Section II
presents the basic concepts. Section III discusses relationships, 
event extraction and representation for video streams. Section 
IV presents traffic management related operators while Section 
V focusses on Event Aggregated Graph (EAG). Section VI
shows the experimental evaluation, while Section VII discusses 
related work. Section VIII concludes the paper.

II. PRELIMINARIES

A. Windows: A stateful operator in CEP
Streams are an unbounded sequence of data items that are 

continuously evolving. CEP systems work over the concept of 

state, which is the snapshot of the stream. CEP and other DSMS 
systems use windows operator to capture the state of the stream.
Windows are stateful operators which discretize the continuous 
stream into fixed batches and apply computations over these 
sequence of input data [7]. Fig. 3 shows an example of a time 
window of 5 seconds which performs an aggregation query 
(average price >9) over a stock stream of company ‘X’. Window
(W) between time (T) 5-10 satisfies the query as the average 
price is greater than 9 (Avg.(W) =10). In this work aggregation 
over windows are performed over video graph streams to detect 
complex spatiotemporal patterns. From here, we will be using 
the terms aggregation and summarization interchangeably.

Fig. 3. Aggregation (Avg.) over a time window

B. Object Detection and Image Representation
Videos are timestamped continuous sequence of image

frames, which consists of objects. Vision algorithms like SIFT
[8] (Fig.4 (a)) have been proposed to detect objects by 
processing low-level feature of images. Recently, Deep Neural 
Networks (DNN) based methods have evolved to analyze
images and videos with good accuracy and performance. DNN 
based object detection models like YOLO [9] (Fig. 4 (b)), and 
M-RCNN [10] gives bounding boxes across the objects in the 
images which are highly accurate. Similarly, relation detection 
models like Scene Graphs [11] describe the relationship between 
the objects like ‘girl holding racket’ where ‘girl’ and ‘racket’
are objects while ‘holding’ defines a relationship between these 
two objects. (Fig. 4 (c)).

(a) (b) (c)
Fig. 4. Object detection technique- (a) SIFT (b) YOLO and Image 
representation technique- (c) Scene Graphs [11]

III. FORMAL CONCEPTS FOR VIDEO REPRESENTATION

In this section, video representation and formal spatial 
constructs are defined which are used to create complex spatial 
relationships among video objects across time. 

A. Video Stream Extraction and Representation
Video streams have no fixed data model, and it is difficult to 

detect patterns without any structured representation. There is a 
need to extract video content and convert it to a representation 
which can handle a complex relationship at different granularity 
ranging from low-level feature-based properties to high-level 
semantics. From a representation perspective, we have divided 
video features into two aspects:
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Objects: Objects are the basic building block of 
multimedia (video, images) data which are a collection 
of low-level features and have been given a high-level 
semantic label (like Car, Person). These objects can have 
multiple characteristics and properties which are 
represented as its attributes (e.g. color, type). We assume
that an event occurs in the video if an object exists.

Relationship between objects: The objects in video 
frames interact with other objects within the frame 
(intraframe) and across frames (interframe). In 
intraframe relationships, objects interact with other 
objects with a spatial relation as they occupy a specific 
position within the frame while in interframe, the objects 
interact temporally.

Objects and relationships are mapped to an event-centric 
representation using entity-centric knowledge graph. The input 
video frames are converted to a Video Event Knowledge Graph 
(VEKG) representation, where nodes correspond to objects and 
edges represent spatial and temporal relationships among 
objects [12], [13]. Thus, VEKG can be defined as:

Definition1 (VEKG Graph): For any image frame, the resulting 
Video Event Knowledge Graph is a labelled directed graph with 
six tuples represented as VEKG = {܄, ۳, ,ܞۯ ,۳܀ ,ܞૃ ૃ۳ } where 
 ࢏ࡻ set of object nodes = ܄   
   ۳ = set of edges such ۳ ⊆  ܄ X ܄
 set of properties mapped to each object nodes such that =ܞۯ   
(id,attributes, label, confidence,features) =࢏ࡻ   
 set of spatiotemporal relations classes =۳܀   

,ܞૃ ૃ۳ are class labelling functions :ܞૃ- ܄ → :and ૃ۳ ࡻ  ۳ → ۳܀
 
Definition2 (VEKG Stream): A Video Event Knowledge 
Graph stream is a sequence ordered representation of VEKG
such that VVEKG (ࡿ) = ,૚ࡳࡷࡱࢂ)} ,(૚࢚ ,૛ࡳࡷࡱࢂ) (૛࢚ … … ,࢔ࡳࡷࡱࢂ)  {(࢔࢚
where ࢖࢓ࢇ࢚࢙ࢋ࢓࢏࢚ ࢚ࣕ such that ࢏࢚ <  .ା૚࢏࢚

Fig. 5 shows the architecture for the construction of VEKG
stream from input video frames. The frames are passed to a
video frame decoder to convert it into a feature matrix which is 
later passed to DNN cascade for object and attribute 
classification. In the DNN cascade, the YOLO [9] object 
detector model fetches an input feature matrix from the video 
frame decoder and passes the detected object’s region of interest 
(ROI) features to an attribute classifier. For example, in Fig. 5
the Frame (T1) has an object ‘Car1’ which has a color attribute 
‘Black’. The Deep SORT [14] object tracking algorithm is used 
to keep track of the same objects across multiple frames.  The 
detected objects and its attributes are then passed to a graph 
constructor to create a VEKG graph for each frame, which is 
then captured over CEP windows. Fig. 5 shows VEKG graphs 
in a CEP window for three video frames at different time 
instances. The object nodes (label-Car1, Car2, Car3) in VEKG
graphs are connected using spatial edges. VEKG is a complete 
digraph, which means that each object is spatially related to 
another object which is present in the image frame. The temporal 
relation edge between object nodes is created by identifying the 
same object nodes in different frames using object tracking. The 
spatial relationship weights across VEKG edges are stored in an 
Event Adjacency Matrix which is discussed in detail in Section 
III-D.

 
Fig. 5. Video Event Knowledge Graph (VEKG) construction architecture

B. Spatial Relation
The interaction among objects in videos can happen in a 

spatial dimension in which relationships can be modelled using 
spatial calculus. There are different spatial calculus like 
topological, directional, and orientation, to capture these 
interactions [15]. We have categorized spatial relations into 
three main classes:

1) Geometric Relation for Spatial Object (O): A spatial 
entity can be represented using geometry-based features like 
point, line and polygon. Current DNN models detect objects 
from images by either creating bounding box [9] or by creating 
a segmented region across these objects’ boundaries [10] (Fig.
6). In this work, bounding box based polygons are used to 
represent the objects in video frames.

Fig. 6. Spatial relations between objects

2) Topology-Based Spatial Relation (ST): We have used the 
Dimensionally Extended Nine-Intersection Model (DE-9im) a 
2-dimensional topological model which describes pairwise 
relationships between spatial geometries (O). This mathematical 
model is based on Clementini Matrix [16], which describes 
relationships between geometries based on their interior(I), 
boundary(B), and exterior(E) features. The nine relationships it 
captures are- {Disjoint, Touch, Contains, Intersect, Within, 
Covered by, Crosses, Overlap, Inside}. The four topological 
relations are shown in Fig. 6 using a bounding box (O).

3) Direction Based Spatial Relation (SD): Direction 
captures the projection and orientation of an object in space. We 
use the Fixed Orientation Reference System (FORS) [17] which 
divides the space into eight regions: {front, back, left, right, left-
front, right-front, left-back, right-back}. As shown in Fig. 6, we 
took a simplified version of FORS with only four major 
direction relations, i.e. {left, right, front, back}.

C. Spatial Functions
Spatial functions quantify spatial relations among objects by 

calculating numerical values. These numerical values establish
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different association among objects. We have devised two types 
of spatial functions:

1) Boolean Spatial Function (bsf):  The function calculates 
boolean value between spatial relation.

ࢌ࢙࢈ → ,૚ࡻ)ࡰ/ࢀ࢙ (૛ࡻ = 0   i݂ ݁ݏ݈݂ܽ  ݏ݅ ݊݋݅ݐ݈ܽ݁ݎ ݈ܽ݅ݐܽ݌ݏ

1 i݂  ݁ݑݎݐ  ݏ݅ ݊݋݅ݐ݈ܽ݁ݎ ݈ܽ݅ݐܽ݌ݏ

For example, for a topological relation (ST) ‘Overlap’ the 
boolean spatial function for two objects ଵܱ, ܱଶ will be bsf
(Overlap ( ଵܱ, ܱଶ)) = 0 or 1. 

2) Metric Spatial Function (msf):  msf gives the metric 
value between the objects:

mࢌ࢙ → ग(ࡻ૚,     ࢘ |࡯| (૛ࡻ

where ܥ ∈ ,>) ݎ݋ݐܽݎ݁݌݋ ݊݋ݏ݅ݎܽ݌݉݋ܿ >, ≤, ≥, =) and ݎ ∈  ℝ (real 
number) and ℳ ∈ ݊݋݅ݐܿ݊ݑ݂ ܿ݅ݎݐ݁݉ like distance and count. For 
example, msf (distance( ଵܱ, ܱଶ)) = 5. The spatial calculation is
performed from the bounding boxes of the object, taking the 
image frame of the object as the spatial reference.

D. Event Adjacency Matrix
The VEKG graph stores spatial relationships between object 

nodes in an Event Adjacency Matrix (EAM). It is a ܰܺܰ matrix 
where ܰrepresents object nodes such that matrix element ܽ௜௝
represents the relation between ݐ݆ܾܿ݁݋ ݅ ܽ݊݀ ݆. EAM is a square 
matrix with all its diagonal element having values zero. This is 
because we are not considering any relation of an object with 
itself. As defined in Section III-C, spatial function (bsf and msf)
is applied over object nodes to calculate the relationships among 
them. There are two types of EAM:

1) Intraframe Event Adjacency Matrix: Intra-EAM 
captures the spatial relationships of object nodes within the 
image frame. Fig. 7 shows four Intra-EAM (Et1,Et2, Et3 and Et4)
for the frame at time t1, t2, t3 and t4. The matrix shows left
boolean spatial function (bsf) applied over objects ଵܱ, ܱଶ and
ܱଷ. The function compares left direction relation like- ‘Is the 
object ଵܱ is left with respect to the object ܱଶ ’ and give a 
boolean answer in 0 and 1.

2) Interframe Event Adjacency Matrix: The Inter-EAM 
captures the spatial relationship among objects between two-
time instances. The Inter-EAM is formed by applying the 
XNOR over Intra-EAM, which is motivated from the work of 
target adjacency matrices [18]. The XNOR function returns 1 if 
there is no change in the relative spatial position of objects else 
it returns 0 if there is a relative change in spatial position among 
objects at different time instances. Fig. 7 shows an Inter-
EAM(Et3-t4), which is an XNOR result of Et3 and Et4. In a row-
wise analysis, it can be seen that ଵܱ has changed its relative 
spatial position (left) with respect to object ܱଶ as evident in the 
frames. In the video, the objects may appear and disappear after 
a certain time. To handle such situations where two Intra-EAM 
matrices have some identical and different objects, a don’t care 
(X) condition is applied among different objects. In Fig.7, 
frame(t1) does not have an object ܱଶ as in frame(t2). Thus, a
don’t care (X) condition is present in (Et1) since the object ܱଶ
is having no relation in frame(t1). The different use cases of 
Inter-EAM is discussed in the next section.

Fig. 7. Event Adjacency Matrix

IV. SPATIOTEMPORAL QUERY OPERATORS IN TRAFFIC 
MANAGEMENT

Videos stream analysis can be used to identify events of 
interest in traffic management like object identification (car 
type, car color, license plate recognition) and other 
spatiotemporal event patterns. In this section, spatiotemporal 
operators related to traffic management are discussed, which 
later act as queries for detecting event patterns.

A. Pass By
The query operator ‘Pass By’ is defined as a ‘change in the 

relative position of the object (back-front) in the same direction 
of motion’. In Fig. 8, two frames of a video are shown at time ti
and ti+j such that ti< ti+j. We see that the relative position of the 
object ݋ଵ was ‘back’ of ݋ଶ at ti which becomes ‘front’ at ti+j. This 
signifies that object ݋ଵ crosses the ݋ଶ in i+jth time instance.
Thus, as per eq.1, we can write the ‘Pass By’ operator as:

,૚࢕))࢑ࢉࢇ࢈] (࢏࢚(૛࢕ → ,૚࢕))࢚࢔࢕࢘ࢌ  (1)             [࢔࢚,࢓࢚]⊞ [(࢐శ࢏࢚(૛࢕

Fig. 8. Pass By scenario 
Now, let us deduce the detailed version of equation 1, which 

will be applied over video stream to detect the ‘Pass By’ pattern:
(࢏࢚)∃ ∈ ,૚࢕)ࡰࡿ)ࢌ࢙࢈] ࢌ࢏ ࢀ ,૚࢕)ࡰࡿ)ࢌ࢙࢈ ʘ (࢏࢚࢞(૛࢕  [࢔࢚,࢓࢚]⊞[(࢐శ࢏࢚࢞(૛࢕

 ࢟࡮ ࢙࢙ࢇࡼ ࢌ࢏ ࡻ  
૚ ࢟࡮ ࢙࢙ࢇࡼ ࢕࢔ ࢌ࢏ 

 

࢞ ࢋ࢘ࢋࢎ࢝ ∈ ࢑ࢉࢇ࢈ − ࢓࢚ ࢊ࢔ࢇ ࢔࢕࢏࢚ࢉࢋ࢘࢏ࢊ ࢚࢔࢕࢘ࢌ ≤ ࢐ା࢏࢚ ࢊ࢔ࢇ࢏࢚ ≤ ࢔࢚

In equation 2, ,ଵ݋)஽ܵ)݂ݏܾ ௧೔ݔ(ଶ݋ ) means the boolean spatial 
function over spatial direction (ܵ஽) on the object (݋ଵ, (ଶ݋ at time 
ti where direction we are looking is in back -front. This will
evaluate as ‘Is ݋ଵ back of ݋ଶ in back front direction’, which is 
true, so it will return 1. Similarly,  ܾ݂ݏ(ܵ஽(݋ଵ, ௧೔శౠݔ(ଶ݋ is the 
calculation for the next frame at time ti+j. In this case the relative 
position of the object ݋ଵ become front of the object ݋ଶ, so ‘݋ଵ
back of ଶ’ become false and returns 0. If we do݋ an XNOR (ʘ)
of these two values, i.e. 1 at ti and 0 at ti+j, then we get 0 which 
as per equation (2) means ‘Pass By’. If there was no change in 
the relative position of objects in the given direction, then 
XNORing will return 1, which means no passing between the 
two objects. The evaluation of each frame was done in a time 
window ⊞[tm, tn]. So, for any time instance in this time range 
if we get 0 between consecutive frames of objects, then we say 
there is a pass by between these objects.
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B. Follows 
‘Follows’ is defined as ‘no change in the relative 

position(front-back) of an object in the same direction of 
motion’.  This can be defined as:

,૚࢕))࢑ࢉࢇ࢈]  (࢏࢚(૛࢕ → ,૚࢕))࢑ࢉࢇ࢈  [࢔࢚,࢓࢚]⊞ [(࢐శ࢏࢚(૛࢕     (3)

‘Follows’ is like ‘Pass By’ with a difference that for every 
time instance in a given window, there is no change in the 
relative position of objects in consecutive frames. Thus, if eq. 2 
results 1 for two different time instances then it means ݋ଵ
monotonically follows ݋ଶ (see Fig. 9).

C. Lane Change
‘Lane Change’ is defined as a ‘change in relative position

(left-right) of an object in the same direction of motion’.  This is 
defined:

,૚࢕))࢚ࢌࢋ࢒]  (࢏࢚(૛࢕  → ,૚࢕))࢚ࢎࢍ࢏࢘  [࢔࢚,࢓࢚]⊞ [(࢐శ࢏࢚(૛࢕ (4)

As shown in Fig7., ݋ଵ was left of  ݋ଶ at time t2 which later 
become right changing its lane at time t4.

D. High Volume Traffic 
‘High Volume Traffic’ query operator is defined as ‘the 

average count of objects at a given space is greater than a 
certain threshold for a specific time range’. For example, if there 
are more than eight cars at a specific location of the road for 
more than 5 minutes, then we termed it as high-volume traffic 
for that location (Fig. 10). High Volume Traffic is defined as

ߟ∃ ∈ ݅ݐ∀ and ܩ ∈ ܶ ݂݅  

ࢌ࢙࢓ ቀग(۽)ࣁ
=  ቁ[૛࢚,૚࢚]⊞ >   ࢉ࢏ࢌࢌࢇ࢚࢘  ࢘

<  ࢉ࢏ࢌࢌࢇ࢚࢘ ࢚࢕࢔  ࢘

(5)

૚࢚ ࢚ࢇࢎ࢚ ࢎࢉ࢛࢙ ࢋ࢓࢏࢚ ࢙࢏ ࢀ ࢊ࢔ࢇ ࢋࢉࢇ࢖࢙ ࢇ ࢙࢏ ࡳ ࢋ࢘ࢋࢎ࢝ ≤ ࢏࢚ ≤
ग ࢊ࢔ࢇ  ૛࢚ = .ࢍ࢜࡭ ,ࢀࡺࢁࡻ࡯ ࡻ = ࢘ ࢊ࢔ࢇ  ࢚ࢉࢋ࢐࢈࢕ ∈  ℤℤ  

In eq. 5, a metric spatial function (msf) ℳ is applied which 
counts the average number of objects in every frame for a time 
window of ⊞ [t1, t2] for a specific location (ߟ). 

In the next section, we discuss graph aggregation, which 
caters to multiple query operators.

V. QUERY OPERATOR BASED STATE SUMMARIZATION

CEP queries are continuous, which means once the query is 
registered, it will continuously monitor the incoming streams 
over a given window state and detect pattern as per the operator 
rule. Multiple queries with different operators (like ‘Pass By’ 
and ‘High Volume Traffic’) can be registered to the system at 
any instance of time. As discussed in Section IV, multiple 
queries have different event patterns and matching all queries
over a VEKG stream is time-consuming. Following the concept 
of state aggregation over windows (Section II-A), we summarize
VEKG stream over windows into an Event Aggregated Graph
(EAG) to handle different spatiotemporal queries.

Fig. 11. Event Aggregated Graph construction

A. Event Aggregated Graph
In videos, object stay in different frames for some time, 

creating multiple redundant instances across time. This not only 
leads to redundancy and storage inefficiency but also increases
the matching time as a query needs to traverse the same node 
across different time instances. For example, Fig. 11 shows an 
expanded network of VEKG graph for four frames (Fig.7) over 
a window. The expanded graph edges have binary weights 
represented from Intra-EAM shown in Fig.7. A single object 
node (like red) is repeated in all-time instances because of its 
presence in all four frames leading to redundant nodes and 
edges. A video streaming at a rate of 30 fps with two objects in 
every frame will lead to the creation of thousands of nodes in 
minutes, increasing the network size. Such large networks lead 
to computational bottlenecks for different query operators. Thus, 
storing and matching over VEKG graphs is expensive and time-
consuming as it models every incoming video frame.

We present Event Aggregated Graphs (EAG), a summarized 
representation of VEKG streams over a window. We extend the 
Time Aggregated graph (TAG) model [19] for EAG by adding 
multiple queries over the edge for a given window length. EAG 
can handle multiple continuous queries using a single 
representation where objects span across time and space. EAG 
not only gives an aggregated view of a state but also preserves
all required relationships which need to be captured by different 
query operators. It does not replicate redundant nodes and edges 
of VEKG across time and captures the spatiotemporal properties 
of VEKG graphs using Intra and Inter-EAM matrices. EAG 
reduces redundancy and is a storage efficient representation to 
model dynamic networks like video streams where objects are 
mostly in motion changing their relationship with each other 
with time. EAG keep tracks of spatiotemporal changes as per 
query operators.

Definition(EAG Graph): For a given window length T, having 
n video frames represented as VEKG graph, the Event 
Aggregated Graph is a labelled directed graph with 8 tuples such 
that ܩܣܧ = ,ࢋࢊ࢕ࡺࢂ}  ,ࢋࢍࢊࡱࡱ ,ࢋ࢓࢏ࢀࢃ ,ࢗࢌ ,࢚ ,࢝ ,ܞૃ ૃ۳} where:

 from VEKG stream ࢏ࡻ set of unique object nodes = ࢋࢊ࢕ࡺࢂ
over a window 
ࢋࢍࢊࡱࡱ  set of edges such = ࢋࢍࢊࡱࡱ ⊆  ࢋࢊ࢕ࡺࢂ X ࢋࢊ࢕ࡺࢂ
window time length = ࢋ࢓࢏ࢀࢃ
ࢗࢌ =  different query mappings over ࢋࢍࢊࡱࡱ 
,࢚  ࢗࢌ time and spatiotemporal weight mappings over =  ࢝
,ܞૃ ૃ۳ are class labelling functions ࢋࢊ࢕ࡺࢂ :ܞૃ- →  and ࡻ 
ૃ۳: ࢋࢍࢊࡱࡱ → ࢗࢌ
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In Fig. 11, the Execute Query operator fetches all queries 
registered in the system. It updates the VEKG graph edges over 
a window with spatiotemporal weights by executing operator 
logic using an Event Adjacency Matrix. Later, the Aggregator 
performs an aggregation operation over the window to update 
the VEKG stream to create an EAG. Fig. 11 shows an EAG 
(right-side) of an expanded network. It consists of three unique 
object nodes (݋ଵ, ,ଶ݋ (ଷ݋ which were present in VEKG expanded 
network. EAG is a complete digraph which captures the 
relationship among all object nodes. The edge captures the 
spatiotemporal weights of different queries at different time 
instances. For example, the edge between object ݋ଵ and ݋ଶ
captures relation for three queries Q1, Q2, and Q3. Q1 is a left 
query discussed in Fig. 7 and it captures the Inter-EAM values 
by XNORing Intra-EAM matrices, i.e. E(t1) ʘ E(t2), E(t2) ʘ
E(t3), and E(t3)  ʘ E(t4) resulting in {X,1,0,…..} time-series 
vector representation. The length of this value vector is 
equivalent to the number of frames in window time T. The ‘X’ 
is a don’t care condition meaning there is no spatial relation 
between ݋ଵ and ݋ଶ at time t1-t2. Later ‘1’ represents that ݋ଵ is 
left of ଶ݋ at t2-t3 and becomes 0 at t3-t4 representing that ݋ଵ is 
no longer in the left of ݋ଷ representing a lane change. Similarly, 
other queries like Q2 and Q3 are given spatiotemporal relation 
weights at different time instances. The spatiotemporal weights 
can be a real number if a metric spatial function (msf) is applied
or expressed using other formats depending on operator rule.

Algorithm 1: Event Aggregated Graph

The EAG construction process is shown in Algorithm 1. The 
EAG is then passed to an Event Matcher for pattern detection. 
The matcher fetches the edge query vector of spatiotemporal 
weights between objects to detect the pattern. For example, Q1 
= left ,ଵ݋) (ଶ݋ will fetch [x, 1, 0, …] and send a notification that 
at time t3-t4 as ଵ݋ changes its position with ݋ଶ . This can be 
verified by looking at the frames in Fig. 7. The complex 
matching can be performed among multiple objects by 
traversing the path among the object nodes. The adjacency 
matrix-based graph representation requires Ο(n2) memory where 
n= |ࢋࢊ࢕ࡺࢂ |, i.e. number of nodes. EAG has two extra 
dimensions, i.e. time and query. If ࢋ࢓࢏ࢀࢃ be T, and the number 
of queries is Q then EAG would require Ο(n2QT) memory to 
represent the video stream over a window.

VI. EXPERIMENTAL RESULTS

A. Implementation and Datasets
The above prototype is implemented in Python 3. All the 

experiments were performed on a 16-core AMD Ryzen 7 1700 

Linux machine with a 16 GB of RAM running on a 3.1 GHz 
processor and a Nvidia Titan Xp GPU. OpenCV is used for 
initial video frame decoding. For object detection and tracking 
pre-trained YOLOv3 [9] model with Deep SORT [14] algorithm 
is used. For attribute extraction, the features based on bounding 
box coordinates were fetched from the YOLO model layer and 
passed to the attribute classifier, which is an OpenCV based 
color filter. NetworkX [20], a python library for graphs was used 
for VEKG and EAG graph construction.

A small video dataset was created by cropping video clips of 
event patterns based on operators identified in Section IV. The 
videos were extracted from websites YouTube, Newsflare, and 
the DETRAC [21] dataset.  Most of the videos are streamed at 
an average rate of 25 frames per second. The ground truth data 
for events was created manually by identifying different event 
patterns which act as a baseline for the comparison.

B. Evaluation Results
1) Reduction in Nodes, Edges and Storage: The 

summarization effectiveness can be known by calculating the 
reduction in nodes and edges without any loss of information.
Reduction in Nodes (RIN) is defined as the ratio of the 
difference in the number of nodes between original (|ݒ௏ா௄ீ|)
and summarized graph(|ݒா஺ீ|) with the number of original 
graph nodes (eq. 6). Similarly, Reduction in Edges (RIE), can 
be defined by replacing the number of nodes with edges (eq. 7).

ܰܫܴ =
|௏ா௄ீݒ| − |ா஺ீݒ|

|௏ா௄ீݒ|
(6) ܧܫܴ =

|௏ா௄ீܧ| − |ா஺ீܧ|
|௏ா௄ீܧ|

(7)

Fig. 12 shows RIN of EAG with its variant Time Aggregated 
Graph (TAG) [19]. The comparison is made with VEKG graphs 
over a window of 10 sec and for four queries over 12 video 
streams. The average EAG RIN score (red line) across videos is 
above 0.975, which means greater than 97.5% of VEKG nodes 
have been reduced to create an EAG summary. The average 
TAG RIN score (green line) lies between 0.91 to 0.95 across 
videos. Thus, TAG only reduces 90%- 95% of VEKG nodes. 
The reason is TAG creates a different summary graph for each 
of the queries (4 here) while EAG handles all the queries in a 
single summarized graph. The spike in video V4 means that the 
number of objects is high, leading to more object nodes and edge 
creation. Similarly, Fig. 13 shows the RIE score where EAG 
reduces greater than 96% of VEKG edges, while TAG reduces 
between 82.2% to 95.8% of edges. Thus, EAG reduces 5.1% 
nodes and 8.1% of edges as compared to TAG and will perform 
better with an increase in the number of queries.

In CEP, window states are stored in a state backend for 
historical analysis. Summarization of states will not only lead to 
storage efficiency but also faster retrieval and search. Fig. 14
compares the storage cost (KB) for all three representation. For 
the given experiments, i.e. 12 videos and four queries, TAG 
takes 55.4% while EAG takes 68.35% less storage space as 
compared to VEKG graphs. Similarly, EAG requires 28.9% less 
storage space as compare to TAG as it maintains only a single 
representation for multiple queries.

2) Graph Construction and Search Time: Graph 
construction is the time to create the VEKG graphs over a 
window. This includes graph initialisation with nodes and pop-

Input: 
Window (Win) = {ܸ1ܩܭܧ, ,2ܩܭܧܸ 3ܩܭܧܸ … … … . . , ݊ܩܭܧܸ } 
Query (Q) = {ܳ1, ܳ2, ܳ3 … … … . . , ܳ݊  } 
Output:  Event Aggregated Graph (EAG) over Win 
Procedure: 
,ܸ)intializeEAG ⃪  ܩܣܧ    ,ܧ ,ݍ݂ ,ݐ ݅ܩܭܧܸ for each    (ݓ  in Win do   
݅ܩܭܧ൫ܸݏ݁݀݋݊ݐ݁݃}⋃ ܸ ⃪ ܸ        ൯} 
       for each ܳ݅  in Query do  
 ((݅ܩܭܧܸ)݅ܳ)ݎ݋ݐܽݎ݁݌ܱ݈ܽݎ݋݌݉݁ݐ݋݅ݐܽ݌ܵ ⃪ ݅ݓ            
݅ݍ݂             ݅ݍ݂  ⃪ E              (݅ݓ)݅ݐ ⃪     
,ܸ)ܩܣܧ݁ݐܽ݀݌ܷ ⃪  ܩܣܧ            (ܧ
      end     end     SendtoMatcher (ܩܣܧ)  
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Fig. 12. Reduction in nodes (RIN) for different 
video streams

Fig. 13. Reduction in edges (RIE) for different 
video streams

Fig. 14. Storage comparison for summarized EAG 
over different video streams

Fig. 15. Graph construction time with 
the change in window size

Fig. 16. Graph search time over 
multiple queries Fig. 17. Visualization of an EAG 

summarised graph 

Table 1. Accuracy of different 
spatiotemporal operators

Fig. 18. Follows pattern(V8) Fig. 19. Pass By pattern(V4) Fig. 20. Lane Change pattern (V2) Fig. 21. High &Low Traffic Flow (V11)

-ulating edges with relation labels defined as per query logic. 
The process will be repeated ‘n’ times if ‘n’ number of queries
are registered with the system. EAG summarization is achieved 
over these VEKG graphs for given queries. In Fig 15, the 
summarization overhead for EAG construction is in sub-
seconds as compared to VEKG because all the operations have 
been already performed over VEKG and only the time to 
initialise the summarized graph is required. In Fig. 15, on 
increasing the window size the graph construction time 
increases because the number of nodes and edges will increase 
with time, but the summarization process for EAG and TAG is 
nearly same with respect to VEKG graphs. Fig 16. shows the 
search time of EAG, TAG and VEKG over a different number 
of registered queries. The EAG search shows the advantage of 
summarisation as it takes less time with respect to TAG and 
VEKG graphs. For five queries, the search time of EAG and 
TAG is nearly the same, as only 5 TAG graphs were created,
but its search time will increase with more queries. For 100 
queries the EAG search requires only 25.6 ms as compared to 
TAG and VEKG which have search times of 61.7 ms and 148.6 
ms respectively.

3) Query Accuracy: The query accuracy examines how 
many relevant event patterns were detected for each query as 
compared to the ground truth. Query accuracy is evaluated
using F-score (eq. 8 ), which is the harmonic mean of precision 
and recall.

ܨ − ݁ݎ݋ܿݏ =
2 ∗ ݊݋ݏ݅ܿ݁ݎܲ ∗ ܴ݈݈݁ܿܽ

݊݋݅ݏ݅ܿ݁ݎܲ + ܴ݈݈݁ܿܽ
(8)

Table 1 shows the mean precision, recall and F-score for 
different queries, which is averaged across a window of 10 
seconds. The first three queries, i.e. Pass By, Follows and Lane 
Change are based on the spatial directions of objects and have 
an F-score of 0.77, 0.75 and 0.70 respectively. Lane Change has 
a lower F-score (red color) because of occlusion and changes in 
the aspect ratio of objects, leading to many false positives. High 

Volume Traffic is a count-based query, and thus counting the 
number of objects depends on DNN models performance. 
YOLO has state of the art object detection performance. Thus,
the proposed system can detect objects with good accuracy
leading to high F-score of 0.86 for high volume traffic query.

Fig. 17 shows the visualization of an EAG for a ‘Pass By’
query. The green nodes are different unique objects present in 
the video in a window. The black edges are the spatial 
relationships existing between different object nodes while the 
red edges show the relations satisfied for a given query. For 
example, the sample red edge label [1,1,0,1,1] between object 
nodes 8 and 33 shows that there is ‘Pass By’ at t3-t4 as the value 
is 0. The visualization of ‘Follows’ is shown in Fig. 18, where 
color dots shows the tracking point of objects at different time 
instances. No tracking points of objects have crossed another 
object, while in Fig. 19 green dots crossed over pink dots leading 
to a ‘Pass By’ pattern. Fig. 20 shows ‘Lane Change’ where green 
dots move to left with respect of red dots. Similarly, Fig. 21
shows the high and low traffic flow. 

C. Limitation
Our work has some limitations which are as follows- 1) 

DNN models are a basic building blocks in our CEP system, and 
any prediction failure in them will decrease our CEP engine’s 
performance, 2) The spatial calculation was performed in the 2-
dimensional plane while in the real world the relations are 
complex and spread in 3-dimensions, leading to many patterns 
miss or false event detection, 3) System works well over fixed 
camera with correct orientation.

VII. RELATED WORK

A. Graph Summarisation
George et al. proposed TAG [19], an aggregated data model 

for spatiotemporal networks. EAG is an extension to the above 
work where we added multiple query relation to the edges of the 
summarized graph over a window for detecting complex video 

Query Precision Recall F-Score

Pass By 0.733333 0.833333 0.777778

Follows
0.758772 0.776786 0.751082

Lane Change
0.663636 0.761905 0.700767

High Traffic 0.916667 0.816667 0.861111
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event patterns. Lee et al. [22] focused on spatiotemporal 
indexing of video streams instead of summarization. Kwon et al.
[23] detect rare events in videos using a graph editing framework 
and minimize it using the predefined energy model. They 
decompose video into a graph where a node represents a 
spatiotemporal event and have connected edges to its neighbors.
In contrast, VEKG captures each frame as a graph of objects 
with spatial information which is then summarized to EAG over 
temporal dimension for multiple queries. Adhikari et al.
proposed NETCONDENSE [24], which merges adjacent node-
pair and time-pair for time-varying graphs. The time-pair merge 
loses initial edge information which is preserved in EAG.

B. Video Representation and Event Detection
Techniques like visual relation detection [25] work on static 

data like images where relationships are annotated among 
objects manually, and then the model is trained to detect a
pattern among objects. In contrast to this, EAG focuses on 
dynamic video data and detect spatiotemporal patterns among 
objects using event rules. In [11], the author used object tracklets 
over a neural network to capture object relationships in video,
where relationships were encoded in the video frames manually.
Lee et al. proposed Region Adjacency Graphs (RAG) [22] for 
videos where the same segmented regions within the image 
frames are connected using common boundaries. Instead of 
focusing on low-level features like in RAG, VEKG is built over 
semantic labels (objects) extracted from DNN models capturing 
spatiotemporal relation among them.  Yadav et al. [26] focused 
on pattern detection like ‘wildfire’ from the images using crowd 
knowledge instead of automated pattern detection. Xu et al. [27]
presented a Video Structural Description (VSD) technology for 
discovering semantic concepts in the video with no CEP focus.

C. Window-based Aggregation
Works like [28]–[30] focus on different window aggregation 

aspects like sharing, adaptivity and load-shedding of using 
aggregate operator like SUM, MIN, AVG etc. These works 
consider the incoming data stream having a simple data model 
like numbers and do not focus on aggregation over graph 
representation of video streams. Gillani et al. proposed 
SPECTRA [31], an RDF graph summarization over windows 
using an incremental indexing approach. This work differs from 
ours as we focus on the more general labelled spatiotemporal 
graph instead of RDF. SPECTRA focus summarization based 
on a single query while EAG summarizes multiple query results.

VIII.CONCLUSION AND FUTURE WORK

In this work, we present a novel approach to summarize 
graphs of video streams over a given window for complex video 
pattern detection in CEP systems. The summarized EAG graph 
not only reduces the redundant nodes and edges but also 
preserve all the spatiotemporal information without any 
information loss. The efficacy of spatiotemporal pattern 
detection is shown using different traffic management related 
query operators. EAG reduces greater than 97.5% of nodes and 
96 % of edges and requires 68.35% less storage space as 
compared to VEKG graph streams. The summarization 
overhead for EAG is minimal, with 82% less search time for 
multiple queries. In future work, we will optimize EAG graphs 
for different queries over sliding windows.
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