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Abstract. Nowadays, there is a lot of attention drawn in smart envi-
ronments, like Smart Cities and Internet of Things. These environments
generate data streams that could be represented as graphs, which can
be analysed in real-time to satisfy user or application needs. The chal-
lenges involved in these environments, ranging from the dynamism, het-
erogeneity, continuity, and high-volume of these real-world graph streams
create new requirements for graph processing algorithms. We propose
a dynamic graph stream summarisation system with the use of em-
beddings that provides expressive graphs while ensuring high usabil-
ity and limited resource usage. In this paper, we examine the perfor-
mance comparison between our embeddings-based approach and an ex-
isting thesaurus/ontology-based approach (FACES) that we adapted in
a dynamic environment with the use of windows and data fusion. Both
approaches use conceptual clustering and top-k scoring that can result
in expressive, dynamic graph summaries with limited resources. Evalu-
ations show that sending top-k fused diverse summaries, results in 34%
to 92% reduction of forwarded messages and redundancy-awareness with
an F-score ranging from 0.80 to 0.95 depending on the k compared to
sending all the available information without top-k scoring. Also, the
summaries' quality follows the agreement of ideal summaries determined
by human judges. The summarisation approaches come with the expense
of reduced system performance. The thesaurus/ontology-based approach
proved 6 times more latency-heavy and 3 times more memory-heavy com-
pared to the most expensive embeddings-based approach while having
lower throughput but provided slightly better quality summaries.
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1 Introduction

The emergence of Smart Homes, Smart Cities and Internet of Things has driven
the deployment of multiple sensors (sources) that create a wide range of data
streams that could be represented as structured graphs, as well as multiple users
or applications (sinks) that are interested in the analysis of these graph streams
for various needs. These needs could vary from transport (e.g. analysis of highway
tra�c to discover times of congestion [19]) to safety (e.g. seismic measurements
to monitor safety risks in speci�c regions from possible earthquakes [31]).

Although these multi-source environments prove very useful in terms of real-
time analysis and quick response to users, they present a number of challenges.
From the system-perspective, these systems are dynamic, continuous, and con-
tain a high volume of sources and sinks [29]. The dynamism involves the deletion
or creation of sources and sinks at any time, which proves challenging for an anal-
ysis to be able to update its information coming from new or old sources and to
only respond to active users. The continuity involves the unbounded length of
graph streams [12]; that is, there is a constant generation of graphs that need to
be analysed quickly enough with no possibility of backtracking over previously
arrived graphs [21]. The high volume of sources may create signi�cant amounts
of graphs that could a�ect the system performance when dealing with a high
number of users.

From the sources-perspective, these graph streams are coming from multiple
sources. For example, information regarding an entity may come by gathering
information from more than one sources. Therefore, the data might present high
semantic heterogeneity that involves multiple schemata and semantics [29]. For
example, di�erent words could describe conceptually similar things (e.g. "energy
usage" vs "energy consumption"). Furthermore, due to the possibly high volume
of sources and the frequent sampling rate of graph streams, graphs might contain
identical information for consecutive periods of time resulting in duplication [24].
Conceptual similarity and duplication result in redundant information. This re-
dundancy may lead to signi�cant propagation, storage overheads of unnecessary
graphs within a network and slower processing time [3].

From the sinks-perspective, users may have various levels of ambiguity and
expressibility of their needs. Ambiguity [4] involves the di�erent user contextual
interpretations of the graphs produced based on their needs or their perception.
Expressibility [11] is the ability of users expressing their needs; that is, either how
satisfying their level of prior understanding of these needs is to create queries
with speci�c �lters or how good their technical ability is to create queries that
involve the use of complex languages (like SPARQL). Sometimes depending on
the interest of the user, it is di�cult for them to create an appropriate query. For
example, if a user is interested in information that is linked to graphs coming
from multiple sources, the user may need to de�ne complex join queries to gather
it from all these sources. This complexity may lead to low usability as the user
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is expected to be aware of complex query languages and the schemata of several
graph sources. On the other hand, if the user creates a simple keyword-based
query, although this may lead to high usability, it may create an abundance of
redundant information for the user [36].

Therefore, an appropriate graph stream analysis system needs to be de�ned
that can overcome the above challenges e�ciently and e�ectively [26]. This sys-
tem needs to be able to analyse the graphs in a quick, e�cient, and expressive
way in real-time to answer multiple continuous queries [12]. This can be realised
with a system that will abstract the users from the underlying real-time graph
analysis and the need for complex queries (high usability), it will provide to the
users expressive answers (non-redundant), and it will use limited resources [30].

In previous work [27], we proposed a dynamic diverse summarisation system
of heterogeneous graph streams with the use of embeddings, as approximate so-
lutions [19] are acceptable as quick answers [1] within a small error range with
high probability while using limited resources. In this way, we aspired not only
to increase the system performance by reducing the number of graphs sent up-
stream but also to create a top-k diverse conceptual graph set that will not
overwhelm the user with redundant information. In this paper, we extend the
evaluation of our approach by adapting FACES [14], an existing static diverse
summarisation methodology, in our dynamic system and we extend our evalu-
ation results by taking into account the comparison between embeddings-based
and thesaurus/ontology-based approaches by examining their trade-o�s between
latency, throughput, memory footprint, the number of forwarded messages, and
expressiveness by using a range of windowing policies.

Our main contributions are:

� A user-friendly query that allows users to receive top-k diverse �ltered infor-
mation using a speci�c window type with a desired window size and window
slide.

� Introduce a novel dynamic diverse summarisation system for heterogeneous
graph stream windows with the use of embeddings based on user query
relevance, importance, and diversity.

� Adapting FACES [14], an existing static diverse entity summarisation
methodology with the use of a combination of a thesaurus and an ontol-
ogy, in a dynamic environment using windows.

� An extensive evaluation comparison between embeddings-based and
thesaurus/ontology-based approaches by examining their trade-o� between
latency, throughput, memory footprint, the number of forwarded messages,
and expressiveness by using a range of windowing policies.

The rest of this paper is structured as follows. In Section 2 and Section 3 we
present the problem analysis and the di�erent approaches, respectively. Evalua-
tion and results are in Section 4. Section 5 contains related work, while conclu-
sions are drawn in Section 6.
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2 Problem Analysis

Some background, the motivational scenario and its challenges are analysed be-
low.

2.1 Background

Background is given on knowledge graphs, entity summarisation and de�nitions
that will be used throughout the paper.

Knowledge Graphs Sensor data streams could be represented as conceptual
entities with their associated relations via graphs. This structure could lead to
a strong feature for information searching and query processing [24].

Entities are real-world or abstract things and the information linked to them
can be represented by knowledge graphs [32]. Within knowledge graphs the nodes
represent the entities, and the directed labelled arcs constitute relations among
them. In Fig. 1 a knowledge graph of the entity Rice University is given. Within
that, Rice University, Texas, United States, Houston, and Division I (NCAA)
are entities, whereas 15°C and 2kWh are literals (e.g. strings or dates). The
temperature, energy usage, state, country, city, and athletics are relations among
the connected entities or literals by the directed arc.

In Fig. 1 there is also an additional relation of type. The type-based properties
of an entity are a category or class that the entity belongs to. For example, the
entity Rice University is an Educational Institute. More than one entity can
have the same type and an entity can have more than one type, either general
or �ne-grained ones. Types are the kind of information that can cluster group of
entities with the same properties [17]. Entity typing is the process of assigning
a type to an entity, and it is usually provided in popular knowledge bases, like
DBpedia1.

Resource Description Framework (RDF) is a data modelling language that
represents the knowledge as triples 〈subject, property, object〉, where subject are
entities, object are entities or literals, and property is their relation. RDF triples
with the same subject form an RDF star-like graph (Fig. 1).

Fig. 1. The knowledge graph of Rice University.

1 https://wiki.dbpedia.org/
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Entity Summarisation There are two types of summaries; extractive and
abstractive [34]. The extractive summary contains part of the original informa-
tion; that is, in extractive entity summarisation the summary contains a subset
of the entity's knowledge graph. The abstractive summary contains information
that is not found in the original one, that is in abstractive entity summarisation
the summary contains newly generated triples (e.g. aggregated triples).

The entity summarisation can also be split into two subtypes; relevance-
centred and diversity-centred [34]. Relevance-centred summaries focus on spe-
ci�c relations that are important and more relevant to the entity in question.
Repetition of the same property could occur in this summary. Diversity-centred
summaries focus on a more diverse coverage of the information of an entity.
Repetition of the same properties is avoided in this summary.

In this paper, we focus on extractive diversity-centred summaries. Therefore,
a summarisation of an entity e that is represented by a node v in a knowledge
graph G is a subgraph of G that surrounds v [32].

De�nitions By adopting and adapting de�nitions that were introduced in
Cheng et al. [6], we provide some de�nitions for completeness.

Let E be the set of all entities, L the set of all literals, P the set of all
properties, Tr the set of all triples, and T the set of all timestamps.

De�nition 1 (Data Graph).A data graph is a digraphG = 〈V,A,LblV , LblA〉,
where V is a �nite set of nodes, A is a �nite set of directed edges where each
a ∈ A has a source node Src(a) ∈ V and a target node Tgt(a) ∈ V , and
LblV : V 7→ E ∪ L and LblA : A 7→ P are labelling functions that map nodes
and edges to entities or literals, and properties, respectively.

De�nition 2 (Triple). A triple tr is a sequence of 〈subject, property, object〉
de�ned as tr = 〈sub(tr), p(tr), obj(tr)〉, where sub(tr) ∈ E, p(tr) ∈ P and
obj(tr) ∈ E ∪ L.

De�nition 3 (Graph Stream). A graph stream Gs = 〈(tri, ti)|i ∈ N〉 is a
sequence of pairs where each pair consists of a triple tr ∈ Tr and its timestamp
t ∈ T .

De�nition 4 (Dynamic Diverse Entity Summarisation). Given a snap-
shot of Gs and a positive integer k < |Gs|, the problem of dynamic diverse entity
summarisation is to select Summ = 〈Trsum, t〉 where Trsum ⊂ Tr such that
|Summ| = k. In other words, Summ is called a dynamic diverse summary of
an entity e, and it contains a set of unique and conceptually diverse triples that
belong to the snapshot of Gs, as well as its timestamp t ∈ T .

To support high usability, we do not assume that users have high expressibil-
ity; that is, they are experts in complex query languages, like SPARQL, nor that
they are aware of the semantics or schemata of the graph streams. Therefore, a
query should ideally be a keyword-based one [32]. Nevertheless, keyword-based
queries are too abstract, which may lead to receiving undesired information.
Therefore, a high-level ranking policy should be de�ned by the user that could
�lter some of the undesired information. The user can select from complex rank-
ing (e.g. diverse) to no ranking at all (e.g. none).
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De�nition 5 (Diversity-aware Query). A diversity-aware query DAQ
is a sequence of 〈entity, k, window type, window size, window slide, ranking
policy〉 de�ned as DAQ = 〈e, k, wt, ws, wsl, r〉, where e ∈ E, k ∈ N, wt ∈
{CountTumbling, CountSliding, T imeTumbling, T imeSliding}, ws ∈ N, wsl ∈
N and r ∈ {Diversity,None}.

2.2 Motivational Scenario

Imagine Houston is a smart city (shown in Fig. 2), and a user is interested in
information about Rice University. Several sensor readings contain information
about the university, ranging from temperature to location. The user has no
other information apart from the university's name, and one needs to quickly
gain knowledge about the university.

Fig. 2. A user is interested in information about Rice University and sources generate
timestamped information records. Here, the temperature information is duplicate and
the energy_usage and energy_consumption are conceptually similar.

2.3 Problem Challenges

In the aforementioned scenario, the sensor readings could be represented as struc-
tured graphs, like in Fig. 1. Nevertheless, this scenario faces many challenges:

� Heterogeneity: Multiple sources create heterogeneous data about the uni-
versity. Some of this data, like temperature is duplicate, whereas other like
energy_usage and energy_consumption is conceptually similar. Duplicate
and conceptually similar information lead to redundancy that may over-
whelm the user.

� Low user expressibility: The user has limited information about the uni-
versity. One might also need to create complex join queries to gather all the
information from the necessary sources. Nevertheless, the user is unable to
create a complex �ltering query and is not an expert in query languages. For
example, a SPARQL-like query that noti�es the user when the energy usage
exceeds 4kWh would be the following:

SELECT ?energy_value
FROM STREAM
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WHERE {
Rice_University energy_usage ?energy_value;
FILTER (?energy_value > 4kWh).
}

This query assumes a priori knowledge from the user of the data seman-
tics and schemata concerning "energy_usage" instead of synonyms like "en-
ergy_consumption", "kWh" instead of "Wh" or which stream or streams
produce energy usage readings. On the other hand, if the user creates an
abstract query like the keyword-based one "Rice University", it may lead to
redundant or undesired information.

� Dynamism: The sources that generate information about the university
may be created or deleted at any time.

� Continuity: The sources constantly update the university's information,
and the user needs the most recent data [21].

� High data volume: The high volume of information that is created by the
sources needs to be properly �ltered to not overwhelm the user.

3 Approach

The architecture and algorithms are analysed below.

3.1 Architecture

Our architecture is illustrated in Fig. 3. Sources create graph streams concerning
entities, and users create diversity-aware queries concerning these entities. All
graph streams and queries enter the Summarisation System, which analyses the
graph streams and noti�es the users.

All graph streams enter the Window Partitioning that creates Windows of
di�erent types. The type of window can be one from Count Tumbling, Count
Sliding, Time Tumbling, or Time Sliding. Each window is associated with a
user-required entity; that is, the number of total windows equals to the number
of di�erent entities contained in the user queries. Then, each window fuses the
available data by being populated with triples from all sources concerning a
speci�c entity. The triples are further processed, depending on the approach
taking place.

In the Embeddings-based approach, the triples go through the Triple Pre-
processor, where all of their content is extracted and pre-processed. Duplicate
triples are discarded at this stage. A Word2Vec Model [23] is then used to create
a Word2Vec Index that creates vectors related to each triple. Once the window
reaches its full capacity based on the user-de�ned window size ws, all vectors
undergo DBSCAN Clustering [9]. Conceptual clusters are then created that are
ranked through Ranking based on the importance of the triples in each cluster.
The top-k triples are then selected from the resulting scored triples via Top-k
Selection, and this diverse set is sent as a noti�cation to the users. Then the
process starts again by either sliding the window according to the user-de�ned
window slide wsl or by creating a new window with size equal to the user-de�ned
window size ws.
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Fig. 3. Architecture of the Dynamic Diverse Summarisation System by using two ap-
proaches; an Embeddings-based one and a Thesaurus/Ontology-based one.

In the Thesaurus/Ontology-based approach (FACES [14] adapted), the triples
go through the Triple Pre-processor, where all of their content is extracted and
pre-processed with the use of a thesaurus WordNet2 and a POS Tagger. Dupli-
cate triples are discarded at this stage. A Triple WordSet Index is then created
that contains the word sets related to each triple. Once the window reaches its
full capacity based on the user-de�ned window size ws, all word sets undergo
Cobweb Clustering [10]. A hierarchical tree is then created that contains concep-
tual clusters and is then pruned via the Tree Pruner based on algorithm-de�ned
parameters. The triples in the tree are ranked through Ranking with the use of
a TDB Triple Store3 based on the importance of the triples in a knowledge base.
The top-k triples are then selected from the resulting scored triples via Top-k
Selection, and this diverse set is sent as a noti�cation to the users. Then the
process starts again as described above, depending on the type of window.

Windowing Policies

Window Lifecycle The lifecycle of windows implemented in our dynamic diverse
summarisation system is inspired by that of Flink [5], but customised for our
system requirements. There are the following functions taking place for a win-
dow:

� Window Creator: A window is created based on the entities that have
been generated by the sources and requested by the users.

2 https://wordnet.princeton.edu/
3 https://jena.apache.org/documentation/tdb/
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� Window Assigner: The window is populated with triples coming from
multiple sources that are related to the speci�c entity the window is linked
to.

� Window Processor: The triples within the window are fused and processed
based on the approach selected.

� Trigger: The trigger speci�es the conditions under which the window's
elements are considered ready to be processed. In the case of triple pre-
processing and creation of indices functions, these get triggered on a per-
element basis that enters the window (incremental). The clustering, ranking
and top-k selection get triggered once the window is full (batch).

� Evictor: The evictor is responsible for removing elements from the window
after the processing has been done. Depending on the window type, the
evictor will delete all elements from the window or a subset depending on
conditions.

Window Types We have implemented the following window types in our dynamic
diverse summarisation system:

� Count Tumbling Window: This window contains triples up to a speci�c
user-de�ned maximum count/size (ws). Then, a new window of the same
size is generated with newly arrived triples.

� Count Sliding Window: This window contains triples up to a speci�c
user-de�ned maximum count/size (ws). Then, a new window of the same
size is generated by sliding up to a user-de�ned slide (wsl). This means that
the new window contains the last triples of the previous window equal to
the speci�ed slide in number along with newly arrived triples.

� Time Tumbling Window: This window contains triples generated before
a speci�c user-de�ned maximum timestamp (ws). Then, a new window of
the same size is generated with newly arrived triples.

� Time Sliding Window: This window contains triples generated before a
speci�c user-de�ned maximum timestamp (ws). Then, a new window of the
same size is generated (for the next timestamp period) by sliding up to a
user-de�ned time slide (wsl). This means that the new window contains the
last triples of the previous window that were generated during the time span
of the slide along with newly arrived triples that are generated before the
new maximum timestamp (next timestamp period).

The di�erent window types and their policies are illustrated in Fig. 4.

3.2 Algorithms

The comparison between the Thesaurus/Ontology-based approach and the Embeddings-
based one is analysed below.

Thesaurus/Ontology-based approach (FACES-adapted) FACES is di-
vided into two stages: 1) hierarchical conceptual clustering of triples and 2)
ranking of triples. The �rst stage is done by an adapted version of Cobweb
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Fig. 4. The window policies for Count/Time Tumbling windows and for Count/Time
Sliding windows.

clustering [10] and the use of WordNet4 and a POS Tagger for pre-processing.
The second stage is a combination of an adapted version of tf-idf that is based
on the popularity and the informativeness of a triple in a knowledge base and
some pre-de�ned top-k selection rules. A simpli�ed illustration of the algorithm
is provided in Fig. 5. For more details, the reader is directed to Gunaratna et
al. [14].

In the implementation, we use for the RDF models and some processing
Apache Jena5, a POS Tagger of OpenNLP6 and WordNet of extJWNL7. The
adapted version of the Cobweb algorithm is implemented by modifying the Cob-
Web algorithm of MOA8. The adapted version of tf-idf is implemented by using
a TDB Triple Store9 that stores part of the DBpedia ontology.

Embeddings-based approach Our Embeddings-based approach is divided
into two stages: 1) conceptual clustering of triples and 2) ranking of triples. The
�rst stage is done by the combination of Word2Vec models [23] and DBSCAN
clustering [9]. The second stage is a combination of similarity metrics and some
pre-de�ned top-k selection rules. A simpli�ed illustration of the algorithm is
provided in Fig. 6. For more details, the reader is directed to Pavlopoulou et
al. [27].

In the implementation, we use the pre-trained GoogleNews, Vectors, and Vec-
torsPhrase models10. For the RDF models and some processing, we use Apache

4 https://wordnet.princeton.edu/
5 https://jena.apache.org/
6 https://opennlp.apache.org/
7 http://extjwnl.sourceforge.net/
8 https://moa.cms.waikato.ac.nz/
9 https://jena.apache.org/documentation/tdb/

10 https://code.google.com/archive/p/word2vec/
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Fig. 5. The sources of Fig. 2 generate information that is represented as structured
graphs. A user asks for the top-4 diverse information items for Rice University from
a Count Tumbling Window that contains the last 8 facts of the entity. The Sum-

marisation System pre-processes all triples (we see an example for triple 5), and
all word sets are extracted. Cobweb clustering is then performed that takes as in-
put the appearance or not of words in each triple from the whole collection of the
word set. A tree is then created that contains leaves representing the conceptual clus-
ters. Then, the triples are ranked for each cluster based on their informativeness and
popularity within DBpedia that is stored in a TDB Triple Store. The bold triples
are the most highly ranked ones for each cluster. The top-4 triples are selected and
sent as a noti�cation to the user. In the example, t1:{Rice_University, temperature,
15°C}, t2:{Rice_University, temperature, 15°C}, t3:{Rice_University, energyCon-
sumption, 2kWh}, t4:{Rice_University, energyUsage, 2kWh}, t5:{Rice_University,
country, United_States}, t6:{Rice_University, city, Houston}, t7:{Rice_University,
athletics, Division_I_(NCAA)}, t8:{Rice_University, state, Texas}.

Jena11, for the Word2Vec models we use deeplearning4j12 and for DBSCAN we
use Smile13.

4 Evaluation

To the best of our knowledge, no one has tackled dynamic diverse entity sum-
marisation in heterogeneous multi-source systems. Therefore, we compare our
approach that uses three Word2Vec models (GoogleNews, Vectors, and Vector-
sPhrase) with the FACES-adapted and the non-top-k fused approach, where the
triples are fused in the window, but they are not checked for redundancy.

All experiments were run 5 times, and the average was taken. All runs took
place in a laptop with Intel(R) Core(TM) i7-6600U CPU@2.60GHz 2.80GHz and
16GB of RAM.

11 https://jena.apache.org/
12 https://deeplearning4j.org/
13 https://haifengl.github.io/smile/nlp.html
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Fig. 6. The sources of Fig. 2 generate information that is represented as structured
graphs. A user asks for the top-4 diverse information items for Rice University from
a Count Tumbling Window that contains the last 8 facts of the entity. The Sum-

marisation System pre-processes all triples (we see an example for triple 5), and
all vectorised triples are depicted in the vector space. There, conceptual clusters
are found, which are shown in orange circles, and the triples are ranked for each
cluster based on their distance with the cluster centroid (red asterisk). The red
vectors are the triples closest to the centroids. The top-4 triples are selected and
sent as a noti�cation to the user. In the example, t1:{Rice_University, temperature,
15°C}, t2:{Rice_University, temperature, 15°C}, t3:{Rice_University, energyCon-
sumption, 2kWh}, t4:{Rice_University, energyUsage, 2kWh}, t5:{Rice_University,
country, United_States}, t6:{Rice_University, city, Houston}, t7:{Rice_University,
athletics, Division_I_(NCAA)}, t8:{Rice_University, state, Texas}.

4.1 Dataset and Typing Information

The FACES dataset14 has been selected for our evaluation, which is based on
DBpedia 3.9. The dataset has 50 entities of di�erent domains (e.g. politician,
actor, etc.) with 44 distinct direct features on average per entity. We only focused
on resource-based objects and not literals as they provide richer information, and
we pre-processed the data by keeping only the last part after a "/" or "#" in
URIs so that the data makes more sense from the user perspective.

In the Background section, we referred to the type-based properties and their
role in an RDF graph. Both approaches use the typing information of the ob-
jects. In order to get our results, we take for granted that the typing information
of each object in DBpedia is available and correct. Unfortunately, this is not the
case for all object resources. For example, in the FACES dataset after extract-
ing all available typing information from DBpedia, 54 of the object resources
contained noisy/false types, like < Automobiles >< type >< MusicGenre >
or < Chemistry >< type >< University > and around 300 of them had miss-
ing types. In order to solve this issue, we proceeded with a combination of the
approaches described below:

14 http://wiki.knoesis.org/index.php/FACES
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� We used the Virtuoso SPARQL Query Editor of DBpedia15 by creating a
SPARQL query that asked for the type of an object resource, in case there
was some missing/additional information not found in the dataset �les.

� Inspired by [8], we used the pre-trained entity vectors with naming from
the Freebase model16 and we extracted the word vectors of entities. The
concept is that if entities with unknown types are closer in the vector space
to entities with known types, then they will share the same entity sets.
We used this model and not another one because it had high chances of
containing entities that related to speci�c names, places, etc. For example, <
100_metres > and < 200_metres > were clustered together, so we gave to
both of them the type < SportsEvent > that < 200_metres > had. There
might be cases though where < Baywatch >, < Baywatch_Nights > and
< David_Hasselhoff > were clustered together, and although contextually
it made sense, in reality, their types are di�erent. This information could be
used though for �ne-grained entity typing. For example, each of the entities
< Angelina_Jolie >, < Ben_Affleck > and < Courteney_Cox > had
types < Agent >, < NaturalPerson > and < Person >, but a more �ne-
grained type could be < Actor > since they were clustered together. This
is, nevertheless, out of the scope of our paper.

� Some additional dataset �les were extracted for each entity in question from
DBpedia, like "Categories", "Short Abstracts" and "wikiPageWikiLinks"
that can potentially help in the extraction of types.

� If none of the above succeeded because an entity was missing, then a man-
ual type was given. For example, the entities similar to < http : //wifo5−
03.informatik.uni−mannheim.de/flickrwrappr/photos/Texas > were given
the type < Photos >.

A sophisticated way on how to do typing information in a streaming fashion
is out of the scope of this paper and it could be pursued as future research.

4.2 Workloads

One sink and 50 sources are used. The sink generates 50 queries, one for each
entity, and the sources are each responsible for generating a stream related to
only one entity.

The streaming rate of the sources is constant. The selection of which triple
will be generated each time from a source follows one of the following distribu-
tions:

� TakeAll: A source generates all unique triples that are available for an entity
in the dataset.

� Zipf : A source generates a triple that is available for an entity in the dataset
based on popularity. Speci�cally, each triple in a collection is checked for its
popularity by combining the frequency of occurrence of the property and
the object in the collection. Then the selection of which triple a source will
generate follows a Zipf distribution [18] based on this popularity.

15 http://dbpedia.org/sparql
16 https://code.google.com/archive/p/word2vec/
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4.3 Metrics

Several metrics have been used to evaluate the e�ciency and e�ectiveness of our
approach. These include correctness (the agreement, quality, and redundancy-
aware F-score), end-to-end latency, number of messages, memory footprint and
throughput.

Correctness Correctness consists of the agreement, quality, and redundancy-
aware F-score metrics. We used the ideal summaries of FACES, as we wanted to
identify if our approach produces correct and trustworthy summaries that are
appealing to the human judgement. These ideal summaries have been created
by asking 15 human judges with a background in Semantic Web to select ideal
triples for speci�c entities for k = 5 and k = 10 triples. Each entity has at least
7 ideal summaries from 7 di�erent judges, which constitutes the gold standard.

Agreement and Quality The agreement Agr de�nes how consistent the ideal
summaries are between one another, and the quality Qt de�nes the commonali-
ties between the human-de�ned ideal summaries and the approach's summaries
for each entity. We used the agreement metric of FACES and RELIN [6], and
we adapted a time-dependent version of their quality metric de�ned below.

Agr =
2

n(n− 1)

n∑
i=1

n∑
j=i+1

|SummI
i (e) ∩ SummI

j (e)| (1)

Qt =
1

n

n∑
i=1

|Summt(e) ∩ (SummI
i (e) ∩WTrt(e))

SummI
i (e) ∩WTrt(e)

| (2)

where n is the number of summaries, SummI
i (e) is the i-th ideal summary

for an entity e, Summt(e) is the approach's summary in time t, and WTrt(e)
are the triples of entity e existing in the window in time t.

Our quality metric is dependent on time since this is a dynamic entity sum-
marisation, and static ideal summaries might contain information that is not
yet known to the system; that is, it has not been published yet. Therefore,
each Summit

I(e) contains only the common triples between the already known
triples in the system WTrt(e) and the ones selected from each judge. Then each
of these time-dependent ideal summaries is checked for commonalities with the
approach's summary Summt(e) that has been extracted at that speci�c time. In
the case of duplicate triples, these commonalities are only counted once. In the
quality metric in FACES and RELIN, there is no use of a denominator, because,
for example, k = 10 applies for all ideal summaries (e.g. 2/10 or 8/10 common
triples), but in our case the k is dependent on the commonalities between the
WTrt(e) and the SummI

i (e). Therefore, we might have diverse results (e.g. 2/8
or 5/6 common triples), so the denominator is used for normalisation.

Redundancy-aware F-score We are using the metrics of redundancy-precision
and redundancy-recall de�ned in [35], and through these, we calculate the redundancy-
aware F-score. For our work, we de�ne as "redundant" the duplicate triples. The
score is de�ned as:
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Red_pr =
R−

R− +N− and Red_rec =
R−

R− +R+
(3)

Red_F − score = 2× Red_pr ×Red_rec

Red_pr +Red_rec
(4)

where R− is the set of non-delivered redundant triples, N− is the set of non-
delivered non-redundant ones, and R+ is the set of delivered redundant ones.

End-to-End Latency The end-to-end latency is the time it takes between
the generation of a triple by a source until its delivery to the sink. Since our
summaries involve multiple streams, our end-to-end latency is the time it takes
between the earliest triple in the fusion until the time of the fusion's delivery.

Number of Messages This metric is split between the number of forwarded
messages, which is the number of triples within the graph that is sent to the
sink, and the number of redundant messages, which is the number of duplicates
of the graph.

Memory Footprint This metric contains the memory used by the di�erent
approaches not during the run, but for the use of Word2Vec models or ontologies.

Throughput Throughput is the number of triples the system is able to anal-
yse in a speci�c amount of time.

4.4 Results

The results are shown below for 50 sources that generate 100 triples each and
1 sink with 50 queries with di�erent window policies and distributions. For the
embeddings-approach, the DBSCAN parameters are ε = 1 and minPts = 1
and the Euclidean distance is used for ranking. For FACES-approach, we use
the parameters of the original paper [14] with Cobweb − cut − off = 5 and
Cobweb−path−level = 3. For the Zipf distribution, we use Zipf−exponent = 1.

Fig. 7. Agreement distribution among judges.
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Agreement The average agreement results for all entities are Agr = 1.96
and Agr = 4.7 for k = 5 and k = 10, respectively. We observe that there is a
good agreement among judges with almost 2 out of 5 and 5 out of 10 triples
being common. In Fig. 7, we observe the average agreement distribution for
all entities among judges for the di�erent k values. As expected, the values for
k = 5 are lower than that of k = 10, as the less the number of triples, the
less probable an agreement is. This shows that when a user is presented with a
smaller summary, then stricter criteria take place of what this ideal summary
should be. Some judges, like judges 6, 7, and 11 have the lowest agreement with
the other judges for k = 5, while for k = 10, judges 6, 12, and 13 have the lowest
one. This proves the di�erent levels of ambiguity and expressibility of their needs.
More speci�cally, the di�erent user contextual interpretations of the summaries
produced and the importance of them based on their needs are proven. There is
though some common ground, which is shown in the agreement values.

Fig. 8. Quality for top-k approaches.

Quality In Fig. 8 the quality is illustrated only for TakeAll distribution as we
wanted to cover all unique triples of each entity. Zipf distribution would select
mostly popular triples without possibly covering all of them, so it is not tested
in this metric. Also, the time windows are not checked for the FACES-adapted
approach as it was slow, so no noti�cation was extracted for this time window
period.

Fig. 8 shows that the quality gets better with higher k, and it is analogous to
the agreement for k = 5 and k = 10. This means that the overlap among the ideal
summaries and the approach based ones follows the consensus among the ideal
summaries that the judges gave. We also observe that the FACES-adapted ap-
proach is the best one, followed by the Word2Vec models with GoogleNews being
the best Word2Vec model followed by VectorsPhrase and Vectors. Nevertheless,
there is not a big di�erence between the quality values of the FACES-adapted
and the GoogleNews model.
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In terms of windows, the quality gets better for smaller windows as they con-
tain fewer triples compared to bigger ones, so the commonality between gener-
ated triples and ideal ones is less probable. We also observe that sliding windows
have better quality than tumbling ones, and time windows behave more poorly
than count windows.

Fig. 9. Redundancy-aware F-score for top-k approaches.

Redundancy-aware F-score Redundancy-aware F-score in Fig. 9 is illus-
trated only for Zipf distribution as TakeAll distribution does not generate dupli-
cate triples. We observe that by using top-k �ltering, we result not only in the
elimination of duplicate redundant information but in possibly valuable informa-
tion. Nevertheless, we observe that the F-score ranges from 0.80 to 0.95. Lower
F-score occurs for lower k as stricter content �ltering is taking place. There is
not much di�erence among the window policies, although we see that a higher
F-score is observed with the increase in window sizes, as the bigger the window,
the more probable redundant information exists. The F-scores are very high,
mostly because there is a lot of duplication in the generated triples due to Zipf
distribution. The less duplication exists in the generated streams, the lower the
F-score will be.
End-to-End Latency In Fig. 10, we observe the end-to-end latencies for
count windows only, as the time windows had similar behaviour. We see that the
slowest model is FACES-adapted, followed by Word2Vec GoogleNews, Word2Vec
VectorsPhrase, Word2Vec Vectors, and non-top-k fused approach. This shows
that FACES-adapted spends much time in pre-processing the triples and ac-
cessing the TDB triple store every time for ranking the triples. The Word2Vec
GoogleNews model is the most expensive of the three Word2Vec models as it
has 3.5GB memory that needs, on average, 139518ms to be loaded once in our
system (included in latency). The other Word2Vec models are much smaller (see
Fig. 12) and need far less time. The non-top-k fused approach has the best la-
tency since no processing is involved when sending noti�cations, but it is not
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Fig. 10. End-to-End Latency for non-top-k and top-k approaches.

that much quicker compared to the smaller Word2Vec models with Vectors being
very close to it.

Other observations include that the Zipf distribution results in lower latency
compared to the TakeAll one. Also, the latency increases with the window size
as although the fusion and top-k diversity are incremental within the window,
the summary is sent after the window is populated; therefore, the population
time is also considered. Latency is independent of k as the processing is done,
and then only the top-k selection of the ranked triples takes place.

The reason the latencies seem large is that they are end-to-end, that is the
summary that is created each time for an entity is the accumulation of the
top entity information in the window that contains the times these facts were
created. So the timestamp of whichever fact contributed to the summary a�ects
the summary's end-to-end latency.

Number of Messages In Fig. 11, the number of forwarded messages for the
TakeAll and Zipf distribution are illustrated. For the TakeAll, we observe that
the number of forwarded messages is reduced within the ranges of 34% to 92%
depending on the k and the window policy for the top-k approach compared
to the non-top-k one. For higher k values, more information is sent; therefore,
the message reduction decreases. Smaller windows create more messages as they
get populated more quickly with triples, so more regular noti�cations are sent.
Sliding windows create more messages compared to tumbling ones of the same
window size as more frequent windows are created due to the slide, so more
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Fig. 11. Number of messages forwarded for non-top-k and top-k approaches.

noti�cations are sent. This is also the reason why smaller size windows with
smaller slides produce more messages.

The Zipf distribution's results bear similar observations to those of TakeAll,
although Zipf creates more messages in total, as repetitive triples may be pro-
duced. In TakeAll, only the unique triples are generated by the sources. There-
fore, for the time windows, TakeAll has a similar number of messages for the
tumbling or sliding window as at some point the sources stop generating any
more streams; therefore, more time will not have any e�ect. On the other hand,
for Zipf we see that the time sliding window produces more messages as again
more frequent windows are created due to the slide, so more noti�cations are
sent.

TakeAll does not produce repetitive triples, but for Zipf, we observe that from
all messages, non-top-k approach contains 56.7% to 69.3% duplicates, depending
on the window policy. This percentage is particularly high in the case of Zipf, as
popular triples will be produced more frequently than others. Smaller windows
have less duplication, and sliding windows have lower duplication than their
equivalent tumbling windows. The top-k approach can discard this duplicate
information, therefore, reducing the overall forwarded messages.

Memory Footprint In Fig. 12, we observe the memory footprint not of
the approaches while they are being executed, but on the models or ontologies
that they are using. We observe that FACES-adapted demands more memory
compared to the Embeddings-based approaches. This occurs because FACES-
adapted uses the whole DBpedia in order to rank the available triples based on
popularity and informativeness. For that reason, we used a TDB Triple Store
that demanded extra memory cost and several accesses for each summary ex-
traction during execution. The memory cost indicated in Fig. 12 only contains
part of the whole DBpedia that contained the format of triples in our original
dataset. The memory of storing all of the DBpedia would be higher. In terms
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Fig. 12. Memory footprint for top-k approaches.

of the Word2Vec models, the GoogleNews model is trained on a bigger corpus;
therefore, it is the biggest one among the Word2Vec models. This model is fol-
lowed by VectorsPhrase and Vectors, which is the smallest model as it is trained
on a small corpus. Non-top-k fused approach is not shown here as it did not
demand any extra memory cost as it does not use any Word2Vec models or
ontologies.

Fig. 13. Throughput for non-top-k and top-k approaches.

Throughput In Fig. 13, the average throughput for all window policies for
each approach is shown as not important di�erences were observed. We see
that the TakeAll distribution has lower throughput than the Zipf, probably be-
cause in the latter much more events were generated, so they entered the system
more frequently. Non-top-k fused along with Word2Vec Vectors have the best
throughput, followed by Word2Vec VectorsPhrase, Word2Vec GoogleNews, and
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lastly FACES-adapted. This behaviour is dependent or analogous to the memory
consumption and end-to-end latency for each approach. As FACES-adapted is
the most memory, and latency costly approach; therefore, the throughput will
be the lowest. In terms of windows, bigger ones have higher throughput by a few
events, whereas sliding windows have lower throughput to tumbling ones of the
same size by a few events.

Discussion According to our results, we conclude that non-top-k fused ap-
proach is the best one in relation to memory, throughput, and latency. Never-
theless, it sends all the available information to the user that contains duplicate
or conceptually redundant information. With the increase of sources, more and
more data is generated with di�erent variations of duplication or conceptual
similarity; therefore, the non-top-k fused approach would perform worse. On the
other hand, the top-k fused approach reduces signi�cantly the amount of data
that is sent as a summary to the user. This means that the information sent to
the user might not contain some non-redundant information due to �ltering, but
it manages to send a summary with quality analogous to the agreement among
judges.

The worst model in terms of memory, throughput, and latency was FACES-
adapted, although it performed slightly better than the rest of the approaches in
terms of quality of summaries. This shows that an existing thesaurus might be
strict when it comes to synonyms or hypernyms, whereas a probabilistic model
based on text-corpora, like Word2Vec models, covers a wider range of synonyms
based on context. For example, semantically opposite words (antonyms) but
conceptually similar (e.g. death place - birthplace) are taken into account, as
well as phrases. Also, this shows that �nding all possible hypernyms and use a
memory-heavy ontology in real-time for ranking can signi�cantly decrease the
performance of the system.

In conclusion, we observe a trade-o� between latency, throughput, memory
footprint, the number of forwarded messages, and expressiveness (represented
by the quality and redundancy-aware F-score) among a non-top-k and a top-
k fused approach. This is because the latency, throughput, and memory are
better in non-top-k fused approach, but the number of forwarded as well as
redundant messages and expressiveness are worse and vice verse for the top-
k. We also observe that a thesaurus/ontology-based top-k approach might be
slightly better in terms of quality of summaries compared to an embeddings-
based top-k approach, but it behaves worse in terms of system performance.
We conclude, then, that slightly more processing time, memory and throughput
for �nding diverse data with the use of embeddings-based approaches, can lead
to less data being sent upstream for further processing, as well as data that is
seen as expressive as the agreement among judges without containing redundant
information (duplicate or conceptual one).

5 Related Work

The related work is analysed below and it is split into the Non-Streaming and
Streaming category.
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5.1 Non-Streaming

Graph Summarisation Many graph summarisation techniques are covered
by Liu et al. [22]. These are split into static and dynamic graph summarisa-
tion techniques. In the static case, plain graph summarisation examines only
the graph's structure, whereas the labelled graph summarisation examines the
graph's labels too. In the dynamic case, plain graph summarisation examines
the temporal structure. Currently, there is no dynamic labelled graph summari-
sation. In our understanding, plain entity summarisation is related to static
labelled graph summarisation, as both the structure and the labels (subject,
property, object values) are analysed. Our work is aspiring to introduce dy-
namic entity summarisation that could be related to dynamic labelled graph
summarisation, where both temporal structure and labels are considered.

Plain Diverse Entity Summarisation and Approximation Top-k diver-
sity in entities by summaries that detect duplication and conceptual similarity
are tackled by several works that also consider high usability via keyword-based
queries. DIVERSUM [32] focuses on a per-property summarisation based on
novelty, importance, popularity and diversity by adapting the document-based
Information Retrieval to the knowledge graphs. FACES [14] emphasises on sum-
maries based on diversity, uniqueness, and popularity via hierarchical conceptual
clustering and the use of WordNet for related terms. FACES-E [13] improves on
FACES by also considering types in datatype properties. Pouriyeh et al. [28]
emphasise on summaries based on topic modelling by considering properties as
topics and use of Word2Vec for related terms. Other works by Harth et al. [16]
and Pan et al. [25] emphasise on RDF approximation (e.g. RDF sampling, his-
tograms, compression). All of these works contain static methodologies; there-
fore, they need to be extended to support a complex dynamic environment.

5.2 Streaming

Stream Processing Frameworks Existing stream processing frameworks,
like Apache Spark17, Flink18 and Kafka19 do not support entity summarisation
techniques; therefore, they need to be extended. Also, their constraints in sup-
porting speci�c non-graph-based data formats or SQL-like queries could lead to
low usability if the user has low expressibility.

Stream Approximation Work has been done in dynamic stream approxi-
mation, but mostly for numerical or string data. These include synopsis methods,
frequent patterns, clustering or dimensionality reduction mainly in Aggarwal et
al. [2] and Gupta et al. [15]. Tang et al. [33] focuses on synopsis in graph streams,
but without emphasising on labelled graphs. Le-Phuoc et al. [20] focuses on RDF
stream processing, but without emphasising on summaries. Dia et al. [7] extend
SPARQL for supporting RDF stream sampling, which is di�erent from diverse
entity summarisation.

In conclusion, no existing approach covers the requirements of our problem.

17 https://spark.apache.org/
18 https://�ink.apache.org/
19 https://kafka.apache.org/
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6 Conclusion and Future Work

In this paper, we emphasised that with the rise of sensors, there are data chal-
lenges involved in high-volume, heterogeneity, dynamism, continuity, and usabil-
ity. Therefore, we need a system that can tackle these issues. In a previous pa-
per [27], we proposed a dynamic diverse summarisation system of heterogeneous
graph streams with the use of embeddings. Here, we examine the performance
comparison between our embeddings-based approach, FACES-adapted, an exist-
ing thesaurus/ontology-based approach (FACES) that we adapted in a dynamic
environment with the use of windows and data fusion and non-top-k fused ap-
proach. According to our �ndings, although the non-top-k approach is better
in system performance, it contains redundant information. The top-k fused ap-
proaches, on the other hand, are more costly for the system but create good
quality non-redundant summaries based on judges. The FACES-adapted might
be slightly better in terms of quality of summaries compared to our approach,
but it behaves worse in terms of system performance.

Future work will be related to improving the quality metric results by boost-
ing expressiveness with a more sophisticated ranking approach. Also, adapting
more existing static diverse entity summary approaches to smart environments
will be explored. An IoT-based dataset will also be examined, and its perfor-
mance will be analysed on our approach. The approach will also be extended for
not only resource-based objects but literals or not only star-like graphs but multi-
depth graphs for discovering relationships among entities. Finally, the extension
of simple user queries to preferential or complex ones, like domain-speci�c or
feature-speci�c or multi-entity will also be explored.
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