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Abstract—Machine learning based applications that run on 
image datasets increasingly use local image feature descriptors. 
We can visualize images as objects and local features as parts. 
Typically, there are thousands of local features per image, 
resulting in an explosion of feature set size for already huge image 
datasets. In this paper, we present a feature set consolidation 
strategy based on two aspects: pruning of non-discriminatory 
features across different object types and association of matching 
features for the same type of objects. We showcase the effectiveness 
of our consolidation strategy by performing classification on a 
building dataset. Our method not only reduces storage space 
footprint (~5%) and classification runtime (~4%) but also 
increases classification accuracy (~2%).
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I. INTRODUCTION
Traditionally, for vision-based machine learning problems, 

each object instance in the dataset has been cohesively 
represented as a single—possibly very high dimensional—
vector. This approach could be attributed to the observation that 
certain machine learning problems are better handled in high 
dimensional spaces (e.g. Support Vector Machine (SVM) [1]). 
However, with the availability of discriminating local features 
(such as SIFT [2]), it has been possible to conjure objects as a
composition of parts (or components). For example, given an 
image of an animal (object), we refer as parts all the extracted 
local features (by a feature extraction algorithm). Here we have 
assumed that each image has only one object. This notion of 
representation by parts is different than the cognitive idea of 
physical parts of the animal, such as head, body, etc.

While locally discriminative features may provide a richer 
description of objects, they pose several new challenges for 
object representation and learning,

A fixed high dimensional vector representation of the 
object is not practical as the number and order of local 
features generally vary across objects.

The number of parts that represent a single object is
typically in the order of hundreds (e.g. SIFT features) thus 
increasing the space and time complexity to store and 
process these features.

Both intra-class and inter-class variability increase
significantly due to richer object representation.

The dimensionality of individual features is generally low,
which can be problematic for learning algorithms where 
high dimensionality is desired (e.g. SVM).

To address these challenges, several approaches are found in 
the literature. These approaches can be broadly classified into 
three types, i.e., approaches that reduce a) the number of 
features; b) the feature dimensions; and c) both the number and 
dimensions of features.

Common approaches such as object representation by top 
features or feature clustering aim at reducing the number of 
features. Ledwich et al. [3] reduced the number of SIFT features 
used for indoor scene representation based on the observation 
that a majority of the detected keypoints do not match between 
images that share a common camera viewpoint. Montazer et al.
[4] represented objects by clustering SIFT features of an object 
with k-means to solve content-based image retrieval (CBIR) 
problem. Methods such as PCA-SIFT [5] and feature 
quantization [7] reduce feature dimensionality. For example, [6]
used PCA-SIFT and applied locality sensitive hashing (LSH) for 
fast object retrieval. Hare et al. [7] introduced a method to 
quantize SIFT features based on inverted intensity images and 
then performed clustering to create a codebook for image 
matching. This method reduces feature dimensionality and the 
size of the feature set.  

A key aspect that has not been addressed, in these methods
is the elimination of features that are non-discriminative across 
different objects. Although SIFT features are discriminative for 
a given image, there is a possibility that some of these features 
may lose their discriminatory powers in the presence of similar 
features from altogether different objects. In other words, the 
distance between some of the SIFT features belonging to 
different objects could be small enough to cause incorrect feature 
matching across object types. In this paper, we intend to bridge 
this gap in the existing methods by pruning non-discriminative 
SIFT features across objects. In addition, we improvise feature 
clustering by integrating concepts of associative memory from 
[8]. Our approach is a combination of non-discriminatory feature
elimination and associative feature clustering is called Feature 
Set “consolidation”.
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Figure 1: Object representation by parts

The approach can complement existing methods in the literature. 
In the following section, we describe in detail about feature set 
consolidation.

II. FEATURE SET CONSOLIDATION
Consider a simplified schematic, that demonstrates object 

representation by parts. Figure 1 shows two object instances of 
two different object classes. Each object instance is represented 
by three corresponding parts. Consolidation has two aspects, 
elimination and associative clustering. To explore the impact of 
consolidation in greater detail, we will study it in the context of 
the object classification problem. 

Accurate classification of objects requires learning a 
complex decision boundary (in this case, non-linear). If we 
eliminate the non-discriminatory parts that lie near the decision 
boundary, then the boundary simplifies (becomes linear in this 
case). The elimination of non-discriminatory parts will not 
increase the complexity of the decision boundary because any 
non-discriminatory part could be labeled as internal (not 
impacting decision boundary) or boundary part.

In general, while building a classifier, it is important to strike 
a good balance between the errors due to bias and variance to 
have good generalization accuracy. It is evident that pruning of 
non-discriminative parts helps reduce not only bias—by 
reducing model complexity—but also variance—by reducing 
unwarranted variance in the dataset. Pruning, as demonstrated in 
the schematic (Figure 1), helps reduce errors due to bias and 
variance.

While the pruning of parts may sound similar to the pruning 
of object instances [9], there are some key differences. In 
general, pruning of parts—unlike object pruning—does not lead 
to loss of representation of the entire object(s) except when all 
the parts that compose object(s) are pruned. Object parts (across 
object classes) are likely to be closer to each other in the hyper-
space than the corresponding objects due to the sheer number 
and low dimensionality of parts.

A large number of object parts allows us to not only be 
aggressive while pruning but also statistically determine the 
class of an object based on the underlying class distribution over 
parts. Thus, an object will be classified accurately as long as the 
majority of its parts are correctly classified.

Next, we look at the associative clustering aspect of feature 
set consolidation. Typical clustering methods substitute parts 
from same object class that belong to a single cluster with a 

single representative part. The cluster strength, i.e., the number 
of parts belonging to a cluster, which is indicative of the 
association of cluster members, is generally not utilized. In 
addition to typical clustering, our method stores the strength of 
each cluster. At the time of classification of an object, the cluster 
strength contributes to the class distribution that will be used to 
determine the class of the query object. Higher the cluster 
strength, larger will be the contribution to the distribution and 
vice-versa. This concept is inspired by sparse distributed 
memory (SDM) [8]. However, there are significant differences 
between SDM and associative clustering. While SDM permits 
clustering of instances—for the purpose of indexing—with same 
or different class labels, our approach only allows clustering of 
same label instances. Thus, clusters generated by our method are 
pure, i.e., all the cluster members belong to the same object class.

The two aspects of feature set consolidation, i.e., pruning and 
associative clustering are complementary. Together not only 
they contribute in reduction of storage space and classification 
runtime but also help strike a balance between model bias and 
dataset variance.

III. EXPERIMENTS AND RESULTS
To demonstrate the concept of pruning and its effectiveness,

we have implemented a parts-based image classification system. 
The experiments consist of the following three steps:

1. Store the training dataset features in a database in an off-
line mode with and without consolidation.

2. At runtime, match the test dataset features to those stored 
in the database. This results in the assignment of a class 
label to each feature in the set.

3. Derive a class label for each query object from its feature 
set label distribution (from Step 2).

Our experiments were conducted on a standard Intel Core i7
processor with Windows 10 operating system and 8GB RAM. 
The system was developed in Python with OpenCV port [11].
We have used the Zurich building dataset [10] for the 
experiments. The dataset with a total of 1005 images consists of 
five views of 201 different buildings in Zurich. Each view image 
has dimensions 640 x 480. Local features (SIFT) were extracted 
for each image where each SIFT feature interest point,
represented a part of the image. The number of SIFT points 
extracted per image ranged from about 1000 to 2000.

The dataset was split into training and test sets with different 
percentages of data held out for testing. Two sets of 
classification experiments were conducted, one without and 
another with the consolidation of features. For the purpose of 
consolidation, at the time of training, the SIFT points were 
matched using a brute force matcher with 2 distance norm.
Matched points with a distance less than a specific threshold 
were only considered as appropriate matches. This step of 
storing training data, without or with consolidation, was done in 
an off-line mode.

At runtime, during the classification of a query image, its 
local features were extracted and matched to the stored features 
resulting in distribution over class labels. The query image is 

Class 1: Instances
Class 2: Instances

Boundary parts to prune

Non-linear class boundary

Class 1: Parts
Class 2: Parts

Linear class boundary post pruning

3

2

Internal parts to prune

Associative Clustering

125

Authorized licensed use limited to: NATIONAL UNIVERSITY OF IRELAND GALWAY. Downloaded on January 04,2021 at 15:29:37 UTC from IEEE Xplore.  Restrictions apply. 



Figure 2: Experiments showcasing a reduction in the number of SIFT 
points stored and classification runtime due to pruning (Matching threshold 

= 100).

labeled with the mode of the distribution. A range of experiments 
was conducted on the dataset to assess the impact of 
consolidation. Experiments with varying number of SIFT 
features, different size training datasets, and matching threshold 
was performed. Table 1, Table 2, and Table 3 respectively list 
the number of keypoints, classification time, and F-score values 
for these experiments. Figure 2 and Figure 3 respectively show 
the plot of difference, without and with consolidation, in the 
number of SIFT keypoints (left vertical axis) and classification 
runtime (right vertical axis), as a function of the maximum 
number of SIFT features extracted per image for three different 
sizes of test data. We see that as the number of extracted SIFT 
points per image increase, consolidation leads to a reduction in
storage space and classification time. On average, our method 
reduces storage space requirements by 5% and shortens 
classification runtime by 4%. As the size of training set reduces, 
reduction in storage space decreases (the dashed lines). These 
results should be assessed in conjunction with the results of 
Figure 3 that show the classification performance of the two 
approaches (without and with consolidation) as the number of 
SIFT points extracted per image varied.

For each experiment, the assessment of the classification 
results was done by computing F-score. Table 3 lists the actual 
F-scores obtained for various experimental setups. Within a 
given experimental setup (e.g. with 20% dataset held out for 
testing), we observe that the F-score steadily increases for both 
without and with pruning experiments as the number of SIFT 
features increase.

The F-score for classification with consolidation is better on 
an average by about 2-3%, particularly for experiments where 
the number of SIFT features are limited (highlighted entries in
Table 3). For other experiments, the F-scores with consolidation
are similar to those without consolidation. This trend is observed 
for all the experimental setups (as seen in Figure 3) indicating no 

Figure 3: Graph with F-scores for different experiments with and without 
pruning (Matching threshold = 100).

Table 1: NUMBER OF FEATURES STORED FOR DIFFERENT 
EXPERIMENTAL SETUPS.

Dataset 
held out 
%

Experimental 
Setup 1
(20%)

Experimental 
Setup 2
(40%)

Experimental 
Setup 3 
(60%)

SIFT
features 
per image

Total 
features 
stored

Pruned 
features 
stored

Total 
features 
stored

Pruned 
features 
stored

Total 
features 
stored

Pruned 
features 
stored

10 8040 7892 6030 5946 4020 3974
30 24120 23488 18090 17722 12060 11875
60 48240 46515 36180 35183 24120 23632

100 80400 76837 60300 58255 40200 39249
200 160800 151861 120600 115565 80400 77981
400 321499 309461 241099 233006 160699 155940

Table 2: CLASSIFICATION RUNTIME (IN SECONDS) FOR DIFFERENT 
EXPERIMENTAL SETUPS.

Dataset 
held out 
%

Experimental 
Setup 1
(20%)

Experimental 
Setup 2
(40%)

Experimental 
Setup 3 
(60%)

SIFT
features 
per image

Time 
(No 

pruning)

Time 
(With 

pruning)

Time 
(No 

pruning)

Time 
(With 

pruning)

Time 
(No 

pruning)

Time 
(With 

pruning)
10 74.16 67.16 135 134.32 201.34 201.64
30 72.78 73.57 142.38 143.35 210.01 209.87
60 91.93 91.08 171.84 170.73 236.74 235.68

100 133.84 129.38 237.14 234.89 297.72 295.54
200 352.59 341.84 573.09 504.33 573.69 548.1
400 1007 985.38 1542.26 1450.8 1618.37 1574

adverse effect of the consolidation strategy on classification 
outcomes.A sample result of unrelated matching keypoints, one 
point from a building façade and another from a zebra crossing, 
which were pruned from two different building images, is shown 
in Figure 4. Figure 5 shows the impact of varying the keypoint 
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matching threshold. As the matching threshold increases, the 
number of points pruned increases significantly. However, the 
classification performance remains at par with that of without 
pruning experiments.

Table 3: CLASSIFICATION F-SCORE FOR DIFFERENT EXPERIMENTS.

Dataset 
held out 
%

Experimental 
Setup 1
(20%)

Experimental 
Setup 2
(40%)

Experimental 
Setup 3 
(60%)

SIFT
features 
per image

F-score 
(No 

pruning)

F-score 
(With 

pruning)

F-score 
(No 

pruning)

F-score 
(With 

pruning)

F-score 
(No 

pruning)

F-score 
(With 

pruning)
10 0.11 0.10 0.11 0.10 0.04 0.05
30 0.30 0.32 0.30 0.34 0.19 0.20
60 0.51 0.55 0.53 0.54 0.36 0.40

100 0.68 0.69 0.75 0.74 0.54 0.57
200 0.84 0.83 0.84 0.86 0.73 0.72
400 0.92 0.90 0.92 0.90 0.81 0.81

Figure 4: Sample matching points (in blue) from two different images 
(separated by the yellow marker) that were pruned.

Figure 5: Impact of varying matching threshold on reduction in SIFT 
points and classification accuracy.

IV. SUMMARY
In this paper, we have presented a feature set consolidation 

strategy suitable for scenarios where objects (images) are 

represented by parts (local feature descriptors). During the 
process of consolidation, the non-discriminatory parts belonging 
to different objects—that often complicate machine learning 
models—were eliminated and the matching parts across 
different instances of the same object class were strengthened.

Our experiments demonstrate that such a strategy is efficient 
as it leads to savings in terms of both storage space and 
classification runtime without compromising classification 
performance. With increasing volume of image data and 
improved local descriptors, such consolidation strategies will be 
helpful in realizing increasing memory and time-intensive 
applications on limited computing power devices.
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