
 

DEPARTMENT: INTERNET OF THINGS 

Next-Generation Smart 
Environments: From 
System of Systems to 
Data Ecosystems 

Digital transformation is driving a new wave of large-

scale data-rich smart environments with data on 

every aspect of our world. The resulting data 

ecosystems present new challenges and 

opportunities in the design of intelligent systems and 

system of systems. 

Smart Environments are generating significant quantities of data due to a convergence of digital 
infrastructure from the Internet of Things (IoT), Edge, Fog, and Cloud Computing that is driving 
a new wave of data-driven intelligent systems. Through the generation and analysis of data from 
the smart environment, data-driven systems are transforming our everyday world, from the digit-
ization of traditional infrastructure (smart grid, water, and mobility), the revolution of industrial 
sectors (smart autonomous cyber-physical systems, autonomous vehicles, and industry 4.0), to 
changes in how our society operates (smart government and cities). At the other end of the scale, 
we see more human-centric thinking in our systems1 where users have growing expectations for 
highly personalized digital services for the “market-of-one.” The digital transformation is creat-
ing a data ecosystem with data on every aspect of our world spread across a range of intelligent 
systems. Data ecosystems present new challenges to the design of intelligent systems and system 
of systems requiring a rethink in how we deal with the needs of large-scale data-rich smart envi-
ronments. How can intelligent systems leverage their data ecosystem to be “smarter?” How can 
we support data sharing data between smart systems in an ecosystem? How can systems adapt to 
take advantage of the data within the ecosystem? What are practical approaches to the govern-
ance of data within an ecosystem? How can we make trusted decisions using data and humans 
within the ecosystem? Solving these problems is critical if we are to progress towards next-gen-
eration, data-intensive intelligent systems. 
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FROM DETERMINISTIC TO PROBABILISTIC 
DECISIONS IN SMART ENVIRONMENTS 
Within a smart environment a range of reliability is required. Consider the example of the auton-
omous connected car/vehicle. We have the strict requirements of safety-critical autonomous 
driving system, and a failure may lead to loss of life or serious personal injury Compare that to 
the “good enough” infotainment systems, where a failure is acceptable and merely an inconven-
ience to the user. When it comes to making decisions in smart systems, there are two general ap-
proaches: deterministic (model-driven) and probabilistic (data-driven). A critical difference 
between the approaches can be explored by considering the costs and level of reliability and 
adaptability each provides. There is a tension between reliability, predictability, and cost:1 usu-
ally the more dependable and reliable the system needs to be, the more cost is associated with its 
development. Typically, we can see deterministic systems as reliable but with high costs to de-
velop and adapt (i.e., autopilot), and probabilistic as low-cost to build and adapt, but less reliable 
(i.e., infotainment). 

Where high-levels of reliability are needed, deterministic approaches are an obvious choice for 
the design of smart systems. This is because the environment is optimized based on a formal de-
terministic model, and a set of rules and/or equations details the decision logic for the system 
that is used to control the activity in the environment in an efficient and predictable manner. 
Adapting the system to meet changes in the environment is a costly process, as the model and its 
rules need to be updated by expert system engineers. 

In the probabilistic approach, the core of the decision process is a statistical model that has been 
learned from an analysis of training data to learn the structure of a decision model automatically 
from the observed data (i.e., driver behavior). Thus, a fundamental requirement of data-driven 
approaches is the need for data to train the algorithms. A lack of data, and training data, within a 
smart environment limits the use of data-driven approaches. 

As the IoT is enabling the deployment of lower-cost sensors, we are seeing broader adoption of 
intelligent systems and gaining more visibility (and data) into smart environments. Not only are 
smart environments generating more data, but they are also producing different types of data 
with an increase in the number of multimedia devices deployed such as vehicle and traffic cam-
eras. The emergence of the Internet of Multimedia Things (IoMT) is resulting in large quantities 
of high-volume and high-velocity multimedia event streams that need to be processed. The result 
is a data-rich ecosystem of structured and unstructured data (i.e., images, video, audio, and even 
text) detailing the smart environment that can be exploited by data-driven techniques. 

The increased availability of data has opened the door to the use of the data-driven probabilistic 
models, and their use within smart environments is becoming increasingly commonplace for 
“good enough” scenarios. It is estimated that a single connected car will upload about twenty-
five gigabytes of data per hour (http://www.cisco.com/web/about/ac79/docs/mfg/Connected-Ve-
hicles_Exec_Summary.pdf), while a vehicle fitted with an autonomous vehicle imaging and 
scanning system generates and processes about 4 TB of data for every hour of autonomous driv-
ing (https://www.datamakespossible.com/evolution-autonomous-vehicle-ecosystem/). 

As a result, the conventional rule-based approach is now being augmented with data-driven ap-
proaches that support optimizations driven by techniques including machine learning, cognitive, 
and AI techniques that are opening up new possibilities in the design of smart systems. For ex-
ample, pedestrian detection is difficult to implement in a rule-based approach. However, deep 
learning models for object detection and semantic segmentation using a dash-mounted camera 
are very effective at detecting pedestrians. Systems can now adapt to changes in the environment 
by leveraging the data generated in the environment within their learning process to improve per-
formance. If systems share data on their operational experiences, then the pooled data can be 
used to improve the overall learning processes of all the systems, giving us a form of collective 
artificial intelligence through the “wisdom of the systems.” Because the process is data-driven, it 
can be run and re-run at low cost. This critical role of data in enabling adaptability and collective 
machine intelligence makes it a precious resource. 
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SYSTEM OF SYSTEMS 
The need to bring together multiple systems within a smart environment to work together is be-
coming a standard requirement. Initiatives such as Smart Cities are showing how different sys-
tems within the city (i.e., energy and transport) can collaborate to maximize the potential to 
optimize overall city operations. Autonomous connected vehicles can support smart city mobility 
by providing a vital feedback loop for cities on the state of traffic volumes, flows, roadway de-
sign and maintenance, and the mobility requirements (trip information) of its occupants. This 
requires a System of Systems (SoS) approach to connect systems that cross organizational 
boundaries (i.e. city, automotive, personal data), come from different domains (i.e., entertain-
ment, manufacturing, logistics, etc.), and operate at different levels (i.e., city, district, neighbor-
hood, fleet, vehicle, or individual passenger). The joint ISO/IEC/IEEE definition of a SoS brings 
together a set of systems for a task that none of the systems can accomplish on its own. Each 
constituent system keeps its management, goals, and resources while coordinating within the 
SoS and adapting to meet SoS goals.”2 Maier3 identified a set of characteristics to describe a 
SoS: 

• Operational independence: constituent systems can operate independently from the SoS 
and other systems. 

• Managerial independence: constituent systems are managed by different entities. 
• Geographic distribution is the degree to which a system is widely spread or localized. 
• Evolutionary development: the evolution of a SoS and its behavior, which requires 

changes to system interfaces to be maintained and kept consistent. 
• Emergent behavior: new emergent behavior can be observed when the SoS changes. 

There are many challenges in bringing together the constituent systems into a SoS at the data, 
service, process, and organizational levels that require advanced systems engineering. At the 
data-level, data-driven approaches can benefit from leveraging data from multiple systems 
within the smart environment. This requires support for the sharing of data at new scales be-
tween multiple complex interconnected system of systems within a smart environment. 

DATA ECOSYSTEMS 
Within a data ecosystem, participants (individuals or organizations) can create new value that no 
single participant could achieve by itself.4 A data ecosystem can form in different  ways—around 
an organization, an activity (mobility), a community of interest (music), a geographical location 
(city), or within or across industrial sectors (automotive, manufacturing, pharmaceutical). In the 
context of a smart environment, the data ecosystem metaphor is useful to understand the chal-
lenges in maximizing the value of data within the environment. The cross-fertilization and shar-
ing of vital resources and datasets from different participants is a key benefit of data ecosystems, 
leading to new business opportunities and easier access to knowledge and data. 
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Figure 1. Connected and Autonomous Vehicle Data Ecosystem 

Figure 1 details the data ecosystem for connected and autonomous vehicles where a community 
of interacting data-intensive systems share and combine their data to provide a holistic functional 
view of the car, passenger, city mobility, and service & infrastructure providers. Systems within 
the ecosystem can also come together to form a SoS. The ecosystem supports the flow of data 
between systems, enabling the creation of data value chains to understand, optimize, and rein-
vent processes that deliver insight to optimize the overall ecosystem. Data may be shared about 
the current operating conditions of the vehicle, traffic flows, or context of the passengers; a fam-
ily on holiday, or a business executive moving between meetings. The pooled data can be used to 
support personalized digital services (i.e. delivering the latest episode of the family’s favorite 
sitcom) and real-time decision-making (i.e. delivering relevant information for the business exec-
utive’s next meeting). Data on past operating conditions can be shared to improve the learning 
processes of all systems in the ecosystem. 

The nature of the ecosystem, the systems themselves, and the system dynamics will affect the 
design and operation of the ecosystem. Enabling data ecosystems for smart environments will 
require a rethink in the design of intelligent systems to consider ecosystem concerns including 
governance, economics, and technical challenges. Data infrastructure is needed to support data 
sharing within the ecosystem—from data provided by a single dominant actor on their proprie-
tary infrastructure, to a community pooling their data in a managed open source data platform. 

To understand the dynamics of a smart environment data ecosystem we can look to the literature 
on SoS3 and business ecosystem5 to help us understand the different types of data ecosystem that 
can exist. In Figure 2 we bring together these two areas in the design of a data ecosystem for a 
smart environment: Koening5 identified two key criteria regarding the design of a business eco-
system that will also influence a data ecosystem, namely, resource control, and interdependence: 
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• Control of key data resources: Who controls the essential data resources in the ecosys-
tem? Does a single “keystone”6 actor control the key data resources that all others de-
pend on, or is control of the key data resources spread across multiple actors in the 
ecosystem?  

• Participant interdependence: Interdependence is based on the degree to which different 
participants in the ecosystem must interact and exchange data for performing their activ-
ities. Reciprocal interdependence requires high levels of coordination between the par-
ticipants, while pooled interdependence enables loose coupling between participants. 

 

Figure 2. Topology of Data Ecosystems (adapted from Koening5 and Maier3) 

Drawing inspiration from the SoS classification by Maier3 (which defines Virtual, Collaborative, 
Acknowledged, and Directed categories) and the ecosystem topology by Koening, we can con-
sider the different types of data ecosystems that may exist within a smart environment (Figure 2). 

• Directed data ecosystems are centrally controlled to fulfill a specific purpose. Typically 
found within an organization setting or following a keystone model, participants within 
a directed ecosystem maintain an ability to operate independently, but their standard op-
erational mode is subordinated to the centrally managed purpose of the ecosystem. 

• Acknowledged data ecosystems have defined objectives and pooled dedicated re-
sources. The constituent systems retain their independent ownership and objectives. 
Changes in the ecosystem are based on collaboration between the distributed partici-
pants. 

• Collaborative data ecosystems have participants interact voluntarily to fulfill an agreed-
upon central purpose. The primary players collectively decide the means of enforcing 
and maintaining standards between the federations of participants. 

• Virtual data ecosystems have no central management authority and no centrally agreed 
upon purpose. Bottom-up coalitions of participants emerge from a virtual data ecosys-
tem to pool decentralized resources to achieve specific goals. 

FUTURE DIRECTIONS 
Enabling a smart environment data ecosystem will require many challenges to be overcome re-
garding infrastructure, governance, systems engineering, and human-centricity. 
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Trusted Data Platforms 
To support the ecosystem and the interconnection of systems, there is a need to enable the shar-
ing of data between systems. Platform approaches have proved successful in many areas of tech-
nology, and the idea of large-scale "data" platforms have been touted as a possible next step. A 
data platform focuses on the secure and trusted data sharing among a group of participants (i.e., 
industrial consortiums sharing private or commercially sensitive data) within a clear legal frame-
work. An ecosystem data platform would have to be infrastructure agnostic and have to support 
continuous, coordinated data flows, seamlessly moving data between systems. Data exchange 
could be based on models for monetization or reciprocity. Data platforms can create possibilities 
for smaller organizations and even individual developers to get access to large volumes of data, 
enabling them to explore their potential. Data platforms open up many research areas including 
data discovery, curation, linking, synchronization, standardization, and decentralization. How-
ever, the challenges go beyond the technical to issues of data ownership, privacy, business mod-
els, and licensing and authorized reuse by third parties. 

Ecosystem Data Governance 
For mass collaboration to take place within data ecosystems, we need to overcome the challenges 
of dealing with large-scale agreements between potentially decoupled interacting parties. Re-
search is needed on decentralized data governance models for data ecosystems that support col-
laboration and fully consider ethical, legal, and privacy concerns. Data governance within an 
ecosystem must recognize data ownership, sovereignty, and regulation while supporting eco-
nomic models for the sustainability of the data ecosystem. A range of decentralized governance 
approaches may guide a data ecosystem from authoritarian to democratic alternatives, including 
majority voting, reputation models (i.e., eBay), proxy-voting, and dynamic governance (i.e., so-
ciocracy: circles and double linking).7 Finally, economic concerns may be considered as an in-
centivization factor within governance models with "data-vote exchange" models where 
participants pay for votes with data. 

Incrementally Evolving Systems Engineering: Cognitive 
Adaptability 
The design of adaptive systems will need to consider the implication of operating within an eco-
system. The boundaries of systems will be fluid and will change and evolve at runtime to adapt 
to the context of the current situation. However, we must also consider the cost of system partici-
pation, and support "pay-as-you-go" approaches at both the system and data-levels. For data 
management, dataspaces8 represent one avenue where a pay-as-you-go approach has been ap-
plied to integrate data on an "as-needed" basis with the labor-intensive aspects of data integration 
postponed until they are required.9 How can the pay-as-you-go approach be extended to the de-
sign of incremental and evolving systems? 

Work on evolving systems engineering10 will need to consider the inclusion of data-driven prob-
abilistic techniques that can provide “cognitive adaptability” that will help systems adapt to 
changes in the environment that were unknown at design-time. Adaptive systems require new 
iterative development processes that require training and deploying machine learning models 
over massive volumes of training data with close collaboration between data scientists, software 
developers, data engineers, and governance professionals. System design will need to consider 
the varying levels of accuracy offered by data-driven approaches, providing best-effort or ap-
proximate results using the data accessible at the time.8 How can we mix deterministic and statis-
tical approaches? How can we test and verify these systems? What are the challenges in making 
decisions using multiple sources from the ecosystem? 
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Towards Human-Centric Systems 
Currently, intelligent systems make critical decisions in highly-engineered systems (i.e., autopi-
lots) where users receive specialized training to interact with them (i.e., pilots). As we move for-
ward, intelligent systems will be making both critical and lifestyle decisions—from the course of 
treatment for a critical illness and safely driving a car, to choosing what takeout to order and the 
temperature of our shower. Data-driven decision approaches (including cognitive and AI-based 
techniques) will need to provide explanations and evidence to support their decisions and guar-
antees for the decisions they recommend. The role of users in data ecosystems will not be a pas-
sive one. Users are a critical part of socio-technical systems, and we need to consider more ways 
of including the “human in the loop” within future systems. Active participation of users can im-
prove their engagement and sense of ownership of the system. Indeed, active involvement of the 
user could be a condition for them granting access to their private data. Research is needed to 
build trust in algorithms and data—in the trusted co-evolution between humans and AI-based 
systems, and in the legal, ethical, and privacy issues associated with making data-driven critical 
decisions. 
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