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ARTICLE INFO ABSTRACT

Article history: Tasks such as question answering and semantic search are dependent on the ability of querying
Received 16 January 2015 and reasoning over large-scale commonsense knowledge bases (KBs). However, dealing with
Received in revised form 24 June 2015 commonsense data demands coping with problems such as the increase in schema complexity,
:\C/S‘?lzﬁg irslljllrll:ezé(}llsy 2015 semantic inconsistency, incompleteness and scalability. This paper proposes a selective graph
navigation mechanism based on a distributional relational semantic model which can be applied
to querying and reasoning over heterogeneous knowledge bases (KBs). The approach can be used
Keywords: ) for approximative reasoning, querying and associational knowledge discovery. In this paper we
Commonsense reasoning focus on commonsense reasoning as the main motivational scenario for the approach. The ap-
;il:it;‘ﬁifs‘;o;l;i ntics proach focuses on addressing the following problems: (i) providing a semantic selection mecha-
Hybrid distributional-relation models nism for facts which are relevant and meaningful in a specific reasoning and querying context and
Semantic approximation (ii) allowing coping with information incompleteness in large KBs. The approach is evaluated
using ConceptNet as a commonsense KB, and achieved high selectivity, high selectivity scalability
and high accuracy in the selection of meaningful navigational paths. Distributional semantics is

also used as a principled mechanism to cope with information incompleteness.
© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Building intelligent applications and addressing simple computational semantic tasks demand coping with large-scale common-
sense knowledge bases (KBs). Querying and reasoning (Q&R) over large commonsense KBs are fundamental operations for tasks such
as Question Answering, Semantic Search and Knowledge Discovery. However, in an open domain scenario, the scale of KBs and the
number of direct and indirect associations between elements in the KB can make Q&R grow unmanageable. To the complexity of
querying and reasoning over such large-scale KBs, it is possible to add the barriers involved in building KBs with the necessary con-
sistency and completeness requirements.

With the evolution of open data, better information extraction frameworks and crowd-sourcing tools, large-scale structured KBs
are becoming more available. This data can be used to provide commonsense knowledge for semantic applications. However,
querying and reasoning over this data demands approaches which are able to cope with large-scale, semantically heterogeneous
and incomplete KBs.

As a motivational scenario, suppose we have a KB with the following fact: John Smith is an Engineer’ and suppose the query ‘Does
John Smith have a degree?’ is issued over the KB. A complete KB would have the rule ‘Every engineer has a degree’, which would
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materialize John Smith has a degree’. For large-scale and open domain commonsense reasoning scenarios, model completeness and
full materialization cannot be assumed. In this case, the information can be embedded in other facts in the KB (Fig. 1). The example
sequence of relations between engineer and degree defines a path in a large-scale graph of relations between predicates, which is
depicted in Fig. 1.

In a large-scale KB, full reasoning can become unfeasible. A commonsense KB would contain vast amounts of facts and a complete
inference over the entire KB would not scale to its size. Furthermore, while the example path is a meaningful sequence of associations
for answering the example query, there is a large number of paths which are not meaningful under a specific query context. In
Fig. 1(1), for example, the reasoning path which goes through (1) is not related to the goal of the query (the relation between engineer
and degree) and should be eliminated. Ideally a query and reasoning mechanism should be able to filter out facts and rules which are
unrelated to the Q&R context. The ability to select the minimum set of facts which should be applied in order to answer a specific user
information need is a fundamental element for enabling reasoning capabilities for large-scale commonsense knowledge bases.

Additionally, since information completeness of the KBs cannot be guaranteed, one missing fact in the KB would be sufficient to
block the reasoning process. In Fig. 1(2) the lack of a fact connecting university and college eliminates the possibility of answering
the query. Ideally Q&R mechanisms should be able to cope with some level of KB incompleteness, approximating and filling the
gaps in the KBs.

This work proposes a selective reasoning approach which uses a hybrid distributional-relational semantic model to address the prob-
lems previously described. Distributional semantic models (DSMs) use statistical co-occurrence patterns, automatically extracted
from large unstructured text corpora, to support the creation of comprehensive quantitative semantic models. In this work, DSMs
are used as complementary semantic layers to the relational/logical model, which supports coping with semantic approximation
and incompleteness. The proposed approach focuses on the following contributions:

« provision of a selective Q&R approach using a distributional semantics heuristics, which reduces the search space for large-scale KBs
at the same time it maximizes paths which are more meaningful for a given reasoning context;

* definition of a Q&R model which copes with the information incompleteness present at the KB, using the distributional model to
support semantic approximations, which can fill the lack of information in the KB during the reasoning process.

This work is organized as follows: Section 2 introduces natural language commonsense knowledge bases and briefly describes
ConceptNet [11]; Section 3 provides an introduction on distributional semantics; Section 4 describes the 7-Space distributional-
relational semantic model which is used for the selection reasoning mechanism; Section 5 defines the distributional representation
for the commonsense KB; Section 6 describes the selective reasoning mechanism (distributional navigational algorithm); Section 7 pro-
vides an evaluation of the approach using explicit semantic analysis (ESA) as a distributional semantic model and ConceptNet [11] as
KB; Section 8 describes related work and finally, Section 9 provides conclusions and future work.

2. Natural language commonsense knowledge bases (NLCS-KB)

More recent commonsense KBs such as ConceptNet are shifting from a logic representation framework to a natural language-
based commonsense knowledge representation [11,14]. The motivation behind this change in perspective is to improve the scale
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Fig. 1. (1) Selection of meaningful paths. (2) Coping with information incompleteness.
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of acquiring and accessing commonsense knowledge. Natural language terms support the inheritance of the meaning of its cultural
use, which can be contrasted to logical symbols, which have no a priori meaning outside its local context of definition [14].

Logical frameworks have a stable and systematic way of evaluating and maintaining the truth of expressions [14], where ambiguity
and inconsistencies are removed during the construction of the KB. While logical KBs offer a precise framework for representing
and inferring over knowledge, logical approaches present major scalability problems for the construction of large-scale commonsense
KBs.

This work concentrates on the extension of natural language-based commonsense KBs with a distributional semantics framework,
which aims at addressing incompleteness in the KB and provides a selective reasoning framework based on knowledge embedded in
unstructured corpora. Despite the fact that this work concentrates on natural language commonsense KBs, the approach can be
transported to logical KBs [15].

The ConceptNet natural language based KBs [14] is used to materialize the discussion. However, the proposed reasoning model can
be transported to other NLCS-KBs with a similar structure.

ConceptNet is a large commonsense semantic network which is built from curated data and from data extracted from semi-
structured and unstructured sources. ConceptNet can be seen as a labeled graph where the nodes represent natural language frag-
ments which fall into three main classes: noun phrases, attributes, and activity phrases [14], and the labeled edges are described by
an ontology of upper-level relations (Table 3). ConceptNet is stored as a set of triples of the form (word1, relation, word2). For example,
the sentences “A telephone is used for communication”, “Linux is an operating system” and “You propose to a woman when you love her”
are respectively represented as the triples (telephone,usedfor,communication), (linux,isa,operating_system) and (propose_to_woman,
motivatedbygoal,you_love_her). Note that in the last two cases we use short phrases as nodes instead words.

The English subset of ConceptNet 5 [11] is built from the following knowledge sources: (i) the Open Mind Commonse Sense
website!; which collects manually curated commonsense knowledge; (ii) games with a purpose (e.g. verbosity); (iii) WordNet 3.0;
(iv) information extraction on sources such as Wikitionary and Wikipedia; (v) structured information on Wikipedia.

The next sections describe the complementary distributional layer which is used to extend the semantics of the commonsense KB.

3. Distributional semantics

In this work distributional semantics supports the definition of an approximative semantic navigational approach in a knowledge
base, where the graph concepts and relations are mapped to vectors in a distributional vector space.

Distributional semantics is defined upon the assumption that the context surrounding a given word in a text provides important
information about its meaning [12]. It focuses on the construction of a semantic model for a word based on the statistical distribution
of co-located words in texts. These semantic models are naturally represented by vector space models (VSMs), where the meaning of
a word can be defined by a weighted vector, which represents the association pattern of co-occurring words in a corpus.

The existence of large amounts of unstructured text on the Web brings the potential to create comprehensive distributional se-
mantic models (DSMs). DSMs can be automatically built from large corpora, not requiring manual intervention on the creation of
the semantic model. Additionally, its natural association with VSMs, which are supported by dimensional reduction approaches or
data structures such as inverted list indexes can provide a scalability benefit for the instantiation of these models.

The computation of semantic relatedness measure between words is one instance in which the strength of distributional models
and methods is empirically supported (|3, 2]). The computation of the semantic relatedness measure is at the center of this work
and it is used as a semantic heuristics to navigate in the KB graph, where the distributional knowledge extracted from unstructured text
is used as a general-purpose large-scale commonsense KB, which complements the knowledge present at the relational KB.

DSMs are represented as a vector space model, where each dimension represents a context pattern C for the linguistic or data context in
which the target term T occurs. A context can be defined using documents, data tuples, co-occurrence window sizes (number of neigh-
boring words) or syntactic features. The distributional interpretation of a target term is defined by a weighted vector of the contexts in
which the term occurs, defining a geometric interpretation under a distributional vector space. The weights associated with the vectors
are defined using an associated weighting scheme W, which calibrates the relevance of more generic or discriminative contexts. The se-
mantic relatedness measure s between two words is calculated by using different similarity/distance measures such as the cosine similarity,
Euclidean distance, mutual information, among others. As the dimensionality of the distributional space grows, dimensionality reduction
approaches d can be applied.

Definition. Distributional semantic model (DSM): A distributional semantic model (DSM) is a tuple (7,C,, W, M, d, [), where:

e 7T is the set of target words, i.e. the words for which the DSM provides a contextual representation.
* Cis the set of context patterns in which T co-occur.

* R is a relation between T and the set of context patterns C.

* W is the context weighting scheme.

e M is the distributional matrix, T x C.

* d is the dimensional reduction function, d :M — M.

* s is the distance measure, between the vectors in M'.

! http://openmind.media.mit.edu.
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The set of context windows C is used to define the basis Cpqsis = {C1,-, C} of vectors that spans the distributional vector space
VS®ist. A given term x is represented in VS as:

t
Jj=1

such that w is a context weighting scheme, i.e. a measure which define weights for the vector components.

The set of context windows where a term occurs define the context vectors associated with the term, which is a representation of
its meaning on the reference corpus.

In this work the distributional semantic model (DSM) used in the evaluation is explicit semantic analysis (ESA), which is briefly ex-
plained in the following section.

3.1. Explicit semantic analysis (ESA)

Explicit semantic analysis (ESA) [3] is a distributional semantic model based on Wikipedia. ESA represents the meaning of a text in
a high-dimensional space of concepts derived from the Wikipedia text collection. In ESA, the distributional context window is defined
by the Wikipedia article, where the context identifier is a Wikipedia article title/identifier.

A universal ESA space is created by building a vector space containing Wikipedia articles' document representations using the
TF/IDF weighting scheme. In this space, each article is represented as a vector where each component is a weighted term present
in the article. Once the space is built, a keyword query over the ESA space returns a list of ranked articles titles, which define a
context vector associated with the query terms (where each vector component receives a relevance weight).

In the ESA model, the context is defined at the document level which defines a semantic model which captures both syntagmatic
and paradigmatic relations, appropriate for the computation of a semantic relatedness measures for the schema-agnostic scenario. The
coherence of the Wikipedia content discourse in the context of a Wikipedia article also influences the quality of the semantic relat-
edness measure.

The approach proposed by Gabrilovich and Markovitch also supports a simple compositionality model allows the composition of
vectors for multi-word expressions, where the final concept is the centroid of the vectors representing the set of individual terms. The
ESA semantic relatedness measure between two terms is calculated by computing the cosine similarity between two distributional
vectors.

The link structure of the articles can be used for providing alternative or related expressions for the contexts (based on the extrac-
tion of anchor texts) and for the enrichment of the semantic model. The link structure can also work as a basis for dimensional reduc-
tion. Gabrilovich and Markovitch describe two levels of semantic interpretation models. First-order interpretation models are purely
based on information present in the textual description of articles, while second-order models also include knowledge present in
inter-article links.

Gabrilovich and Markovitch incorporate concept relations by boosting the weights of concepts linked from the top-k weight con-
cepts. The authors apply a further generality filter, where only more general concepts extracted from links are considered. Generality
is determined by the difference in the number of inlinks among two linked concepts. Since some articles are overly specific or are not
completely developed, Gabrilovich and Markovitch prune some concepts based on heuristics of quality and relevance.

ESA has the following configuration parameters:

» ¢ = Wikipedia article.

* W = TF/IDF.

* d = link-based pruning (optional).
* S = cosine.

4. T-Space

The 7-Space [1] is a distributional structured vector space model which allows the representation of the elements of a graph KB under
the grounding of a distributional semantic model. The 7-Space is built by extending a labeled graph Gz with an associated distribu-
tional representation for each term used to name the graph labeled elements E. The hybrid distributional-structured representation
enriches the semantic knowledge explicitly stated in the structured data with unstructured knowledge in the reference corpora.

The 7-Space is a distributional-relational model (DRM) which is defined as a tuple (DSM, DB, RC, F, H), where:

Definition. Distributional-relational model (DRM):

* DSM is the associated distributional semantic model.

* DB is the structured dataset with DB elements E and tuples T.

e RC is the reference corpora which can be unstructured, structured or both. The reference corpora can be internal (based on the co-
occurrence of elements within the DB) or external (a separate reference corpora).

« Fisamap which translates the elements e; € E into vectors €; in the distributional vector space VS”** using the string of e; and the
data model category of e;.
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* H is the set of semantic thresholds for the distributional semantic relatedness s in which two terms are considered semantically
equivalent if they are equal and above the threshold.

5. Embedding the commonsense KB into the T-Space

We consider that a natural language commonsense knowledge base KB is formed by a set of terms {vy, -, v,} and a set of relations
{r1, -+, rn} between these terms, both represented as words or short phrases in natural language. Formally:

Definition. A commonsense knowledge base KBis defined by a labeled digraph Gig2¢' = (V, R, E), where V = {vy, -, v,} is a set of nodes,

R = {ry, -, r} is a set of relations and E is a set of directed edges (v; v;) labeled with relation r € R and denoted by (v;, 1, vj).

Alternatively, we can simplify the representation of the KB ignoring their relation labels:

Definition. Let KB be commonsense knowledge base and Gi%°' = (V, R, E) be its labeled digraph representation. A simplified repre-
sentation of KB is defined by a digraph Gxg = (V',E"), where V' = Vand E' = {(v;, v;) : (v;, 1, v;) EE}.

Each labeled element in the KB have a set of senses associated with the natural language expression used to describe the element.
Adopting the simplified KB representation, the set of senses associated to a node can be defined as:

Definition (Node Senses). Let KB be a commonsense knowledge base represented by Gi%5¢ = (V, R, E) and let Sense be the set of
senses semantically supported by the KB. The function NS

NS: V- (25""“ {@})

defines the node sense of all v € V.

In the natural language KB, the set of senses are not explicitly represented. Each node in the graph have a set of senses which are
semantically supported by the relationships with the neighboring nodes.

Given the (labeled) graph representation of KB, we have to embed it into the T-Space. To do that we have to translate the nodes and
edges of the graph representation of KB into a vector representation in VS™", as follows:
|

. labe
Definition. The vector representation of Gi2¢' = (V, R, E) in V5t is 6,<Bd = (Vgist, Raise, Egise) such that:

ist

t
Vi = {7 V=Y u]c;, foreach vEV} (2)
)
— t )
Ry = {?;?_Zu}?i,foreachrER} 3)
i1
E gy = {?—7, V=T : foreach (vi,r, v]-)EE} (4)

u! and uf are defined by the weighting scheme over the distributional model.?

After the KB is embedded into the distributional space, each node is enriched with a distributional representation. The distribution-
al representation contains the set of contexts in which a word/term appears in the reference corpus, in all possible senses for that
word/term according to the reference corpus (Fig. 2).

6. Distributional navigation algorithm

Once the KB is embedded into the T-Space, the next step is to define the navigational process in this space that corresponds to a
selective reasoning process in the KB. The navigational process is based on the semantic relatedness function defined as:

Definition. A semantic relatedness function sr : VS¥st x VS¥st [0, 1] is defined as:

sr(p‘{,p‘{) = cos(0) = p; . Py

A threshold 7 € [0, 1] can be used to establish the desired semantic relatedness between two vectors: sr(p; , Py )>7.

2 Reflecting the word co-occurrence pattern in the reference corpus.
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Fig. 2. Schematic depiction of the 7 - Space embedding the commonsense KB graph into a distributional space.

The information provided by the semantic relatedness function sr is used to identify elements in the KB with a similar meaning
from the reference corpus perspective. The threshold was calculated following the semantic differential approach proposed in [2].
Multi-word phrases are handled by calculating the centroid between the context vectors defined by each word.

Algorithm 1 is the distributional navigation algorithm (DNA) which is used to find, given two semantically related terms source
and target wrt a threshold ), all paths from source to target, with length [, formed by concepts semantically related to target wrt 1.

The source term is the first element in all paths (line 1). From the set of paths to be explored (ExplorePaths), the DNA selects a path
(line 5) and expands it with all neighbors of the last term in the selected path that are semantically related wrt threshold 1) and that
does not appear in that path (lines 7-8).

The stop condition is sr(target, target) = 1 (lines 10-11) or when the maximum path length is reached.

The paths p = < ty, t, -+, t; > (where ty = source and t; = target) found by DNA are ranked (line 14) according to the following
formula:

]
rank(p) = Zsr(?,target) (5

i=0

Algorithm 1 can be modified to use a heuristic that allows to expand only the paths for which the semantic relatedness between all
the nodes in the path and the target term increases along the path. The differential in the semantic relatedness for two consecutive
iterations is defined as Asqrget (t1, £2) = sr(G, target) —sr(t_{ ,target), for terms t;, t, and target. This heuristic is implemented by includ-
ing an extra test in the line 7 condition, i.e., Agrger(tr, 1) > 0.
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Algorithm 1. Distributional navigation algorithm
INPUT

o threshold: n
e pair of terms (source, target) such that sr(sourc%,ta.rgez) >n

o path length: 1

ouTPUT
RankedPaths: a set of ranked score paths < (lg,---,#;),score > such that
to = source and t; = target

1: ty + source

2: Paths + 0

3: ExplorePaths + [(< to >,sr(t_c:,target )]

4: while ExplorePaths # 0 do -

5 remove (< tg, -tk >,sr(tk,targe%)) from ExploredPaths

6 if k <l—1then

T for all (n € neighbors(ty) : sr(ﬁ,targe )>mnandn ¢ {ty,--- ,1}) do
8: append (< tg, -+ ,tg,n >, sr(?, tzu'gez)) to ExplorePaths
9: end for

10:  elseif k={—1 then

11: append (< tg, - ,t, target >,1) to Paths

12:  end if

13: end while
14: RankedPaths « sort(Paths)
15: return RankedPaths

The navigation process of the distributional navigation algorithm can be interpreted as a node disambiguation process where
nodes with senses which are strongly related to the target element are selected using the distributional relatedness measure. The dis-
tributional relatedness measure works as a word sense disambiguation mechanism by selecting nodes which have senses which have
strong semantic relationships (expressed in the reference corpus) with the target node.

The source and current nodes also work as a contextual constraint (and as a disambiguation mechanism), which affects the selec-
tion of the nodes with compatible senses. As the KB does not explicitly represent node senses, this process works implicitly by
selecting node terms which are semantically compatible with both source and target.

Definition (Sense Disambiguation). Let KB be acommonsense knowledge base represented by Gid2¢! = (V, R, E) and let 1) be a seman-

tic relatedness threshold. Given two nodes v;, v; € V, the sense disambiguation of v; wrt v; and 1), is defined by the function

Disambiguationse,, (vi, v;, n) =NS,,, ENS(v;)UNS (vj)

whenever sr(v;, v;) > 1.

The mechanism defined above aims at maximizing the selection of a navigation path which is meaningful under the contextual
constraints of the queries. The disambiguation function is implicitly defined by the composing the graph constraints between nodes
and the navigation based on the distributional semantic relatedness computed against the neighboring nodes and the target words.

Additionally, the distributional semantic model supports detecting semantic relations between nodes which do not have an explic-
it relationship stated in the KB. This allows an extension of the distributional navigation algorithm to cope with KB incompleteness.
The set of distributional unlabeled relations can be interpreted as an extension of the KB as defined below:

Definition (Distributional Relation). Let KB be a commonsense knowledge base represented by Gi&2¢' = (V, R, E). The distributional
relation r;, wrt a threshold 7 is defined as {(v;, v))|v, v; EV; V 1 €R, (v;, 1, v;) € E and sr(v;, v;) > 1)}

Definition (Distributional Closure). Let KB be a commonsense knowledge base represented by Gi¢5¢' = (V, R, E). The distributional
closure of KB wrt a threshold 7 is defined by the labeled digraph Gig®'(17) = (V, RU {r,,}, EU {(vs, 1, v))|(Vi, v;) € T:1}).

7. Evaluation
7.1. Setup

In order to evaluate the proposed approach, the 7-Space was built using the explicit semantic analysis (ESA) as the distributional
model. ESA is built over Wikipedia using the Wikipedia articles as context co-occurrence windows and TF/IDF as a weighting scheme.
ConceptNet [11] was selected as the commonsense knowledge base. The bulk of the semantic network represents relations
between predicate-level words or expressions. Different word senses are not differentiated. Two types of relations can be
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Table 1
Number of triples per relation.
Number of triples Number of relations
=1 45311
1<x<10 11.804
10<x<20 906
20 < x < 500 790
> 500 50

found: (i) recurrent relations based on a lightweight ontology used by ConceptNet (e.g. partOf) and (ii) natural language expressions
entered by users and open information extraction tools. These characteristics make ConceptNet a heterogeneous commonsense
knowledge base. For the experiment, all concepts and relations that were not in English terms were removed. The total number of
triples used on the evaluation was 2,252,338. that use 58,861 different relations. Most of the relations (45,311) have only one triple
and only 50 relations appear in more than 500 triples. The results are summarized in Table 1. The distribution of the number of clauses
per relation type is presented in Table 2.

A test collection consisting of 45 (source, target) word pairs were manually selected using pairs of words which are semantically
related under the context of the Question Answering over Linked Data challenge (QALD 2011/2012).2 Each pair establishes a corre-
spondence between question terms and dataset terms (e.g. ‘What is the highest mountain?’ where highest maps to the elevation pred-
icate in the dataset). Fifty-one pairs were generated in total.

For each word pair (a,b), the navigational algorithm 1 was used to find all paths with lengths 2, 3 and 4 above a fix threshold 1) = 0.05,
taking a as source and b as target and vice-versa, accounting for a total of 102 word pairs. All experimental data is available online.*

7.2. Reasoning selectivity

The first set of experiments focuses on the measurement of the selectivity of the approach, i.e. the ability to select paths which are
related and meaningful to the reasoning context. Table 3 shows the average selectivity, which is defined as the ratio between the num-
ber of paths selected using the reasoning algorithm 1 by the total number of paths for each path length. The total number of paths was
determined by running a depth-first search (DFS) algorithm.

For the size of ConceptNet, paths with length 2 return an average of 5 paths per word pair. For this distance most of the returned
paths tend to be strongly related to the word pairs and the selectivity ratio tend to be naturally lower. For paths with lengths 3 and 4
the algorithm showed a very high selectivity ratio (0.153 and 0.0192 respectively). The exponential decrease in the selectivity ratio
shows the scalability of the algorithm with regard to selectivity. Table 3 shows the average selectivity for DNA. The variation of
DNA with the A criteria, compared to DNA, provides a further selectivity improvement (¢ = (# of spurious paths returned by
DNA/# of spurious paths returned by DNA + A)) ¢(length2) = 1, ¢(length3) = 0.49, ¢(length4) = 0.20.

The results for each source, target pair can be found in Tables 4 and 5.

7.3. Semantic relevance

The second set of experiments focuses on the determination of the semantic relevance of the returned nodes, which measures the
expected property of the distributional semantic relatedness measure to serve as a heuristic measure for the selection of meaningful
paths.

A gold standard was generated by two human annotators which determined the set of paths which are meaningful for the pairs of
words using the following criteria: (i) all entities in the path are highly semantically related to both the source and target nodes and
(ii) the entities are not very specific (unnecessary presence of instances, e.g. new york) or very generic (e.g. place) for a word-pair con-
text. Only senses related to both source and target are considered meaningful. The two human annotators evaluated the relevance of
the same set of paths. The paths which were in agreement between the two annotators were used in the experiment.

The accuracy of the algorithm for different path lengths can be found in Table 3. The high accuracy reflects the effectiveness of the
distributional semantic relatedness measure in the selection of meaningful paths. A systematic analysis of the returned paths shows
that the decrease in the accuracy with the increase on path size can be explained by the higher probability on the inclusion of instances
and classes with high abstraction levels in the paths.

From the paths classified as not related, 47% contained entities which are too specific, 15.5% too generic and 49.5% were unrelated
under the specific reasoning context. This analysis provides the directions for future improvements of the approach (inclusion of fil-
ters based on specificity levels).

3 http://www.sc.cit-ec.uni-bielefeld.de/qald-1.
4 http://bit.ly/1p3PmHTr.
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Table 2
Top frequent relations in the ConceptNet.
Relation Number of triples
instanceof 918.123
isa 201.710
hasproperty 120.961
subjectof 96.566
definedas 94.775
relatedto 88.922
directobjectof 87.946
usedfor 62.242
have_or_involve 49.967
atlocation 49.216
derivedfrom 40.403
capableof 38.811
synonym 34974
hassubevent 27.366
hasprerequisite 25.160
causes 18.688
motivatedbygoal 16.178
be_in 15.143
be_near 12.744
be_not 11.777
receivesaction 11.095
hasa 10.048
partof 7.104

7.4. Addressing information incompleteness

This experiment measures the suitability of the distributional semantic relatedness measure to cope with KB incompleteness (gaps
in the KB). Thirty-nine (source, target) entities which had paths with length 2 were selected from the original test collection. These
pairs were submitted as queries over the ConceptNet KB indexed on the V5%t and were ranked by the semantic relatedness measure.
This process is different from the distributional navigational algorithm, which uses the relation constraint in the selection of the neigh-
boring entities. The distributional semantic search mechanism is equivalent to the computation of the semantic relatedness between
the query and all entities (nodes) in the KB (sr({p;, sorce target) {p,, source target))). The threshold criteria take the top 36 elements
returned.

Two measures were collected. Incompleteness precision measures the quality of the entities returned by the semantic search over
the KB and it is given by incompleteness precision = # of strongly related entities/# of retrieved entities. The determination of the strongly
related entities was done using the same methodology described in the classification of the semantic relevance. In the evaluation, re-
sults which were not highly semantically related to both source and target and were too specific or too generic were considered in-
correct results. The avg. incompleteness precision value of 0.568 shows that the ESA-based distributional semantic search provides a
feasible mechanism to cope with KB incompleteness, suggesting the discovery of highly related entities in the KB in the reasoning con-
text. There is space for improvement by the specialization of the distributional model to support better word sense disambiguation
and compositionality mechanisms.

The incompleteness coefficient provides an estimation of the incompleteness of the KB addressed by the distributional semantics
approach and it is determined by incompleteness coefficient = # of retrieved ConceptNet entities with an explicit association/# of strongly
related retrieved entities. The average incompleteness value of 0.039 gives an indication of the level of incompleteness that common-
sense KBs can have. The avg. number of strongly related entities returned per query is 19.21.

An example of the set of new entities suggested by the distributional semantic relatedness for the pair{(mayor, city) are: council,
municipality, downtown, ward, incumbent, borough, reelected, metropolitan, city, elect, candidate, politician, democratic (Table 6).

The evaluation shows that distributional semantics can provide a principled mechanism to cope with KB incompleteness,
returning highly related KB entities (and associated facts) which can be used in the reasoning process. The level of incompleteness
of an example commonsense KB is expressed in the incompleteness coefficient which was found to be high, confirming the relevance
of this problem under the context of reasoning over commonsense KBs.

Table 3

Selectivity and accuracy.
Path length Average selectivity agorithm 1 % pairs of words resolved Path accuracy
2 0.602 0.618 0.958
3 0.153 0.726 0.828

4 0.019 0.794 0.736
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Table 4
The number of paths, selected paths and selectivity of the pair of terms (source,target) for paths with lengths of 2, 3 and 4.
Length 2 Length 3 Length 4
(target, source) No.of  No. of selected Selectivity No.of  No. of selected Selectivity No. of No. of selected Selectivity
path paths path paths path paths

chancellor-government 4 3 0.75 60 22 0.367 2060 184 0.089
battle-war 10 6 0.6 167 20 0.120 4472 76 0.017
daughter-child 15 4 0.267 327 11 0.034 9719 9 0.001
death-die 9 1 0.111 - - - - - -
actress-actor 3 2 0.667 18 3 0.167 704 15 0.021
episode-series 1 1 1.000 - - - 282 2 0.007
single-song 1 1 1.000 14 4 0.286 354 22 0.062
country-europe 16 9 0.563 135 11 0.081 4823 27 0.006
mayor-leader 2 2 1.0 50 10 0.200 1401 41 0.029
high-elevation 1 1 1.000 16 2 0.125 263 3 0.011
video game-software 1 1 1.000 30 2 0.067 1090 8 0.007
music-album 14 4 0.286 411 28 0.068 18996 143 0.008
wife-spouse 3 2 0.667 32 5 0.156 1119 12 0.011
long-length 8 3 0.375 51 11 0.216 1192 37 0.031
movie-film 5 1 0.200 94 3 0.032 3524 1 0.000
husband-spouse 4 2 0.500 27 2 0.074 717 6 0.008
people-population 6 2 0.333 251 4 0.016 11501 22 0.002
artist-paint 2 2 1.000 52 4 0.077 2342 20 0.009
company-organization 25 11 0.440 700 36 0.051 30223 146 0.005
place-location 13 5 0.385 238 19 0.080 9672 91 0.009
city—-country 23 9 0.391 588 36 0.061 19935 130 0.007
occupation-job 2 1 0.500 29 4 0.138 653 21 0.032
jew-religion 5 2 0.400 109 14 0.128 3601 64 0.018
soccer-ball 3 2 0.667 57 11 0.193 2004 45 0.022
war-weapon 7 2 0.286 92 11 0.120 2663 41 0.015
car-automobile 19 11 0.579 239 26 0.109 7250 91 0.013
pilot-aircraft 2 2 1.000 17 9 0.529 501 39 0.078
game-competition 6 3 0.500 155 13 0.084 5056 56 0.011
success-money 4 1 0.250 156 6 0.038 5850 43 0.007
country-moon 4 2 0.500 144 12 0.083 5129 63 0.012
spouse-married - - - 3 3 1.000 41 11 0.268
chancellor-head - - - 80 4 0.050 3231 11 0.003
european-europe - - - 6 1 0.167 211 4 0.019
soccer-league - - - 4 1 0.250 215 3 0.014
ruler-leader - - - 20 4 0.200 832 22 0.026
author-book - - - 97 8 0.082 3936 57 0.014
artist-song - - - 87 5 0.057 3305 67 0.020
monarchy-government - - - 1 1 1.000 90 5 0.056
jew-ethnicity - - - 6 3 0.500 198 6 0.030
football-club - - - 111 1 0.009 2888 1 0.000
university-professor - - - 30 1 0.033 1004 6 0.006
player-instrument - - - - - - 3518 2 0.001
design-develop - - - - - - 1506 2 0.001

8. Analysis of the algorithm behavior

Fig. 3 contains a subset of the paths returned from an execution of the algorithm for the word pair (battle, war) merged into a
graph. Intermediate nodes (words) and edges (higher level relations) provide a meaningful connection between the source and target
nodes. Each path has an associated score which is the average of the semantic relatedness measures, which can serve as a ranking
function to prioritize paths which are potentially more meaningful for a reasoning context. The output paths can be interpreted as
an abductive process between the two words, providing a semantic justification under the structure of the relational graph. Tables
7, 8 and 9 shows examples of paths for lengths 2, 3 and 4. Nodes are connected through relations which were omitted.

8.1. Navigation example

Consider that we want to find the paths of length 3 between the source battle and the target war, with threshold 1) = 0.5. Initially,
- s —— Y —
we have the path {to) = (battle) and sr(sourcé, target) —= sr(battle, war) = 0.064.
The set of neighbors of the node battle in ConcepNet has 230 distinct elements related to it, such as army, conflict, unit, Iraq,
videogame and result in loss of life. Among the 230 elements, the DNA algorithm selects the ones such that the semantic relatedness



A. Freitas et al. / Data & Knowledge Engineering 100 (2015) 211-225 221
Table 5
The number of paths, selected paths and selectivity of the pair of terms (source, target) for paths with lengths of 2, 3 and 4.
Length 2 Length 3 Length 4
Pair No.of  No. of selected Selectivity No.of  No. of selected Selectivity No. of No. of selected Selectivity
path paths path paths path paths

sex-metal - - - 112 1 0.009 6690 7 0.001
man-source - - - 230 2 0.009 11563 6 0.001
author-write 1 1 1.0 102 11 0.108 4011 80 0.020
married-spouse 1 1 1.0 6 1 0.167 332 3 0.009
wife-spouse 3 2 0.667 32 5 0.156 1119 12 0.011
head-chancellor - - - 11 1 0.091 351 3 0.009
government-chancellor 2 1 0.5 14 2 0.143 262 5 0.019
war-battle 6 2 0.333 50 6 0.120 1645 31 0.019
child-daughter 4 2 0.500 75 6 0.080 2754 18 0.007
die-death 13 5 0.385 327 15 0.046 11109 31 0.003
mission-astronaut 1 1 1.0 - - - - - -
song-single 9 4 0.444 221 14 0.063 9365 71 0.008
europe-country 4 1 0.250 79 1 0.013 2765 9 0.003
high-highest 2 1 0.500 - - - 119 2 0.017
software-video game 1 1 1.000 - - - 184 2 0.011
league-soccer - - - 4 1 0.250 239 6 0.025
album-music 4 3 0.750 81 24 0.296 2445 122 0.050
film-movie 5 1 0.200 176 4 0.023 6990 7 0.001
leader-ruler - - - - - - 819 1 0.001
spouse-husband 1 1 1.000 6 2 0.333 35 1 0.029
population-people 8 4 0.500 257 20 0.078 10708 104 0.010
book-author 4 2 0.500 108 8 0.074 4529 13 0.003
paint-artist 3 2 0.667 77 15 0.195 2898 56 0.019
song-artist 6 3 0.500 122 25 0.205 3291 109 0.033
organization-company 8 4 0.500 104 14 0.135 4322 47 0.011
instrument-player - - - - - - 893 4 0.004
country-city 35 4 0.114 1030 28 0.027 39485 105 0.003
government-monarchy 1 1 1.000 22 5 0.227 447 18 0.040
religion-jew 2 2 1.000 20 2 0.100 637 9 0.014
ball-soccer 3 2 0.667 84 17 0.202 2529 62 0.025
club-football 4 1 0.250 111 6 0.054 4475 62 0.014
weapon-war - - - 177 1 0.006 4104 16 0.004
develop-design 2 1 0.500 28 1 0.036 772 2 0.003
automobile-car 12 4 0.333 128 12 0.094 4134 52 0.013
aircraft-pilot - - - 5 1 0.200 96 3 0.031
professor-university 5 4 0.800 115 29 0.252 3947 233 0.059
competition-game 5 3 0.600 105 14 0.133 3890 73 0.019
money-success - - - - - - 4667 2 0.000
moon-country - - - 268 1 0.004 12497 5 0.000
window-religion 1 1 1.000 82 3 0.037 4504 31 0.007
cosmonaut-astronaut 2 2 1.000 3 1 0.333 - - -
job-occupation 4 1 0.250 - - - - - -
length-long 2 2 1.000 - - - - - -

wrt the target is greater than 0.05 (sr(ﬁ, war)>0.05). In the examples, we have:

sr(army7 vTaf') =0.135,
r( conflict war) =0.172,

N

sr(conflict
sr (umt war) =0.082,
( raq, war) = 0.061.

sr

Table 6
Semantically related entities returned.

Query: mayor—city-length 2

council, municipality, downtown, ward, incumbent
borough, reelected, metropolitan, city
elect, candidate, politician, democratic
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Fig. 3. Contextual (selected) paths between battle and war.

sr (result in lossof life, lea_f') =0.007.

sr (videogame, vTal") = 0.006.

and then (battle, army), {battle, conflict), {battle, unit) and {battle, iraq) are examples of the next paths to be explored. Note that we do
not consider the relations involved since while some nodes have only one edge in ConceptNet, like (battle, relatedto, army), others
have more than one, like (battle, hasproperty, conflict) and (battle, isa, conflict).

Continuing this process, from the 167 paths of length 3 in ConceptNet connecting battle and war, the DNA algorithm selected the
following paths, with the corresponding score:

score({battle, fight_war, military, war)) = 1.679

score({battle, fight_war, army, war)) = 1.658

score({battle, fight_war, soldier, war)) = 1.628

score({battle, fight_war, peace, war)) = 1.624

score({battle, fight_war, advance_into_battle, war)) = 1.604

Table 7
Examples of semantically related paths
returned by the algorithm (paths-length 2).

Paths-length 2

daughter, parent, child

episode, show, series

country, continent, europe

mayor, politician, leader

video_game, computer_game, software
long, measure, length

husband, married_man, spouse

artist, draw, paint

city, capital, country

jew, temple, religion
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Table 8
Examples of semantically related paths returned by the
algorithm (paths-length 3).

Paths-length 3

club, team, play, football

chancellor, politician, parliament, government

spouse, family, wed, married

actress, act_in_play, go_on_stage, actor

film, cinema, watch_movie, movie

spouse, wife, marriage, husband

aircraft, fly, airplane, pilot

country, capital, national_city, city

chancellor, head_of_state, prime_minister, government

score({battle, fight_war, attack, war)) = 1.580
score({battle, fight_war, casualty, war)) = 1.580
score({battle, fight_war, enemy, war)) = 1.578
score({battle, army, military, war)) = 1.291
score({battle, conflict, peace, war)) = 1.273
score({battle, peace, conflict, war)) = 1.273
score({battle, combat, conflict, war))warS = 1.248
score({battle, army, soldier, war)) = 1.240
score({battle, army, military, war)) = 1.238
score({battle, army, infantry, war)) = 1.190
score({battle,peace, hostility, war)) = 1.181
score({battle, army, general, war)) = 1.139
score({battle, unit, infantry, war)) = 1.137
score({battle, combat, engagement, war)) = 1.127
score({battle, iraq, history, war)) = 1.118

From these paths, if we consider the paths that the semantic relatedness measure increases along the path (A heuristics), only
four paths among these will be selected:

« (battle, army, military, war): since[sr(army, war), sr(military, war)] = [0.135, 0.156]

» {battle, peace, conflict, war): since [sr(peace, war), sr(conflict, war)] = [0.101,0.172]

* {battle, combat, conflict, war)): since [sr(combat, war), sr(conflict, war)] = [0.076,0.172]
« (battle, unit, military, war)): since [sr(unit, war), sr(military, war)] = [0.082,0.156]

The selectivity provided by the use of the distributional semantic relatedness measure as a node selection mechanism can be vi-
sualized in Fig. 4, where the distribution of the number of occurrences of the semantic relatedness values (y-axis) are shown in a log-
arithmic scale. The semantic relatedness values were collected during the navigation process for all comparisons performed during
the execution of the experiment. The graph shows the discriminative efficiency of semantic relatedness, where just a tiny fraction
of the entities in paths of lengths 2, 3, 4 are selected as semantically related to the target.

In Fig. 5 the average increase on the semantic relatedness value as the navigation algorithm approaches the target is another pat-
tern which can be observed. This smooth increase can be interpreted as an indicator of a meaningful path, where semantic relatedness

Table 9
Examples of semantically related paths returned by the algorithm
(paths-length 4).

Paths-length 4

music, song, single, record, album

soccer, football, ball, major_league, league

author, write, story, fiction, book

artist, create_art, work_of_art, art, paint

place, locality, localize, locate, location

jew, religion, ethnic_group, ethnic, ethnicity

war, gun, rifle, firearm, weapon

pilot, fly, airplane, plane, aircraft

chancellor, member, cabinet, prime_minister, government
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Fig. 4. Number of occurrences for pairwise semantic relatedness values, computed by the navigational algorithm for the test collection (paths of lengths 2, 3, 4).

value can serve as a heuristic to indicate a meaningful approximation from the target word. This is aligned with the increased selec-
tivity of the A (semantic relatedness differential) criteria.

In the DNA algorithm, the semantic relatedness was used as a heuristic in a greedy search. The worst-case time complexity of a DFS
is O(b'), where b is the branching factor and [ is the depth limit. In this kind of search, the amount of performance improvement de-
pends on the quality of the heuristic. In Table 3 we showed that as the depth limit increases, the selectivity of DNA ensures that the
number of paths does not increase in the same amount. This indicates that the distributional semantic relatedness can be an effective
heuristic when applied to the selection meaningful paths to be used in a reasoning process.

9. Related work

Speer et al. [6]) introduced AnalogySpace, a hybrid distributional-relational model over ConceptNet using Latent Semantic Indexing.
Cohen et al. [8] proposes PSI, a distributional model that encodes predications produced by the SemRep system. The 7-Space
distributional-relational model is similar to AnalogySpace and PSI. Differences in relation to these works are: (i) the supporting distribu-
tional model (7-Space is based on explicit semantic analysis), (ii) the use of the reference corpus (the 7-Space distributional model uses
an independent large scale text corpora to build the distributional space, while PSI builds the distributional model based on the indexed
triples), (iii) the application scenario (the T-Space is evaluated under an open domain scenario while PSI is evaluated on the biomedical
domain), (iv) the focus on evaluating the selectivity and ability to cope with incompleteness. Cohen et al. [7] extends the discussion on
the PSI to search over triple predicate pathways in a database of predications extracted from the biomedical literature by the SemRep

—Seriesl
Series2

— Seriesd

semantic relatedness (node, target)

0.04

Fig. 5. Semantic relatedness values for nodes from distances 1, 2, 3 from the source: increasing semantic relatedness to the target.
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system. Taking the data as a reference corpus, Novacek et al. [9] build a distributional model which uses a PMI-based measure over the
triple corpora. The approach was evaluated using biomedical semantic web data.

Freitas et al. [1] introduces the 7-Space under the context of schema-agnostic queries over semantic web data. This work expands the
discussion on the existing abstraction of the 7-Space, defined in [1], introducing the notion of selective reasoning process over a T-Space.

Other works have concentrated on the relaxation of constraints for querying large KBs. SPARQLer [10] is a SPARQL extension which
allows query and retrieval of semantic associations (complex relationships) in RDF. The SPARQLer approach is based on the concept of
path queries where users can specify graph path patterns, using regular expressions for example. The pattern matching process has
been implemented as a hybrid of a bidirectional breadth-first search (BFS) and a simulation of a deterministic finite state automaton
(DFA) created for a given path expression. Kiefer et al. [4] introduce iSPARQL, a similarity join extension to SPARQL, which uses user-
specified similarity functions (Levehnstein, Jaccard and TF/IDF) for potential assignments during query answering. Kiefer et al. [4] con-
siders that the choice of a best performing similarity measure is context and data dependent. Comparatively the approach described
on this work focuses a semantic matching using distributional knowledge embedded in large scale corpora while iSPARQL focuses on
the application of string similarity and SPARQLer on the manual specification of path patterns.

10. Conclusion

This work introduced a selective reasoning mechanism based on a distributional-relational semantic model which can be applied
to heterogeneous commonsense KBs. The approach focuses on addressing the following problems: (i) providing a semantic selection
mechanism for facts which are relevant and meaningful in a specific querying and reasoning context and (ii) allowing coping with
information incompleteness in large KBs. The approach was evaluated using ConceptNet as a commonsense KB and ESA as the distri-
butional model and achieved high selectivity, high selectivity scalability and high accuracy in the selection of meaningful paths. Distribu-
tional semantics was used as a principled mechanism to cope with information incompleteness. An estimation of information
incompleteness for a real commonsense KB was provided and the suitability of distributional semantics to cope with it was verified.
Future work will concentrate on improving the accuracy of the proposed approach by refining the distributional semantic model for
the selective reasoning problem.
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