
Poster Abstract: Data-Driven Windows to Accelerate Video
Stream Content Extraction in Complex Event Processing

Piyush Yadav
Lero- Irish Sotware Research Centre

 National University of Ireland
Galway, Ireland

 piyush.yadav@lero.ie

Dibya Prakash Das
Indian Institute of Technology

 Kharagpur, IIT Kharagpur
India

 dibyadas@iitkgp.ac.in

Edward Curry
Lero- Irish Sotware Research Centre

 National University of Ireland
Galway, Ireland

 edward.curry@lero.ie

ABSTRACT
This work presents a data-driven adaptive windowing approach

to accelerate video content extraction in DNN-based Complex

Event Processing (CEP) systems. The CEP windows continuously

monitor low-level content of incoming video frames and exploit

interframe correlations to accelerate the overall DNN content

extraction process. The two main contributions are: 1) technique

to create micro-batches of similar frames within the window by

measuring dissimilarities among them, and 2) optimal frame

resolution within micro-batches under specified accuracy

thresholds for fast model processing. The initial experimental

results show that our adaptive micro-batching approach

improves 3.75X model throughput execution while maintaining

application-level latency bounds under required accuracy

constraints.

CCS Concepts • Information systems→ Multimedia
streaming • Applied computing → Event-driven
architectures

Keywords: Windows, Complex Event Processing, Video
Processing, Deep Neural Network, High Throughput

ACM Reference format:
Piyush Yadav, Dibya Prakash Das and Edward Curry. 2019. Poster: Data-

Driven Windows to Accelerate Video Stream Content Extraction in
Complex Event Processing. In Proceedings of Middleware Posters and
Demos ’19, Davis, CA, US December 8–13, 2019, 2 pages.

1 INTRODUCTION

Complex Event Processing (CEP) systems mine patterns over

data streams and provide fast reasoning with high throughput

and low latency [2]. Windows are considered an essential

primitive of CEP systems, which captures the finite subset (state)

of an unbounded stream and apply event pattern rules over

them. With the rise of the Internet of Multimedia Things (IoMT),

visual sensors like smartphones and CCTV cameras are now

generating a massive amount of video streams. Detecting event

patterns in real-time from video streams is challenging [6][7].

Motivating Example: Table 1 shows two different CEP queries.

In query 1 (Q1), a user is interested in the average price from the

 -event stream in every 5 seconds time window. Performi ۑStockې

Figure 1. Window controller continuously monitors
incoming frames over the window and forms optimal
micro-batches in real-time. Micro-batching amortizes DNN
execution cost, which is then passed for pattern matching.

-ng different aggregation techniques like ېAVERAGEې ,ۑSUMۑ,
 over windows is a well-understood problem in stream ۑMINې

processing. Aggregations and other adaptive methods over

windows are performed with the assumption that the data it is

receiving has a structured format like key-value pairs (e.g. price

values). In query 2 (Q2), a user is interested in the number of

frames (Count) having ېCarۑ object over a video stream within
the window of 5 seconds with an accuracy threshold (70% here).

Querying video requires content extraction method like Deep

Neural Networks (DNN), which are computationally expensive

and have high inference time.

Table 1 CEP Queries Over Stock Events and Video Stream

Q1 SELECT AVG(price) FROM Stock WHERE Stock = ‘X’
WITHIN TIMEWINDOW (5) WITH AVG_PRICE > $80

Q2 SELECT COUNT(frame) FROM Camera WHERE Frame =

‘Car’ WITHIN TIMEWINDOW (5) WITH Accuracy > 70%

 There is a need to bring adaptivity over windows which can

infer video content and exploit DNN properties for fast model

inferencing. Bifet et al. [1] proposed the concept of content-

driven windows where window length changes as per change in

the data distribution. These works consider the data stream

having a fixed data model and have not focused on unstructured

content like videos. Following the concept of content-driven

windows [1], we exploit low-level video characteristics for

achieving high system performance (Fig. 1). We propose: 1) an

adaptive batching technique to identify optimal micro-batches of

similar video frames within windows in real-time and 2)

transforming micro-batches to optimal resolution under the

specified matching threshold for fast model inferencing.

2 APPROACH

2.1 Selecting Input Parameters for DNN Model
Various optimization techniques like compression and

specialization [5] have been proposed for faster execution of

F6 F5 F4 F3 F2 F1

Micro Batch

Analyser

Micro Batch

Resizer

Windows

Window Controller

Queue
DNN Models

Matcher

Processing Module MatchingAdaptive Windows

B1B2

Video

Stream

Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for third-party components of
this work must be honored. For all other uses, contact the Owner/Author.
Middleware '19, December 82019 ,13ۋ, Davis, CA, USA

© 2019 Copyright is held by the owner/author(s).

ACM ISBN 978-1-4503-7009-7/19/12.

15

DOI: 10.1145/3366627.3368115

https://doi.org/10.1145/3361525.3365486
https://doi.org/10.1145/3361525.3365486

1 https://www.pexels.com/videos/

Figure 2. Effect of Batch Size on
throughput for different DNN models

Figure 3. Effect of frame resolution

on throughput and accuracy

Figure 4. Model throughput and latency for

different batching strategies

DNN models. Since video data is highly dynamic and changes

frequently, loading different optimized model in memory incurs

high runtime costs. We focus on two input-based transformation

parameters which a DNN model can accept from the window.

• Batch Size: DNN model execution time is low if it receives the

batch of input frames as a higher dimension input vector. This

is because the kernel does not need to load the input data

every time which stalls the memory, leading to high processor

utilization. Fig. 2 shows that the batching of image frames

improves the throughput performance of several DNN models.

• Frame Resolution: Reducing the image size decreases the

input information, requiring fewer operations over the DNN

model. This leads to a decrease in accuracy as the model is

relying on less information to predict the output. Fig. 3 shows

that decreasing frame resolution increases model throughput,

but its overall prediction accuracy decreases.

2.2 Data-driven Windows for Video Streams

• Identifying Micro-batches: Color histogram technique is
applied to identify the similarity between images. The frames
are converted to a HSV space, and correlation distance
between two histograms is used to calculate the similarity
score. The algorithm treats the first frame of the batch as a
reference frame and calculates the similarity score with
respect to the reference frame. Thus, a window over a stream
(�) is a composition of several unique micro-batches (���) as
shown in equation 1: ��ࡺሺ�ሻ = ૚�ࡹ ⋃ .⋃ ૛�ࡹ … ⋃ ��ࡹ , ࢏�ࡹ∀ ⋂ ࢐�ࡹ∀ = ∅ (1)

• Micro-batch Resizing: If a user is interested in getting

information within a threshold accuracy (Q2-70%), then this

information can be leveraged to resize the image

proportionally such that the required accuracy is still

maintained, but now with higher throughput. In Fig. 1 the

reference frame of micro-batch is sent to the Micro-Batch

Resizer where it tests frame prediction accuracy against a

lightweight DNN model at a different resolution and sets a

minimum resolution for the reference frame which satisfies

the query accuracy constraints. Selecting different resolutions

is based on the Image Pyramid [4] technique where images are

rescaled to different levels. The Micro-Batch Resizer resizes the

full micro-batch of frames as per the received reference frame

resolution and sends them to DNN models for processing.

3 EXPERIMENTAL RESULTS

• Implementation and Datasets: The prototype is

implemented in Python 3 and evaluated on a Linux system

with a 3.1 GHz processor and a Nvidia Titan Xp GPU. We

implemented a fine-tuned ResNet50 [3] model in Keras using

transfer learning techniques. Two videos are used, namely the

Jackson town square (video 1) [5] and a video clip from Pexels1

website (video 2).

• Throughput and Latency: Fig. 4 shows the throughput and

latency acquired by two videos in different settings. All the

experiments have been repeated ten times to show the change

in error using the black line on each bar. Video 1 and 2 achieve

a throughput of 50.21 and 53.57 fps when processed frame by

frame. To test the efficacy of the micro-batching approach, we

compare with the processing of fixed batches of 10, 25, 50, and

100. Micro-batching achieves a throughput of 146.41 and

174.42 fps for video 1 and 2 respectively, while micro-batch-

resize has a throughput of 191.40 and 197.04 fps. Micro-

batching achieves 3.1X times and micro-batch-resize achieves

3.75X times more throughput than frame by frame processing.

The average latency is the time taken by each frame to process

from window to DNN models. The red line shows the average

latency where frames take 48 ms in frame by frame processing

while micro-batch-resize take 238 ms (batch latency).

Although in our approach, the latency is high, as the system

has processed the batch of frames, but it outperforms fixed

batch latencies, increasing the overall system performance.

4 CONCLUSION AND FUTURE WORK

We presented a data-driven windowing technique to accelerate

the DNN model inference time for video streams. The proposed

approach accelerates 3.75X throughput with minimal latency

overhead. Future work will create methods for efficient frame-

based micro-batching for sliding windows.

Acknowledgements: his work was supported under the

Science Foundation Ireland grant 13/RC/2094.

REFERENCES
[1] Bifet, A. and Gavaldà, R. 2007. Learning from Time-Changing Data with

Adaptive Windowing *. SDM (2007).
[2] Cugola, G. and Margara, A. 2012. Processing flows of information. ACM

Computing Surveys. 44, 3 (2012), 162ۋ.
[3] He, K., Zhang, X., Ren, S. and Sun, J. 2016. Deep Residual Learning for Image

Recognition. IEEE CVPR (2016).
[4] Image Pyramids ی OpenCV Documentation: https://bit.ly/2mjqkdp.
[5] Kang, D., Emmons, J., Abuzaid, F., Bailis, P. and Zaharia, M. 2017. NoScope:

Optimizing Neural Network Queries over Video at Scale. VLDB (2017).
[6] Yadav, P. and Curry, E. 2019. VEKG: Video Event Knowledge Graph to

Represent Video Streams for Complex Pattern Matching. IEEE Graph
Computing (2019).

[7] Yadav, P. and Curry, E. 2019. VidCEP: Complex Event Processing Framework
to Detect Spatiotemporal Patterns in Video Streams. IEEE BigData (2019).

T
h

ro
u

g
h
p
u

t
(F

ra
m

es
/s

ec
)

Batch Size

T
h
ro

u
g
h
p
u
t

(F
ra

m
es

/s
ec

)

Frame Resolution

A
cc

u
ra

cy
 (

F
1

-S
co

re
)

Frame by
Frame

Fixed
Batch 10

Micro
Batch

Fixed
Batch 50

Fixed
Batch 100

Micro-Batch
Resize

Fixed
Batch 25

T
hr

ou
gh

pu
t (

F
ra

m
es

/s
ec

)

A
ve

ra
ge

 L
at

en
cy

 (
m

s)

16

