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ABSTRACT 
This work presents a data-driven adaptive windowing approach 

to accelerate video content extraction in DNN-based Complex 

Event Processing (CEP) systems. The CEP windows continuously 

monitor low-level content of incoming video frames and exploit 

interframe correlations to accelerate the overall DNN content 

extraction process. The two main contributions are: 1) technique 

to create micro-batches of similar frames within the window by 

measuring dissimilarities among them, and 2) optimal frame 

resolution within micro-batches under specified accuracy 

thresholds for fast model processing. The initial experimental 

results show that our adaptive micro-batching approach 

improves 3.75X model throughput execution while maintaining 

application-level latency bounds under required accuracy 

constraints. 

CCS Concepts • Information systems→ Multimedia 
streaming • Applied computing → Event-driven 
architectures 
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1 INTRODUCTION 

Complex Event Processing (CEP) systems mine patterns over 

data streams and provide fast reasoning with high throughput 

and low latency [2]. Windows are considered an essential 

primitive of CEP systems, which captures the finite subset (state) 

of an unbounded stream and apply event pattern rules over 

them. With the rise of the Internet of Multimedia Things (IoMT), 

visual sensors like smartphones and CCTV cameras are now 

generating a massive amount of video streams. Detecting event 

patterns in real-time from video streams is challenging [6][7].  

Motivating Example: Table 1 shows two different CEP queries. 

In query 1 (Q1), a user is interested in the average price from the 

Stock  event stream in every 5 seconds time window. Performi- 

   
Figure 1. Window controller continuously monitors 
incoming frames over the window and forms optimal 
micro-batches in real-time. Micro-batching amortizes DNN 
execution cost, which is then passed for pattern matching. 

-ng different aggregation techniques like AVERAGE , SUM , 
MIN  over windows is a well-understood problem in stream 

processing. Aggregations and other adaptive methods over 

windows are performed with the assumption that the data it is 

receiving has a structured format like key-value pairs (e.g. price 

values). In query 2 (Q2), a user is interested in the number of 

frames (Count) having Car  object over a video stream within 
the window of 5 seconds with an accuracy threshold (70% here). 

Querying video requires content extraction method like Deep 

Neural Networks (DNN), which are computationally expensive 

and have high inference time. 

Table 1 CEP Queries Over Stock Events and Video Stream 

Q1 SELECT AVG(price) FROM Stock WHERE Stock = ‘X’ 
WITHIN TIMEWINDOW (5) WITH AVG_PRICE > $80 

Q2 SELECT COUNT(frame) FROM Camera WHERE Frame = 

‘Car’ WITHIN TIMEWINDOW (5) WITH Accuracy > 70%  

    There is a need to bring adaptivity over windows which can 

infer video content and exploit DNN properties for fast model 

inferencing. Bifet et al. [1] proposed the concept of content-

driven windows where window length changes as per change in 

the data distribution. These works consider the data stream 

having a fixed data model and have not focused on unstructured 

content like videos. Following the concept of content-driven 

windows [1], we exploit low-level video characteristics for 

achieving high system performance (Fig. 1). We propose: 1) an 

adaptive batching technique to identify optimal micro-batches of 

similar video frames within windows in real-time and 2) 

transforming micro-batches to optimal resolution under the 

specified matching threshold for fast model inferencing. 

2 APPROACH 

2.1 Selecting Input Parameters for DNN Model 
Various optimization techniques like compression and 

specialization [5] have been proposed for faster execution of
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1 https://www.pexels.com/videos/ 

 
  

Figure 2. Effect of Batch Size on 
throughput for different DNN models 

Figure 3. Effect of frame resolution 

on throughput and accuracy  

Figure 4. Model throughput and latency for 

different batching strategies 

DNN models. Since video data is highly dynamic and changes 

frequently, loading different optimized model in memory incurs 

high runtime costs. We focus on two input-based transformation 

parameters which a DNN model can accept from the window. 

• Batch Size: DNN model execution time is low if it receives the 

batch of input frames as a higher dimension input vector. This 

is because the kernel does not need to load the input data 

every time which stalls the memory, leading to high processor 

utilization. Fig. 2 shows that the batching of image frames 

improves the throughput performance of several DNN models. 

• Frame Resolution: Reducing the image size decreases the 

input information, requiring fewer operations over the DNN 

model. This leads to a decrease in accuracy as the model is 

relying on less information to predict the output. Fig. 3 shows 

that decreasing frame resolution increases model throughput, 

but its overall prediction accuracy decreases. 

2.2 Data-driven Windows for Video Streams 

• Identifying Micro-batches: Color histogram technique is 
applied to identify the similarity between images. The frames 
are converted to a HSV space, and correlation distance 
between two histograms is used to calculate the similarity 
score. The algorithm treats the first frame of the batch as a 
reference frame and calculates the similarity score with 
respect to the reference frame. Thus, a window over a stream 
(�) is a composition of several unique micro-batches (���) as 
shown in equation 1: �� � = � ⋃ �  ⋃. … ⋃ ��   , ∀ �  ⋂ ∀ � =  ∅ (1) 

• Micro-batch Resizing: If a user is interested in getting 

information within a threshold accuracy (Q2-70%), then this 

information can be leveraged to resize the image 

proportionally such that the required accuracy is still 

maintained, but now with higher throughput. In Fig. 1 the 

reference frame of micro-batch is sent to the Micro-Batch 

Resizer where it tests frame prediction accuracy against a 

lightweight DNN model at a different resolution and sets a 

minimum resolution for the reference frame which satisfies 

the query accuracy constraints. Selecting different resolutions 

is based on the Image Pyramid [4] technique where images are 

rescaled to different levels. The Micro-Batch Resizer resizes the 

full micro-batch of frames as per the received reference frame 

resolution and sends them to DNN models for processing.  

3 EXPERIMENTAL RESULTS 

• Implementation and Datasets: The prototype is 

implemented in Python 3 and evaluated on a Linux system 

with a 3.1 GHz processor and a Nvidia Titan Xp GPU. We 

implemented a fine-tuned ResNet50 [3]  model in Keras using 

transfer learning techniques. Two videos are used, namely the 

Jackson town square (video 1) [5] and a video clip from Pexels1 

website (video 2).  

• Throughput and Latency:  Fig. 4 shows the throughput and 

latency acquired by two videos in different settings. All the 

experiments have been repeated ten times to show the change 

in error using the black line on each bar. Video 1 and 2 achieve 

a throughput of 50.21 and 53.57 fps when processed frame by 

frame. To test the efficacy of the micro-batching approach, we 

compare with the processing of fixed batches of 10, 25, 50, and 

100. Micro-batching achieves a throughput of 146.41 and 

174.42 fps for video 1 and 2 respectively, while micro-batch-

resize has a throughput of 191.40 and 197.04 fps. Micro-

batching achieves 3.1X times and micro-batch-resize achieves 

3.75X times more throughput than frame by frame processing. 

The average latency is the time taken by each frame to process 

from window to DNN models. The red line shows the average 

latency where frames take 48 ms in frame by frame processing 

while micro-batch-resize take 238 ms (batch latency). 

Although in our approach, the latency is high, as the system 

has processed the batch of frames, but it outperforms fixed 

batch latencies, increasing the overall system performance. 

4 CONCLUSION AND FUTURE WORK 

We presented a data-driven windowing technique to accelerate 

the DNN model inference time for video streams. The proposed 

approach accelerates 3.75X throughput with minimal latency 

overhead. Future work will create methods for efficient frame-

based micro-batching for sliding windows. 
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