
may/june 2015	 1089-7801/15/$31.00 © 2015 IEEE	 Published by the IEEE Computer Society� 21

Ph
ys

ic
al

-C
yb

er
-S

oc
ia

l
Co

m
pu

ti
ng

Matching Over Linked Data
Streams in the Internet
of Things

Yongrui Qin and
Quan Z. Sheng
University of Adelaide

Edward Curry
National University of Ireland,
Galway

A new system increases efficiency by integrating Linked Data streams

generated from data collectors and disseminating matched data to relevant data

consumers, based on user queries. The data structure, called TP-automata,

suits the needs of high-performance Linked Data stream dissemination. Here,

the authors use a real-world dataset generated in a Smart Building IoT Project

to evaluate the system. Results show that the system can disseminate Linked

Data Streams at one million triples per second with 100,000 registered user

queries, which is several orders of magnitude faster than existing techniques.

T he Internet is a global system of
networks interconnecting com-
puters using the standard Internet

protocol suite. It has significant impact
on the world, serving billions of users
worldwide. Millions of private, public,
academic, business, and government
networks — from local to global in scope —
all contribute to the Internet’s formation.
It’s a network of networks, and each net-
work connects various computers. Hence,
the traditional Internet has a focus on
computers and can be called the Internet
of Computers. In contrast, the Internet of
Things (IoT) aims to connect everyday
objects — such as coats, shoes, watches,
ovens, washing machines, bikes, cars,
humans, plants, animals, and changing
environments — to the Internet to enable
communications and interactions.1 IoT’s
ultimate goal is to enable computers to

see, hear, and sense the real world. Erics-
son predicts that the number of Internet-
connected things will reach 50 billion
by 2020.1

Connecting all the things that peo-
ple care about becomes possible in
the IoT, and this leads to vast scales of
real-time data. By exploiting such data,
cities will become smarter and more
efficient. Some promising IoT appli-
cations in future smart cities include
aiding resource-management issues,2
effectively managing street parking for
reducing traffic congestion and fuel con-
sumption,3 efficiently distributing drink-
ing water, tracking and recovering stolen
property,1 and so on.

Making IoT’s potential a reality
requires that we manage and process
data efficiently and effectively. Given
the scale of data generated in IoT, topics

Physical-Cyber-Social Computing

22	 www.computer.org/internet/� IEEE INTERNET COMPUTING

such as distributed processing, real-time data
stream analytics, and event processing are
critical. We might need to revisit these areas
to improve existing technologies for applica-
tions at the IoT scale.4,5 In this context, semantic
technologies such as Linked Data, which aim to
facilitate machine-to-machine communications,
play an increasingly important role.6 Linked
Data is part of a growing trend toward highly
distributed systems, with thousands or poten-
tially millions of independent sources providing
structured data. In collecting all of this data,
one challenge is how to efficiently disseminate
the data to relevant data consumers.

Thus, here we focus on the study of IoT from
a data perspective. As Figure 1 shows, data are
processed differently in IoT than in traditional
Internet environments (such as the Internet of
Computers). In the Internet of Computers, the
main data producers and consumers are human
beings. However, in the IoT, the main actors
become things, where things are the majority
of data producers and consumers. Therefore,
in the context of the Internet, addressable and

interconnected things (instead of humans) act
as the main data producers, as well as the main
data consumers. Computers will be able to learn
and gain information and knowledge to solve
real-world problems directly with the data fed
from things. As an ultimate goal, computers
enabled by IoT technologies will be able to sense
and react to the real world for humans.

To move toward this goal, we must efficiently
retrieve the most-relevant data from IoT environ-
ments (see, for example, the process of convert-
ing data into information in Figure 1). Hence, we
propose an efficient data stream dissemination
system for semantic IoT by leveraging semantic
technologies, such as Linked Data. Our system
efficiently retrieves relevant data from the deluge
of IoT data, which can then facilitate the extrac-
tion of useful information (for others’ work in
this area, see the related sidebar). The system first
integrates data generated from various data col-
lectors. Then it transforms all the data to Linked
Data streams in Resource Description Framework
(RDF) format (see www.w3.org/RDF). Meanwhile,
data consumers can register their interest in the

Related Work on Linked Data Stream Dissemination

Recent work in data summaries on Linked Data1 trans-
forms Resource Description Framework (RDF) triples

into numerical space. Then data summaries are built upon
numerical data instead of strings, as summarizing numbers is
more efficient than summarizing strings. To transform triples
into numbers, you apply hash functions on the individual com-
ponents (s, p, o) of triples. Thus, you can consider a derived
triple of numbers as a 3D point. In this way, you can map a set
of RDF triples into a set of points in a 3D space. To facilitate
query processing over data summaries, one group of research-
ers adopted a spatial index named QTree1 (evolved from stan-
dard R-tree2) as the basic index. Data summaries are designed
mainly for indexing various Linked Data sources and are used
for identifying relevant sources for a given query.

However, data summaries aren’t suitable for our Linked Data
stream dissemination system. First, techniques on data summa-
ries, such as QTree, don’t consider variables in the Basic Graph
Patterns (BGPs); these techniques only consider RDF triples with
concrete strings. Further, because data summaries are concise
and imprecise representations of data sources,1 they just pro-
vide match estimation. Hence, query evaluation on them would
return false negative results, which isn’t allowed in our system.

Researchers also have studied semantic matching, which
aims to match semantically related RDF triples against BGPs.
This approach might provide false positive match results, but
not false negative. Both approximate event matching3 and

thematic event processing4 apply semantic matching. These
techniques also return false-negative matching results, which
aren’t allowed in our system.

Moreover, existing work on pattern matching, such as
stream reasoning5 and Linked Data stream processing,6 doesn’t
support large-scale query evaluation, instead focusing on evalu-
ation of a single query or a small number of parallel queries
over the streaming Linked Data. Therefore, the issue of sup-
porting pattern matching over a large number of BGPs against
Linked Data streams remains open.

References
1.	 A. Harth et al., “Data Summaries for On-Demand Queries over Linked

Data,” Proc. Conf. World Wide Web, 2010, pp. 411–420.

2.	 A. Guttman, “R-Trees: A Dynamic Index Structure for Spatial Searching,”

Proc. Sigmod, 1984, pp. 47–57.

3.	 S. Hasan and E. Curry, “Approximate Semantic Matching of Events for the

Internet of Things,” ACM Trans. Internet Technology, vol. 14, no. 1, 2014, arti-

cle no. 2.

4.	 S. Hasan and E. Curry, “Thematic Event Processing,” Proc. 15th Int’l Conf.

Middleware, 2014, pp. 109–120.

5.	 D. Anicic et al., “EP-SPARQL: A Unified Language for Event Processing and

Stream Reasoning,” Proc. Conf. World Wide Web, 2011, pp. 635–644.

6.	 D.L. Phuoc et al., “A Native and Adaptive Approach for Unified Process-

ing of Linked Streams and Linked Data,” Proc. 10th Int’l Conf. Semantic Web,

2011, pp. 370–388.

Matching Over Linked Data Streams in the Internet of Things

may/june 2015� 23

form of Basic Graph Patterns (BGPs; see www.w3.
org/TR/rdf-sparql-query) in the system. Based
on these BGPs, the system disseminates matched
Linked Data to relevant users. After receiving
relevant data, these users can further make use
of the data to extract information for their own
purposes, such as environment monitoring, event
detection, complex event processing, and so on.
However, we won’t discuss data processing from
the user side; instead, we focus on how to effi-
ciently match a large number of BGPs against
Linked Data streams.

We believe that this research aligns well
with the vision of physical-cyber-social (PCS)
computing (see http://wiki.knoesis.org/index.
php/PCS). It deals with data from both the phys-
ical and cyber worlds. After being disseminated
to relevant data consumers, these consumers
can integrate such data with information and
knowledge from the social world to provide bet-
ter understanding, correlation, and contextu-
ally relevant abstractions to humans.

Linked Data Stream
Dissemination System
To disseminate high-quality information and pro-
vide high-performance matching services to data
consumers (or subscribers), we aim to design a
system that won’t return false-negative match
results. Therefore, we investigate pattern matching
here. Pattern matching performs individual com-
ponent matching between RDF triples and BGPs.
It doesn’t consider semantic relatedness between
an RDF triple and a BGP. It might return false-
positive matching results but not false-negative
ones. Recent work on pattern matching includes
Linked Data stream processing7 and stream rea-
soning.8 However, because these solutions are
mainly designed for optimizations of individual
query evaluations, they aren’t quite suitable for
processing a large number of concurrent queries.

An example of pattern matching is that pat-
tern (?s, :is, :Student) will match triple (:James,
:is, :Student) but won’t match (:James, :is, :PhD-
Student). Other types of matching include match
estimation and semantic matching, both of which
might return false-negative results. Again, take
pattern (?s, :is, :Student) as an example. In match
estimation, the main task is to estimate which
dataset matches pattern (?s, :is, :Student) the best
by using some summarization techniques among
multiple datasets9 to avoid querying all known
datasets directly. In contrast, semantic matching

will match semantically related triples compared
to a specified pattern.10 For example, pattern (?s,
:is, :Student) might match (:James, :is, :PhDStu-
dent) because the term :Student in the pattern is
semantically related to :PhDStudent in the triple.

System Overview
Figure 2a shows an overview of our system in the
smart city scenario. We assume that data generated
by all types of things will be represented in the
form of Linked Data streams using RDF. In Seman-
tic IoT, we can use the Semantic Sensor Network

Figure 1. Internet of Computers versus the Internet of Things
(IoT). In the Internet of Computers, the main data producers and
consumers are human beings. However, in the IoT, the main actors
become things, where things are the majority of data producers
and consumers.

Internet of Computers Internet of Things

Physical world

Web & Web of data
People

generate
Things

generate

Things
gain

Things
discover

Things
propose

People
discover

People
propose

Knowledge

Solutions

People
gain Information

Physical-Cyber-Social Computing

24	 www.computer.org/internet/� IEEE INTERNET COMPUTING

Ontology (SSN; see www.w3.org/2005/Incubator/
ssn/ssnx/ssn) to model sensing data. Our system
mainly consists of two components: the matching
component and the index construction component.
Data consumers (humans and/or smart things in
the city) can register their interests as user queries
in the system. Then the index construction compo-
nent will construct an index for all the user queries.
The matching component will then evaluate incom-
ing Linked Data streams against the constructed
index to efficiently match triples with user queries.
Finally, the system will disseminate matched data
to relevant data consumers for further processing.

User queries. Our system adopts BGPs as user
queries. BGPs are sets of triple patterns. The
possible triple patterns in a BGP are (#s, #p, #o);
(?s, #p, #o); (#s, ?p, #o); (#s, #p, ?o); (?s, ?p, #o);
(?s, #p, ?o); (#s, ?p, ?o); and (?s, ?p, ?o). Here, ?
denotes a variable while # denotes a constant.
Similar to data summaries,9 we apply hash
functions (there are many different hash func-
tions that are suitable for this purpose. Please
refer to other work9 for a discussion on map-
ping these patterns into numerical values.

Representations of queries and triples. In our
Linked Data stream dissemination system, when
the system registers the user queries (in the form
of BGPs), it transforms all queries into numerical
values. The reason for this is that the comparisons
between numbers are faster than strings. Note that
we have three numbers for the three components
in a query. Then we construct a suitable index for
efficient evaluation between Linked Data streams
and user queries. Before matching starts, we map
RDF triples in the data streams into numerical
values. Then, the system matches these numeri-
cal represented triples with BGPs represented as
numerical values in the constructed indexes.

TP-automata for Pattern Matching
Researchers have adopted automata techniques to
process XML-based data streams.11 They mainly
base these techniques on languages with SQL-like
syntaxes, and relational database execution models
adapted to process streaming data. In our system,
to support pattern matching, we apply automata to
match each individual component of a triple with
its counterparts of a BGP efficiently, which we call
Triple Pattern automata (TP-automata).

Figure 2. System overview and index structure. (a) Overview of Linked Data stream dissemination
system. (b) Query index: Triple Pattern (TP)-automata.

q1: (a, b, c)

q2: (?, b, c)

q3: (a, b, d)

q4: (a, b, c)

a b c
{q1}

? b c
{q2}

a b d
{q3}

a b c
{q4}

a
b

c {q1, q4}

d {q3}

c
{q2}

?
b

Queries Triple pattern state machines TP-automata (8 states)

0

1

2

3

4

5

6

7

Smart city Linked data Data matching

Matching

Index construction

Data dissemination

Data subscription

Data consumption

(a)

(b)

Matching Over Linked Data Streams in the Internet of Things

may/june 2015� 25

As mentioned, operating on numbers is more
efficient than operating on strings. Note that
when we map BGPs into numerical values, we
treat variables in a BGP as a universal match
indicator, represented by ?. The system maps
this indicator into a fixed and unique numeri-
cal value, but not the whole range of a specific
coordinate axis. The system treats this unique
numerical value differently, as well, later in the
triple evaluation process.

Figure 2b depicts the construction process of
TP-automata. First, user queries will be trans-
formed into triple-pattern state machines (see the
middle of Figure 2b). As you can see, each triple-
state machine contains an initial state, two inter-
nal states, one final state, and three transitions. In
the figure, the first circle of a state machine rep-
resents the initial state, the next two circles repre-
sent the two internal states, and the doubled circle
represents the final state. The three arrows associ-
ated with conditions are three transitions between
different states. Similar to Yanlei Diao and her
colleagues’ approach,11 we combine these state
machines into one machine by exploiting shared
common states with the same transitions. Figure 2b
shows the combined machine, TP-automata, on the
right. The shaded circles represent combined states.

To perform pattern matching over TP-automata,
first we map triples in the Linked Data stream into
numerical values. For example, suppose a triple (s,
p, o) is mapped into a 3D point (a, b, c). The system
will match it against TP-automata in the following
process: First, it checks the initial state of TP-autom-
ata and looks for state transitions with condition a
or condition ?. Following the state transitions, state
1 and state 2 become the current active states at the

same time. It then looks for state transitions with
condition b or ? from states 1 and 2. Following
the transitions, states 3 and 4 become active states.
Finally, following transitions with condition c or ?
from states 3 and 4, two final states, states 5 and 7,
are reached. By checking both final states, the sys-
tem returns {q1, q2, q4} as the matching results. We
should note that q3: (a, b, d) won’t match the input
triple (a, b, c) because its object component’s pattern
is d, which doesn’t match with c. The match process
stops if and only if all current active states are final
states or states with no satisfied transition.

Experimental Evaluation
To evaluate the system’s capabilities and effi-
ciency, we tested it using a real-world dataset.

Experimental Setup
The dataset used in our experiments was gener-
ated in a Smart Building Energy Project.12 The
energy readings were collected from 4–19 August
2014. In total, there are around 6.2 million triples
in the dataset. Listing 1 (see Figure 3) depicts an
event example.

As an initial work, we used simple BGPs (single
triple patterns) as queries in the experiment. We can
simulate the join queries by letting data subscribers
issue multiple simple BGPs. But we leave extending
our system to support complex BGPs or join queries
as our future work. We randomly generated BGPs
using the aforementioned seven patterns, based on
our dataset. We didn’t consider (?s, ?p, ?o) in our
experiment, because it requires every triple in the
Linked Data stream. In this case, no query index
is needed. We generated from 10,000 queries to
100,000 queries for different runs in the experiment.

Figure 3. Listing 1: an event example. This event is a power consumption event, showing the real-
time power consumption in Room01 of building01. As shown in the event, the power consumption in
Room01 at the moment of “2014 08 12T18:17:18” was 171.87 watts.

@prefix do: <http://energy.deri.ie/ontology#>
@prefix dr: <http://../deri/deri rooms#>
:event1026fd7b0e5a a events:PowerConsumptionEvent.
:event1026fd7b0e5a do:consumer do:platform.
:event1026fd7b0e5a do:consumerType dr:Room01.
:event1026fd7b0e5a do:consumerLocation dr:building01.
:event1026fd7b0e5a do:powerUsage :usage9739ccddc76d.
:event1026fd7b0e5a do:consumerDepartment "facilities".
:event1026fd7b0e5a do:atTime :timedb2c06100b33.
:usage9739ccddc76d a dul:Amount.
:usage9739ccddc76d do:hasDataValue 171.87.
:usage9739ccddc76d do:isClassifiedBy dr:watt.
:timedb2c06100b33 a do:Instant.
:timedb2c06100b33 do:inDDateTime "2014−08−12T18:17:18".

Physical-Cyber-Social Computing

26	 www.computer.org/internet/� IEEE INTERNET COMPUTING

We evaluated our approach’s performance in
terms of average construction time (in milliseconds)
of the indexes and average throughput (in number
of triples per second). We implemented hash-based
TP-automata (where we map triples and queries
into numerical values and denote this method as
HashMat in the following figures) and string-
based TP-automata (where we use triples and que-
ries “as-is” and denote this method as StringMat
in the following figures). We compared HashMat
and StringMat with the state-of-the-art pattern-
matching technique, Continuous Query Evalua-
tion over Linked Stream (CQELS; see https://code.
google.com/p/cqels/),7 which is also designed for
Linked Data streams. We examined the matching
quality of the hash-based TP-automata as well. We
implemented all of the methods on the Java Plat-
form Standard Edition 7 running on Linux (Ubuntu
12.10, 64-bit operating system), with a quad-core
CPU at 2.20 gigahertz (GHz) and 4 Gbytes of mem-
ory. We ran each experiment 10 times and reported
their average experimental results.

Performance Study
Figure 4 presents the TP-automata’s pattern-match-
ing performance. We compare average construction
time in Figure 4a. The construction times for both
hash-based and string-based TP-automata are sim-
ilar to each other in most settings. For larger num-
bers of queries, such as 75,000 and 100,000 queries,
the construction of string-based indexes takes a
slightly longer time. Normally, we can complete the
construction within a few hundred milliseconds.
However, the construction time of CQELS takes
much longer, normally requiring around 10,000 ms.

Figure 4b depicts the throughput performance
of pattern matching. It shows some large dif-
ferences between the CQELS and TP-automata
approaches (HashMat and StringMat). Generally,
HashMat and StringMat can achieve through-
put at the speed of nearly a million triples per
second and are about four orders of magnitude
faster than CQELS. The main reason for this is
that CQELS is a much more comprehensive sys-
tem, focusing on optimizing evaluation of queries
with complex operators and semantics but not on
evaluation of a large set of concurrent and simple
queries over Linked Data streams. In this regard,
we can also adapt our approach to complement
CQELS for dealing with our Linked Data stream
dissemination scenario. Regarding HashMat and
StringMat, in most cases, HashMat is about twice
the throughput speed compared to StringMat.

Finally, we investigated the matching qual-
ity of hash-based TP-automata (HashMat) via
precision, recall, and F1 score. This is because
collisions are difficult to avoid in any hash-
based approaches, and false positives exist in
hash-based TP-automata, which affects match-
ing quality. Specifically, we looked into preci-
sion and F1 score when the recall is 100 percent,
because we observe that the matching quality of
HashMat is already excellent in such cases. As
Table 1 shows, the precision and F1 score are 100
percent when the number of queries is 10,000 or
25,000. For larger numbers of queries (for exam-
ple, 50,000, 75,000, and 100,000), both the preci-
sion and F1 score are still greater than 99.99950
percent. This demonstrates that HashMat pro-
vides an extremely high matching quality.

Figure 4. Performance on pattern matching. (a) Average construction time. (b) Average throughput.

10k 25k 50k 75k 100k
100

101

102

103

104

105

106

C
on

st
ru

ct
io

n
tim

e
(m

ill
is

ec
on

ds
)

CQELS
StringMat
HashMat

10k 25k 50k 75k 100k
100

102

104

106

108

T
hr

ou
gh

pu
t

(n
o.

 o
f t

ri
pl

es
)

CQELS
StringMat
HashMat

(a) (b)

Matching Over Linked Data Streams in the Internet of Things

may/june 2015� 27

O ur evaluation shows that TP-automata can
disseminate Linked Data at the speed of

nearly 1 million triples per second with 100,000
registered user queries and is several orders of
magnitude faster in terms of both index con-
struction time and throughput compared with
the state-of-the-art technique. Further, using
hash-based TP-automata, the throughput is
doubled compared with string-based TP-autom-
ata with high matching quality.

We hope this article sheds light on the research
of Linked Data stream dissemination to a large
scale of data consumers. Future work includes
supporting more complex user queries, such as
join queries; and supporting semantic matching
in a hashing space with the use of Locality-Sensi-
tive Hashing (LSH) techniques13 that help to map
semantically related data together. Both directions
will enable the Linked Data stream dissemination
system to provide better semantics richness and
to support data consumption needs more accu-
rately, which is a critical issue in the IoT.�

References
1.	 Y. Qin et al., “When Things Matter: A Data-Centric View

of the Internet of Things,” CoRR abs/1407.2704, 2014;

http://arxiv.org/pdf/1407.2704v2.pdf.

2.	 J. Gao et al., “Distributed Resource Management and

Matching in Sensor Networks,” Proc. IEEE Int’l Conf. Infor-

mation Processing in Sensor Networks, 2009, pp. 97–108.

3.	 S. Mathur et al., “ParkNet: Drive-By Sensing of Road-

Side Parking Statistics,” Proceedings of the 8th Int’l

Conf. Mobile Systems, Applications, and Services, 2010,

pp. 123–136.

4.	 A.E. James et al., “Research Directions in Database

Architectures for the Internet of Things: A Communi-

cation of the First International Workshop on Database

Architectures for the Internet of Things (DAIT 2009),”

LNCS 5588, Springer, 2009, pp. 225–233.

5.	 P.M. Barnaghi, A.P. Sheth, and C.A. Henson, “From

Data to Actionable Knowledge: Big Data Challenges in

the Web of Things,” IEEE Intelligent Systems, vol. 28,

no. 6, 2013, pp. 6–11.

6.	 P.M. Barnaghi et al., “Semantics for the Internet of

Things: Early Progress and Back to the Future,” Int’l J.

Semantic Web Information Systems, vol. 8, no. 1, 2012,

pp. 1–21.

7.	 D.L. Phuoc et al., “A Native and Adaptive Approach for

Unified Processing of Linked Streams and Linked Data,”

Proc. 10th Int’l Conf. Semantic Web, 2011, pp. 370–388.

8.	 D. Anicic et al., “EP-SPARQL: A Unified Language for

Event Processing and Stream Reasoning,” Proc. Conf.

World Wide Web, 2011, pp. 635–644.

9.	 A. Harth et al., “Data Summaries for On-Demand Que-

ries over Linked Data,” Proc. Conf. World Wide Web,

2010, pp. 411–420.

10.	 S. Hasan and E. Curry, “Approximate Semantic Match-

ing of Events for the Internet of Things,” ACM Trans.

Internet Technology, vol. 14, no. 1, 2014, article no. 2.

11.	 Y. Diao et al., “Path Sharing and Predicate Evaluation

for High-Performance XML Filtering,” ACM Trans.

Database Systems, vol. 28, no. 4, 2003, pp. 467–516.

12.	 E. Curry, S. Hasan, and S. O’Riáin, “Enterprise Energy

Management Using a Linked Dataspace for Energy

Intelligence,” Proc. 2nd IFIP Conf. Sustainable Internet

and ICT for Sustainability, 2012, pp. 1–6.

13.	 S. Petrovic, M. Osborne, and V. Lavrenko, “Stream-

ing First Story Detection with Application to Twitter,”

Human Language Technologies: The 2010 Ann. Conf.

North American Chapter of the Assoc. for Computa-

tional Linguistics, 2010, pp. 181–189.

Yongrui Qin is a PhD student in the School of Computer Sci-

ence at the University of Adelaide. His research interests

include the Internet of Things, data management, and

mobile computing. Qin has an MSc in computer science

from Fudan University. Contact him at yongrui.qin@

adelaide.edu.au.

Quan Z. Sheng is an associate professor and head of the

Advanced Web Technologies Research Group in the

School of Computer Science at the University of Ade-

laide. His research interests include Web technologies,

Big Data analytics, and the Web of Things. Sheng has

a PhD in computer science from the University of

New South Wales. Contact him at qsheng@cs.adelaide.

edu.au.

Edward Curry is a research leader and lecturer at the

Insight Centre for Data Analytics at the National

University of Ireland, Galway. His research interests

include IoT, enterprise-linked data, energy informatics,

semantic information management, and community-

based data curation. Curry has a PhD in computer sci-

ence from the National University of Ireland, Galway.

Contact him at edward.curry@insight-centre.org.

Table 1. Matching quality of HashMat
(when the recall is 100 percent).

Queries (in thousands) Recall (%) Precision (%) F1 Score (%)

10 100 100 100

25 100 100 100

50 100 99.99975 99.99987

75 100 99.99982 99.99991

100 100 99.99960 99.99980

