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A new system increases efficiency by integrating Linked Data streams 

generated from data collectors and disseminating matched data to relevant data 

consumers, based on user queries. The data structure, called TP-automata, 

suits the needs of high-performance Linked Data stream dissemination. Here, 

the authors use a real-world dataset generated in a Smart Building IoT Project 

to evaluate the system. Results show that the system can disseminate Linked 

Data Streams at one million triples per second with 100,000 registered user 

queries, which is several orders of magnitude faster than existing techniques.

T he Internet is a global system of 
networks interconnecting com-
puters using the standard Internet 

protocol suite. It has significant impact 
on the world, serving billions of users 
worldwide. Millions of private, public, 
academic, business, and government 
networks — from local to global in scope —  
all contribute to the Internet’s formation. 
It’s a network of networks, and each net-
work connects various computers. Hence, 
the traditional Internet has a focus on 
computers and can be called the Internet 
of Computers. In contrast, the Internet of 
Things (IoT) aims to connect everyday 
objects — such as coats, shoes, watches, 
ovens, washing machines, bikes, cars, 
humans, plants, animals, and changing 
environments — to the Internet to enable 
communications and interactions.1 IoT’s 
ultimate goal is to enable computers to 

see, hear, and sense the real world. Erics-
son predicts that the number of Internet-
connected things will reach 50 billion  
by 2020.1

Connecting all the things that peo-
ple care about becomes possible in 
the IoT, and this leads to vast scales of 
real-time data. By exploiting such data, 
cities will become smarter and more 
efficient. Some promising IoT appli-
cations in future smart cities include 
aiding resource-management issues,2 
effectively managing street parking for 
reducing traffic congestion and fuel con-
sumption,3 efficiently distributing drink-
ing water, tracking and recovering stolen 
property,1 and so on.

Making IoT’s potential a reality 
requires that we manage and process 
data efficiently and effectively. Given 
the scale of data generated in IoT, topics 



Physical-Cyber-Social Computing

22	 www.computer.org/internet/� IEEE INTERNET COMPUTING

such as distributed processing, real-time data 
stream analytics, and event processing are 
critical. We might need to revisit these areas 
to improve existing technologies for applica-
tions at the IoT scale.4,5 In this context, semantic 
technologies such as Linked Data, which aim to 
facilitate machine-to-machine communications, 
play an increasingly important role.6 Linked 
Data is part of a growing trend toward highly 
distributed systems, with thousands or poten-
tially millions of independent sources providing 
structured data. In collecting all of this data, 
one challenge is how to efficiently disseminate 
the data to relevant data consumers.

Thus, here we focus on the study of IoT from 
a data perspective. As Figure 1 shows, data are 
processed differently in IoT than in traditional 
Internet environments (such as the Internet of 
Computers). In the Internet of Computers, the 
main data producers and consumers are human 
beings. However, in the IoT, the main actors 
become things, where things are the majority 
of data producers and consumers. Therefore, 
in the context of the Internet, addressable and 

interconnected things (instead of humans) act 
as the main data producers, as well as the main 
data consumers. Computers will be able to learn 
and gain information and knowledge to solve 
real-world problems directly with the data fed 
from things. As an ultimate goal, computers 
enabled by IoT technologies will be able to sense 
and react to the real world for humans.

To move toward this goal, we must efficiently 
retrieve the most-relevant data from IoT environ-
ments (see, for example, the process of convert-
ing data into information in Figure 1). Hence, we 
propose an efficient data stream dissemination 
system for semantic IoT by leveraging semantic 
technologies, such as Linked Data. Our system 
efficiently retrieves relevant data from the deluge 
of IoT data, which can then facilitate the extrac-
tion of useful information (for others’ work in 
this area, see the related sidebar). The system first 
integrates data generated from various data col-
lectors. Then it transforms all the data to Linked 
Data streams in Resource Description Framework 
(RDF) format (see www.w3.org/RDF). Meanwhile, 
data consumers can register their interest in the 

Related Work on Linked Data Stream Dissemination

Recent work in data summaries on Linked Data1 trans-
forms Resource Description Framework (RDF) triples 

into numerical space. Then data summaries are built upon 
numerical data instead of strings, as summarizing numbers is 
more efficient than summarizing strings. To transform triples 
into numbers, you apply hash functions on the individual com-
ponents (s, p, o) of triples. Thus, you can consider a derived 
triple of numbers as a 3D point. In this way, you can map a set 
of RDF triples into a set of points in a 3D space. To facilitate 
query processing over data summaries, one group of research-
ers adopted a spatial index named QTree1 (evolved from stan-
dard R-tree2) as the basic index. Data summaries are designed 
mainly for indexing various Linked Data sources and are used 
for identifying relevant sources for a given query.

However, data summaries aren’t suitable for our Linked Data 
stream dissemination system. First, techniques on data summa-
ries, such as QTree, don’t consider variables in the Basic Graph 
Patterns (BGPs); these techniques only consider RDF triples with 
concrete strings. Further, because data summaries are concise 
and imprecise representations of data sources,1 they just pro-
vide match estimation. Hence, query evaluation on them would 
return false negative results, which isn’t allowed in our system.

Researchers also have studied semantic matching, which 
aims to match semantically related RDF triples against BGPs. 
This approach might provide false positive match results, but 
not false negative. Both approximate event matching3 and 

thematic event processing4 apply semantic matching. These 
techniques also return false-negative matching results, which 
aren’t allowed in our system.

Moreover, existing work on pattern matching, such as 
stream reasoning5 and Linked Data stream processing,6 doesn’t 
support large-scale query evaluation, instead focusing on evalu-
ation of a single query or a small number of parallel queries 
over the streaming Linked Data. Therefore, the issue of sup-
porting pattern matching over a large number of BGPs against 
Linked Data streams remains open.
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form of Basic Graph Patterns (BGPs; see www.w3. 
org/TR/rdf-sparql-query) in the system. Based  
on these BGPs, the system disseminates matched  
Linked Data to relevant users. After receiving 
relevant data, these users can further make use 
of the data to extract information for their own 
purposes, such as environment monitoring, event 
detection, complex event processing, and so on. 
However, we won’t discuss data processing from 
the user side; instead, we focus on how to effi-
ciently match a large number of BGPs against 
Linked Data streams.

We believe that this research aligns well 
with the vision of physical-cyber-social (PCS) 
computing (see http://wiki.knoesis.org/index.
php/PCS). It deals with data from both the phys-
ical and cyber worlds. After being disseminated 
to relevant data consumers, these consumers 
can integrate such data with information and 
knowledge from the social world to provide bet-
ter understanding, correlation, and contextu-
ally relevant abstractions to humans.

Linked Data Stream  
Dissemination System
To disseminate high-quality information and pro-
vide high-performance matching services to data 
consumers (or subscribers), we aim to design a 
system that won’t return false-negative match 
results. Therefore, we investigate pattern matching 
here. Pattern matching performs individual com-
ponent matching between RDF triples and BGPs. 
It doesn’t consider semantic relatedness between 
an RDF triple and a BGP. It might return false-
positive matching results but not false-negative 
ones. Recent work on pattern matching includes 
Linked Data stream processing7 and stream rea-
soning.8 However, because these solutions are 
mainly designed for optimizations of individual 
query evaluations, they aren’t quite suitable for 
processing a large number of concurrent queries.

An example of pattern matching is that pat-
tern (?s, :is, :Student) will match triple (:James, 
:is, :Student) but won’t match (:James, :is, :PhD-
Student). Other types of matching include match 
estimation and semantic matching, both of which 
might return false-negative results. Again, take 
pattern (?s, :is, :Student) as an example. In match 
estimation, the main task is to estimate which 
dataset matches pattern (?s, :is, :Student) the best 
by using some summarization techniques among 
multiple datasets9 to avoid querying all known 
datasets directly. In contrast, semantic matching 

will match semantically related triples compared 
to a specified pattern.10 For example, pattern (?s, 
:is, :Student) might match (:James, :is, :PhDStu-
dent) because the term :Student in the pattern is 
semantically related to :PhDStudent in the triple.

System Overview
Figure 2a shows an overview of our system in the 
smart city scenario. We assume that data generated 
by all types of things will be represented in the 
form of Linked Data streams using RDF. In Seman-
tic IoT, we can use the Semantic Sensor Network 

Figure 1. Internet of Computers versus the Internet of Things 
(IoT). In the Internet of Computers, the main data producers and 
consumers are human beings. However, in the IoT, the main actors 
become things, where things are the majority of data producers  
and consumers.
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Ontology (SSN; see www.w3.org/2005/Incubator/
ssn/ssnx/ssn) to model sensing data. Our system 
mainly consists of two components: the matching 
component and the index construction component. 
Data consumers (humans and/or smart things in 
the city) can register their interests as user queries 
in the system. Then the index construction compo-
nent will construct an index for all the user queries. 
The matching component will then evaluate incom-
ing Linked Data streams against the constructed 
index to efficiently match triples with user queries. 
Finally, the system will disseminate matched data 
to relevant data consumers for further processing.

User queries. Our system adopts BGPs as user 
queries. BGPs are sets of triple patterns. The 
possible triple patterns in a BGP are (#s, #p, #o); 
(?s, #p, #o); (#s, ?p, #o); (#s, #p, ?o); (?s, ?p, #o); 
(?s, #p, ?o); (#s, ?p, ?o); and (?s, ?p, ?o). Here, ? 
denotes a variable while # denotes a constant. 
Similar to data summaries,9 we apply hash 
functions (there are many different hash func-
tions that are suitable for this purpose. Please 
refer to other work9 for a discussion on map-
ping these patterns into numerical values.

Representations of queries and triples. In our 
Linked Data stream dissemination system, when 
the system registers the user queries (in the form 
of BGPs), it transforms all queries into numerical 
values. The reason for this is that the comparisons 
between numbers are faster than strings. Note that 
we have three numbers for the three components 
in a query. Then we construct a suitable index for 
efficient evaluation between Linked Data streams 
and user queries. Before matching starts, we map 
RDF triples in the data streams into numerical 
values. Then, the system matches these numeri-
cal represented triples with BGPs represented as 
numerical values in the constructed indexes.

TP-automata for Pattern Matching
Researchers have adopted automata techniques to 
process XML-based data streams.11 They mainly 
base these techniques on languages with SQL-like 
syntaxes, and relational database execution models 
adapted to process streaming data. In our system, 
to support pattern matching, we apply automata to 
match each individual component of a triple with 
its counterparts of a BGP efficiently, which we call 
Triple Pattern automata (TP-automata).

Figure 2. System overview and index structure. (a) Overview of Linked Data stream dissemination 
system. (b) Query index: Triple Pattern (TP)-automata.
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As mentioned, operating on numbers is more 
efficient than operating on strings. Note that 
when we map BGPs into numerical values, we 
treat variables in a BGP as a universal match 
indicator, represented by ?. The system maps 
this indicator into a fixed and unique numeri-
cal value, but not the whole range of a specific 
coordinate axis. The system treats this unique 
numerical value differently, as well, later in the 
triple evaluation process.

Figure 2b depicts the construction process of 
TP-automata. First, user queries will be trans-
formed into triple-pattern state machines (see the 
middle of Figure 2b). As you can see, each triple-
state machine contains an initial state, two inter-
nal states, one final state, and three transitions. In 
the figure, the first circle of a state machine rep-
resents the initial state, the next two circles repre-
sent the two internal states, and the doubled circle 
represents the final state. The three arrows associ-
ated with conditions are three transitions between 
different states. Similar to Yanlei Diao and her 
colleagues’ approach,11 we combine these state 
machines into one machine by exploiting shared 
common states with the same transitions. Figure 2b 
shows the combined machine, TP-automata, on the 
right. The shaded circles represent combined states.

To perform pattern matching over TP-automata, 
first we map triples in the Linked Data stream into 
numerical values. For example, suppose a triple (s, 
p, o) is mapped into a 3D point (a, b, c). The system 
will match it against TP-automata in the following 
process: First, it checks the initial state of TP-autom-
ata and looks for state transitions with condition a 
or condition ?. Following the state transitions, state 
1 and state 2 become the current active states at the 

same time. It then looks for state transitions with 
condition b or ? from states 1 and 2. Following 
the transitions, states 3 and 4 become active states. 
Finally, following transitions with condition c or ? 
from states 3 and 4, two final states, states 5 and 7, 
are reached. By checking both final states, the sys-
tem returns {q1, q2, q4} as the matching results. We 
should note that q3: (a, b, d) won’t match the input 
triple (a, b, c) because its object component’s pattern 
is d, which doesn’t match with c. The match process 
stops if and only if all current active states are final 
states or states with no satisfied transition.

Experimental Evaluation
To evaluate the system’s capabilities and effi-
ciency, we tested it using a real-world dataset.

Experimental Setup
The dataset used in our experiments was gener-
ated in a Smart Building Energy Project.12 The 
energy readings were collected from 4–19 August 
2014. In total, there are around 6.2 million triples 
in the dataset. Listing 1 (see Figure 3) depicts an 
event example.

As an initial work, we used simple BGPs (single 
triple patterns) as queries in the experiment. We can 
simulate the join queries by letting data subscribers 
issue multiple simple BGPs. But we leave extending 
our system to support complex BGPs or join queries 
as our future work. We randomly generated BGPs 
using the aforementioned seven patterns, based on 
our dataset. We didn’t consider (?s, ?p, ?o) in our 
experiment, because it requires every triple in the 
Linked Data stream. In this case, no query index 
is needed. We generated from 10,000 queries to 
100,000 queries for different runs in the experiment.

Figure 3. Listing 1: an event example. This event is a power consumption event, showing the real-
time power consumption in Room01 of building01. As shown in the event, the power consumption in 
Room01 at the moment of “2014 08 12T18:17:18” was 171.87 watts.

@prefix do: <http://energy.deri.ie/ontology#>  
@prefix dr: <http://../deri/deri rooms#> 
:event1026fd7b0e5a  a     events:PowerConsumptionEvent.
:event1026fd7b0e5a  do:consumer    do:platform. 
:event1026fd7b0e5a  do:consumerType   dr:Room01. 
:event1026fd7b0e5a  do:consumerLocation  dr:building01. 
:event1026fd7b0e5a  do:powerUsage   :usage9739ccddc76d. 
:event1026fd7b0e5a  do:consumerDepartment  "facilities". 
:event1026fd7b0e5a  do:atTime    :timedb2c06100b33. 
:usage9739ccddc76d  a     dul:Amount. 
:usage9739ccddc76d  do:hasDataValue   171.87. 
:usage9739ccddc76d  do:isClassifiedBy   dr:watt. 
:timedb2c06100b33  a     do:Instant. 
:timedb2c06100b33  do:inDDateTime   "2014−08−12T18:17:18".
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We evaluated our approach’s performance in 
terms of average construction time (in milliseconds) 
of the indexes and average throughput (in number 
of triples per second). We implemented hash-based 
TP-automata (where we map triples and queries 
into numerical values and denote this method as 
HashMat in the following figures) and string-
based TP-automata (where we use triples and que-
ries “as-is” and denote this method as StringMat 
in the following figures). We compared HashMat 
and StringMat with the state-of-the-art pattern-
matching technique, Continuous Query Evalua-
tion over Linked Stream (CQELS; see https://code.
google.com/p/cqels/),7 which is also designed for 
Linked Data streams. We examined the matching 
quality of the hash-based TP-automata as well. We 
implemented all of the methods on the Java Plat-
form Standard Edition 7 running on Linux (Ubuntu 
12.10, 64-bit operating system), with a quad-core 
CPU at 2.20 gigahertz (GHz) and 4 Gbytes of mem-
ory. We ran each experiment 10 times and reported 
their average experimental results.

Performance Study
Figure 4 presents the TP-automata’s pattern-match-
ing performance. We compare average construction 
time in Figure 4a. The construction times for both 
hash-based and string-based TP-automata are sim-
ilar to each other in most settings. For larger num-
bers of queries, such as 75,000 and 100,000 queries, 
the construction of string-based indexes takes a 
slightly longer time. Normally, we can complete the 
construction within a few hundred milliseconds. 
However, the construction time of CQELS takes 
much longer, normally requiring around 10,000 ms.

Figure 4b depicts the throughput performance 
of pattern matching. It shows some large dif-
ferences between the CQELS and TP-automata 
approaches (HashMat and StringMat). Generally, 
HashMat and StringMat can achieve through-
put at the speed of nearly a million triples per 
second and are about four orders of magnitude 
faster than CQELS. The main reason for this is 
that CQELS is a much more comprehensive sys-
tem, focusing on optimizing evaluation of queries 
with complex operators and semantics but not on 
evaluation of a large set of concurrent and simple 
queries over Linked Data streams. In this regard, 
we can also adapt our approach to complement 
CQELS for dealing with our Linked Data stream 
dissemination scenario. Regarding HashMat and 
StringMat, in most cases, HashMat is about twice 
the throughput speed compared to StringMat.

Finally, we investigated the matching qual-
ity of hash-based TP-automata (HashMat) via 
precision, recall, and F1 score. This is because 
collisions are difficult to avoid in any hash-
based approaches, and false positives exist in 
hash-based TP-automata, which affects match-
ing quality. Specifically, we looked into preci-
sion and F1 score when the recall is 100 percent, 
because we observe that the matching quality of 
HashMat is already excellent in such cases. As 
Table 1 shows, the precision and F1 score are 100 
percent when the number of queries is 10,000 or 
25,000. For larger numbers of queries (for exam-
ple, 50,000, 75,000, and 100,000), both the preci-
sion and F1 score are still greater than 99.99950 
percent. This demonstrates that HashMat pro-
vides an extremely high matching quality.

Figure 4. Performance on pattern matching. (a) Average construction time. (b) Average throughput.
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O ur evaluation shows that TP-automata can 
disseminate Linked Data at the speed of 

nearly 1 million triples per second with 100,000 
registered user queries and is several orders of 
magnitude faster in terms of both index con-
struction time and throughput compared with 
the state-of-the-art technique. Further, using 
hash-based TP-automata, the throughput is 
doubled compared with string-based TP-autom-
ata with high matching quality.

We hope this article sheds light on the research 
of Linked Data stream dissemination to a large 
scale of data consumers. Future work includes 
supporting more complex user queries, such as 
join queries; and supporting semantic matching 
in a hashing space with the use of Locality-Sensi-
tive Hashing (LSH) techniques13 that help to map 
semantically related data together. Both directions 
will enable the Linked Data stream dissemination 
system to provide better semantics richness and 
to support data consumption needs more accu-
rately, which is a critical issue in the IoT.�
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Table 1. Matching quality of HashMat  
(when the recall is 100 percent).

Queries (in thousands) Recall (%) Precision (%) F1 Score (%)

10 100 100 100

25 100 100 100

50 100 99.99975 99.99987

75 100 99.99982 99.99991

100 100 99.99960 99.99980


