Batch Matching of Conjunctive Triple Patterns over Linked
Data Streams in the Internet of Things

Yongrui Qin*, Quan Z. Sheng”, Nickolas J.G. Falkner®, Ali Shemshadi*, Edward Curry?

“School of Computer Science

The University of Adelaide, Australia
{yongrui.qgin,michael.sheng,nickolas.falkner,ali.shemshadi}

@adelaide.edu.au

ABSTRACT

The Internet of Things (IoT) envisions smart objects col-
lecting and sharing data at a global scale via the Internet.
One challenging issue is how to disseminate data to relevant
consumers efficiently. This paper leverages semantic tech-
nologies, such as Linked Data, which can facilitate machine-
to-machine (M2M) communications to build an efficient in-
formation dissemination system for semantic IoT. The sys-
tem integrates Linked Data streams generated from various
data collectors and disseminates matched data to relevant
data consumers based on conjunctive triple pattern queries
registered in the system by the consumers. We also design a
new data structure, CTP-automata, to meet the high perfor-
mance needs of Linked Data dissemination. We evaluate our
system using a real-world dataset generated from a Smart
Building Project. With CTP-automata, the proposed sys-
tem can disseminate Linked Data at a speed of an order of
magnitude faster than the existing approach with thousands
of registered conjunctive queries.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Information filtering; H.3.4 [Inform-
ation Storage and Retrieval]: Systems and Software—
Selective dissemination of information

Keywords

Linked data, information dissemination, query index

1. INTRODUCTION

As of 2012, 2.5 quintillion (2.5 x 10'®) bytes of data were
being created daily!. In the Internet of Things, connecting
all of the things that people care about in the world becomes
possible [12]. However, all these things will produce much

"http://www-01.ibm.com/software/data,/bigdata/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions @acm.org.

SSDBM’15, June 29 — July 01, 2015, La Jolla, CA, USA

(©2015 ACM. ISBN 978-1-4503-3709-0/15/06 ...$15.00.

DOI: http://dx.doi.org/10.1145/2791347.2791364.

fInsight
NUI Galway, Ireland

ed.curry@insight-centre.org

more data than nowadays. The volumes of data are vast,
the generation speed of data is fast and the data/informa-
tion space is global. Indeed, IoT is one of the major driving
forces for big data analytics. Given the scale of 10T, topics
such as distributed processing, real-time data stream analyt-
ics, and event processing are all critical, and need to be re-
visited in order to improve upon existing technologies for ap-
plications of this scale [8, 2]. In this context, semantic tech-
nologies such as Linked Data (see http://linkeddata.org/),
which aim to facilitate machine-to-machine (M2M) commu-
nications, play an increasingly important role [3]. Linked
Data is part of a growing trend towards highly distributed
systems, with thousands or potentially millions of indepen-
dent sources providing structured data. Due to the large
amount of data produced by various kinds of things, one
challenging issue is how to efficiently disseminate data to
relevant data consumers.

To deal with such challenge, it is imperative to efficiently
retrieve the most relevant data from the big data generated
in IoT and effectively extract useful information (e.g., in
the process converting “data” into “information” or “knowl-
edge”). We propose in this paper an efficient data dissemi-
nation system for semantic IoT by leveraging semantic tech-
nologies, such as Linked Data. Our system will be very
helpful and efficient in the retrieval of relevant data from
the deluge of IoT data, which can then facilitate the extrac-
tion of required information. The system firstly integrates
data generated from various data collectors. Then it trans-
forms all the data into Linked Data streams in Resource De-
scription Framework (RDF') format (see www.w3.org/RDF).
Meanwhile, data consumers can register their interests in the
form of conjunctive triple pattern queries [15, 9] composed
of triple patterns in the system. Based on these conjunc-
tive queries, the system disseminates matched Linked Data
to relevant users. After receiving relevant data, these users
can further make use of the data to extract information for
their own purposes, such as environment monitoring, event
detection, complex event processing, and so on. It should be
noted that we will not discuss the data processing at the user
side, instead we focus ourselves on how to efficiently match
a large number of conjunctive queries against Linked Data
streams in batch mode. We highlight our main contributions
in the following.

e We identify new Linked Data dissemination needs in
the context of the Internet of Things, which requires
to process continuous data requests in batch mode ef-
ficiently.

e We develop a novel data structure, Conjunctive Triple

Pattern automata (CTP-automata), for efficiently match-

ing Linked Streams against a large number of conjunc-
tive triple pattern queries based on automata tech-
niques. We also develop novel techniques to evaluate
conjunctive queries efficiently.

We conduct extensive experiments using a real-world
dataset generated in a Smart Building Project. The
results show that our proposed system can disseminate
Linked Data at a speed of an order of magnitude faster
than the existing approaches with thousands registered
conjunctive queries.

2. LINKED DATA DISSEMINATION SYSTEM

2.1 System Overview

Figure 1 shows an overview of our system in the smart
city scenario. We assume that data generated by all kinds
of things will be represented in the form of Linked Data
streams using RDF (for the purpose of facilitating machine-
to-machine (M2M) communications). Our system consists
of two main components: the matching component and the
index construction component. Data consumers (humans
and/or smart things in the city) can register their inter-
ests as user queries in the system. The index construction
component constructs an index for all user queries. The
matching component evaluates the incoming Linked Data
streams against the constructed index for efficiently match-
ing triples to the user queries. Finally, the system dissemi-
nates the matched data to relevant data consumers for their
further processing.

Linked Data

Smart City

Data Matching Data Consumption

Matching __ Data Dissmination | g
S m

i 9 gimio
100
Index Construction L

wu=
«JeiENe \“:'

Data Subscription

Figure 1: System Overview

User Queries. Similar to [15, 9], triple patterns are adopted
as the basic units of user queries in our system. A triple pat-
tern is an expression of the form (s, p, o) where s and p
are URIs or variables, and o is a URI, a literal or a variable.
The eight possible triple patterns are: 1) (#s, #p, #0), 2)
(?s, #p, #0), 3) (#s, 7p, #0), 4) (#s, #p, 7o), 5) (7s,
?p, #0), 6) (?s, #p, 7o), 7) (#s, ?p, 7o), and 8) (7s,
?p, 70). Here, 7 denotes a variable while # denotes a con-
stant. Similar to data summaries in [7], we can also apply
hash functions? to map these patterns into numerical values.

A user query can be expressed as a conjunctive triple pat-
tern query composed of multiple triple patterns. Conjunc-
tive queries can express data needs much more accurately
compared to single triple pattern queries. A conjunctive

2There are many different hash functions that are suitable
for this purpose. For more details, please refer to [7].

query ¢q has the form of:
?xh ey ?l'n : (81,}917 01)(327]727 02) e (5n7pn7 On)

where ?x1,...,7x, are variables, each (s;,ps,0:) is a triple
pattern, and each variable ?z; appears in at least one triple
pattern (s;,pi,0:). Variables will always start with the ‘?’
character. Variables 7x1, ..., 72, are also called answer vari-
ables in order to distinguish them from other variables in the

query.

Representations of Queries and Triples. In our Linked
Data dissemination system, when the user queries (in the
form of conjunctive triple pattern queries) are registered,
all queries are transformed into numerical values. The rea-
son for this is that the comparisons between numbers are
faster than strings [7]. Note that, in such case, we will have
three numbers for the three components in a query as de-
scribed above. Then a suitable index can be constructed for
efficient evaluation between Linked Data streams and user
queries. Before a matching process starts, RDF triples in the
data streams will be mapped into numerical values as well.
Then, these numerical represented triples will be matched
with conjunctive queries represented as numerical values in
the constructed indexes.

2.2 CTP-automata for Conjunctive Query
Matching

Automata techniques have been adopted to process XML
data streams [5]. They are mainly based on languages with
SQL-like syntax, and relational database execution models
adapted to process streaming data. In our system, to sup-
port pattern matching, we also apply automata to match
each individual component of a triple with its counterparts
of triple patterns in a conjunctive query efficiently. We call
this approach Conjunctive Triple Pattern automata (CTP-
automata).

As mentioned, operating on numbers is more efficient than
operating on strings. Note that when we map triple patterns
into numerical values, we treat variables in a triple pattern
as a universal match indicator, e.g., represented by “?”. This
indicator will be mapped into a fixed and unique numerical
value but not the whole range of a specific coordinate axis.
This unique numerical value will be treated differently as
well later in the triple evaluation process.

Construction of CTP-automata. Figure 2 depicts the
construction process of CTP-automata. There are two con-
junctive queries, ¢1 : (?z1,b,¢)(?z1,d,e) and g2 : (722, b, ¢)
(?22,d,e)(a,d, ?x2). Accordingly, there are two triple pat-
terns in ¢1 and three triple patterns in g». Firstly, all the
triple patterns in the conjunctive queries will be transformed
into triple pattern state machines as shown in the middle of
Figure 2. As can be seen from the middle part of the fig-
ure, each triple state machine contains an initial state, two
internal states, one final state, and three transitions. In the
figure, the first circle of a state machine represents the initial
state, the next two circles represent the two internal states
and the doubled circle represents the final state. The three
arrows associated with conditions represent three transitions
between different states.

It is worth mentioning that we ignore variable names at
this stage due to the fact that when processing triples in the
Linked Data stream, at the first step, we have to evaluate

c 6
3—0 {mi}

00050 tmi
? d e

OO %00 (m:}
OO0 (i}
OO0 L0 (m:}
OH0L-OL-Q (ms

Queries Triple Pattern State Machines

q:: (?x1, b, ©)
(?x1, d, e)

b
v
7
7 \qwi»o {my}
0

a ; . 8
Q=—E—0Q {m:}
TP-automata (9 states)

qz: m;m, -->SS
m; msz--> SO
m; m3--> SO

q;: mymy -->SS

Conjunctive Constraints

Figure 2: Index Structure and Conjunctive Con-
straints of CTP-automata

these triples one by one and that variable naming does not
have any relationships between different conjunctive queries.
For example, (?z1,b,¢)(?zl,d, e) and (?22,b,c)(?x2,d, e) ac-
tually refer to the same conjunctive query. However, the
variable naming does matter within the same conjunctive
query. For example, in (?z1,b, 722)(722,d,), variables 7x1
and ?x2 refer to different triple components. We leave the
resolution of different variable names within the same con-
junctive query in the later stage, called Conjunctive Con-
straints Resolution (CCR) stage. Before that, we need
to evaluate each triple against each single triple state ma-
chine first, which is the Triple Pattern Matching (TPM)
stage.

Similar to [5], the multiple single triple state machines
shown in Figure 2 can be combined into one triple state ma-
chine by exploiting shared common states with same transi-
tions. The combined machine, CTP-automata, is shown on
the right of Figure 2. The shaded circles represent combined
states. We can see from the figure that, although we have
five single triple state machines, after the combination, the
number of single triple state machines drops to three, which
have been labeled as m1, m2 and ms, respectively.

Matching Triple Streams against CTP-automata. Dur-

ing the TPM stage, in order to perform pattern matching
over CTP-automata, when a triple (a, b, c¢) arrives, our
system firstly checks the initial state of CTP-automata and
looks for state transitions with condition a or condition 7.
Following the state transitions, state 1 and state 2 become
the current active states at the same time. It then looks
for state transitions with condition b or ? from state 1 and
state 2. Following the transitions, only state 3 becomes ac-
tive state and there is no transition triggered from state 2.
Finally, following the transition with condition c or ? from
state 3, one final state, state 6, is reached. By checking this
final state, the system returns {mi} as the matching result.
The matching process stops if and only if all current active
states are final states or states with no satisfied transition.

At this TPM stage, the matching results are only inter-
mediate results and the matched triples are just possible
candidates which may satisfy some conjunctive queries. In
order to determine which conjunctive queries have been sat-
isfied, we need to further evaluate some conjunctive con-
straints, which will be detailed next.

Conjunctive Constraints Resolution (CCR) of CTP-

automata. It should be noted that in order to match ¢
and ¢z in Figure 2, all triple patterns they contain must be
matched first. Take query ¢ : (?z1,b,¢)(?x1,d, e) as an ex-
ample. Suppose that triples ¢; and t2 match triple patterns
(?x1,b,¢) and (?x1,d, e), respectively. To ensure that query
q1 can be satisfied by ¢; and t2, we need to check first that
whether we have t1.s = t2.s. We call such conditions as
conjunctive constraints of a conjunctive query. All conjunc-
tive constraints must be satisfied before we can assure that
a conjunctive query is satisfied. As mentioned before, the
conjunctive constraints checking occurs at the CCR stage.

In this paper, we have identified ten conjunctive con-
straints, including SS, PP, OO, SO, OS, SSPP, SSOO, PPOO,
SOPP, OSPP. Constraint SS means that the subjects of two
candidate triples must be matched. More details are shown
in Table 1. These constraints can be used to determine
whether a conjunctive query has been satisfied or not so far
in the stream.

For example, in Figure 2, query ¢:’s conjunctive constraint
is mima — — >SS and query ¢2’s conjunctive constraints are
mimze — — >SS, mims — — >SO and mams — — >SO.
Suppose that triples ¢1, t2,t3 match triple pattern machines
m1, ma, m3, respectively. According to Table 1, for ¢1,t2 to
satisfy g1, we need to have t1.s = to.s. Similarly, for t1,t2, t3
to satisfy g2, we need to have ti.s = ta.s, t1.s = t3.0 and
ta.s = t3.0.

Dynamic Maintenance of the Matching Candidate
List. In order to check conjunctive constraints, triples in
the stream that match some triple pattern machines will be
buffered for this purpose. Since the Linked Stream can be
considered infinite, the buffered triple lists for triple pattern
machines may grow all the time. To avoid this issue, we
need to specify a sliding window to confine our matching
scope. That is, we only consider matching within the sliding
window.

Figure 3 shows two sliding windows with size T: w; and
w2, where only the most recent T triples will be consid-
ered for our matching. In order to evaluate conjunctive con-
straints, we need to update the buffered candidate triple
list each time a triple arrives in or leaves the window. In
Figure 3, for w1, we have got matching results for all three
single triple pattern machines, m1, m2,m3, in Figure 2. Af-
ter receiving a new tripe, t;+r, the oldest triple ¢; will be
removed from all candidate lists that contain ¢;. In this ex-
ample, only candidate list for m1 contains ¢; and hence t;
will be removed from that candidate list. Further, suppose
the new arriving triple ¢;4+r will be matched with machine
m3. Then t,+7 will be added to the candidate list for m3.
It is obvious that, each time when the sliding window moves
forward by one triple, we should consider all the buffered
lists affected by the leaving triple and the joining triple in
the sliding window to verify conjunctive constraints.

3. EXPERIMENTAL EVALUATION

In this section, we report our experimental evaluation of
the proposed approach. We will first describe the experi-
mental settings, and then report the experimental results.

3.1 Experimental Setup

The dataset used in our experiments was generated in a
Smart Building Energy Project [4]. The energy readings
were collected from 4-19 August 2014. In total, there are

Table 1: Conjunctive Constraints

Conjunctive | Description Checking Details
Constraints
SS The subjects of two candidate triples must be matched 1.8 = t2.8
PP The predicates of two candidate triples must be matched ti.p=ta.p
(0]0] The objects of two candidate triples must be matched ti.0 =tz2.0
SO The subject of a candidate triple in the first pattern machine matches | t1.s = 2.0
the object of a candidate triple in the second pattern machine
(O~ The object of a candidate triple in the first pattern machine matches | ¢1.0 = t2.s
the subject of a candidate triple in the second pattern machine
SSPP The conjunction of both SS and PP constraints ti.s =to.s and t1.p = ta.p
SSOO The conjunction of both SS and OO constraints t1.s = ta.s and t1.0 = t2.0
PPOO The conjunction of both PP and OO constraints ti.p =t2.p and t1.0 = t2.0
SOPP The conjunction of both SO and PP constraints t1.s =t2.0 and t1.p = ta.p
OSPP The conjunction of both OS and PP constraints ti.0 =t2.s and t1.p = ta.p
FWI _________________ | Parameter| Range | Default| Description
Query 100 to | 1000 The number of con-
...... t,‘ tj+1 ti+2 t/'+3 t,‘+(7-_1) ti+T ti+(T+1) Number 2000 junctive trlple pattern

Sliding Window (size T)
My iy tieo tins ting my: o ties tivg
My tigg tivs tiag my tive tivz tivg

ms: t,'+(7:4) tH.(T,j) t,'+(1:1) ms: tr'+(T—4) ti+(T—3) ti+(7'—l) ti+T

Candidate List in for W; Candidate List for W,

Figure 3: Maintenance of Candidate Triple List

around 6.2 million triples in the dataset. A more detailed
description of the schema for the data and the energy read-
ings can be found in [11].

We used random walk method to generate conjunctive
triple pattern queries in the experiments according to the
data graph of the event data. The details of parameters
we used for generating these queries are shown in Table
2. The parameters include query number, pattern number,
and window size.

We evaluated the performance of our approach in terms
of average construction time (in milliseconds) of the indexes
and average throughput (in number of triples per second).

We compared hash-based implementation (i.e., mapping triples

and queries into numerical values, denoted as HashMat in
the figures) with string-based implementation (i.e., using
triples and queries as it is, denoted as StringMat in the
figures). We also compared our methods with an existing
approach, CQELS [10], which supports parallel query eval-
uation on Linked Data streams. Both CTP-automata en-
gines and CQELS? were all implemented on Java Platform
Standard Edition 7 running on Linux (Ubuntu 12.10, 64-bit
Operating System), with quad-core CPU@2.20GHz and 4
GB main memory. We ran each experiment 10 times in or-
der to ensure consistency of results and reported the average
experimental results.

3The source code and documentation of CQELS can be ob-
tained via http://code.google.com/p/cqels/

queries

The maximum num-
ber of triple patterns
in a query

The window size, in
terms of number of
triples, for the eval-
uation of conjunctive
triple pattern queries

Pattern l1tob 3

Number

Window 10 to | 100
Size 500

Table 2: Workload Parameters for the Experiments

1800

M CQELS
[N stringMat
1600 | |] HashMat

[
Iy
o
=)

.
N}
=}
=}

1000

200 I |
0
100 250

Figure 4: Average Construction Time

©
o
=]

o
o
=]

Construction Time (Milliseconds)

N
o
=]

500 750 1000 2000
Query Number

3.2 Performance Study

Construction Time. The average construction times of
CTP-automata engines and CQELS engine is presented in
Figure 4. The construction times for both hash-based CTP-
automata matching engine (HashMat) and string-based CTP-
automata matching engine (StringMat) are close to each
other in most settings and are always under 50 milliseconds.

I CQELS
[stringMat
[Hashmat

of Triples Per Second

100 250 500 750 1000 2000
Query Number

Figure 5: Average Throughput Evaluation by Vary-
ing Query Number

x 10

35
I CQELS

I stringMat
[HashMat

25

15

of Triples Per Second

0.5

1 2 3 4 5
Pattern Number

Figure 6: Average Throughput Evaluation by Vary-
ing Pattern Number

The construction of the string-based indexes takes slightly
longer time. By contrast, the construction times of CQELS
are much longer than CTP-automata engines. The main rea-
son is that CQELS has to parse the conjunctive triple pat-
tern queries using a SPARQL-like parser and then register
the parsed queries in the processing engine. As shown from
Figure 4, the construction times of CQELS grow linearly
with the number of conjunctive queries. When the query
number is 100, the construction time is around 400 millisec-
onds. When the number of queries increases to 2000, the
construction time reaches above 1610 milliseconds. This in-
dicates that the construction of our CTP-automata engines
is very fast.

Throughput. The throughput performance of pattern match-

ing under varying query numbers is depicted in Figure 5. It
shows some similarities between HashMat and StringMat.
In most cases, HashMat shows slightly better throughput
speed compared with StringMat. This indicates that al-
though comparisons on strings are slower than those on
numbers, the differences betwen HashMat and StringMat

10000
— I CQELS
[stringMat
9000 [Hashmat
8000
- 7000
i~
o
8 —
& 6000 -
&
L 5000
<
2
£ 4000
S
* 3000
2000
1000
0
10 50 100 250 500
Window Size

Figure 7: Average Throughput Evaluation by Vary-
ing Window Size

are negligible. The main reason for this is that the evalua-
tion process of conjunctive queries spends a large proportion
of time to evaluate the conjunctive constraints on each query
and both HashMat and StringMat use the same strategy to
evaluate all these conjunctive constraints.

However, when compared with CQELS, both HashMat
and StringMat outperform CQELS significantly. To be spe-
cific, when the number of conjunctive queries is 100, the
throughput of HashMat and StringMat is more than 64,000
triples per second, and for CQELS, just slightly more than
3,000. When the number of conjunctive queries is 2,000, the
throughput of HashMat and StringMat drops to slightly be-
low 3,000 triples per second while CQELS has a throughput
about just 50 triples per second. From Figure 5, we can ob-
serve that (1) HashMat and StringMat are normally 20 to 50
times faster than CQELS; (2) the throughput of HashMat,
StringMat and CQELS all drops greatly when increasing the
number of conjunctive queries. This also indicates that the
evaluation of conjunctive constraints on each query takes
a large amount of time and is difficult to share evaluation
results between different conjunctive queries.

Figure 6 further demonstrates this finding. In the figure,
we vary the maximum number of patterns of each conjunc-
tive query. For the same amount of conjunctive queries,
when the pattern number is only 1, the throughput of Hash-
Mat and StringMat is around 30,000 triples per second and
for CQELS, it is around 1,200 triples per second, which is
more than 20 times slower. When the pattern number is set
to 5, the throughput of HashMat and StringMat drops to
slightly lower than 3,000 triples per second and for CQELS,
it drops to around 300 triples per second. This confirms that
the evaluation of conjunctive constraints is time consuming.
Similarly, HashMat and StringMat are both around an order
of magnitude faster than CQELS.

Finally, Figure 7 depicts the effect of window size, which is
varied from 10 to 500. From the figure, we can observe that
when the window size increases from 10 to 50, the through-
put of HashMat and StringMat drops from 9,500 triples per
second to around 6,200 triples per second. But when the
window size increases from 50 to 500, the throughput of
HashMat and StringMat only drops to around 4,500 triples
per second. This indicates that the window size does not

affect the throughput heavily like query number and pat-
tern number. Similar effect of window size can be found
on CQELS. When the window size increases from 10 to 500,
the throughput of CQELS drops from around 500 triples per
second to slightly lower than 300 triples per second. Still,
HashMat and StringMat are both an order of magnitude
faster than CQELS.

From our experimental study, we can conclude that CTP-
automata indexes for conjunctive queries can be constructed
much faster than the query registration process in CQELS.
More importantly, CTP-automata (HashMat and String-
Mat) significantly outperforms CQELS in terms of through-
put. Further, by using hashing techniques, HashMat per-
forms slightly better than StringMat.

4. RELATED WORK

In terms of triple pattern matching, a large body of work
which focuses on optimizing individual query processing has
also been put forward [9, 6, 16, 14]. Specifically, the problem
of evaluating conjunctive triple pattern queries is studied in
[9] in the context of Peer-to-Peer (P2P) networks. In [6],
an indexing technique for efficient join processing on RDF
graphs is proposed. The index is constructed upon RDF
data directly but not join queries. Similarly, the work in [16]
focuses on optimizing the processing of conjunctive triple
pattern queries, especially star-shaped group based queries
individually. Furthermore, optimization on RDF graph pat-
tern matching on MapReduce is also studied in [14]. How-
ever, the common problem shared by these research efforts
is that, they have not considered the scenarios of optimizing
conjunctive triple pattern queries in batch mode, which is
the focus of our work in this paper.

Some existing work on pattern matching of Linked Data,
such as stream reasoning [1] and Linked Data stream pro-
cessing [10], does not support large-scale query evaluation
but focuses on the evaluation of a single query or a small
number of parallel queries over the streaming Linked Data.
Other existing work only studies pattern matching of mul-
tiple single triple patterns [13, 11], but not multiple con-
junctive triple patterns. Therefore, the issue of supporting
pattern matching over a large number of conjunctive triple
patterns against Linked Data streams still remains open in
these approaches.

5. CONCLUSION

In this paper, we have leveraged semantic technologies,
such as Linked Data, to build an efficient information dis-
semination system for semantic IoT. In order to efficiently
match a large number of conjunctive triple pattern queries
against Linked Data streams in batch mode, we have pro-
posed CTP-automata, an automata-based method designed
for efficient pattern matching. In our evaluation, we show
that CTP-automata can disseminate Linked Data an order
of magnitude faster than the existing approaches. This con-
firms the efficiency and effectiveness of our proposed ap-
proach. Our future work aims to support efficient matching
for larger scales of conjunctive triple pattern queries, which
would be a critical issue in the emerging Internet of Things.

6. REFERENCES

[1] D. Anicic, P. Fodor, S. Rudolph, and N. Stojanovic.
EP-SPARQL: A Unified Language for Event

Processing and Stream Reasoning. In WW W, pages
635-644, 2011.

[2] P. M. Barnaghi, A. P. Sheth, and C. A. Henson. From
Data to Actionable Knowledge: Big Data Challenges
in the Web of Things. IEEE Intelligent Systems,
28(6):6-11, 2013.

[3] P. M. Barnaghi, W. Wang, C. A. Henson, and
K. Taylor. Semantics for the Internet of Things: Early
Progress and Back to the Future. Int. J. Semantic
Web Inf. Syst., 8(1):1-21, 2012.

[4] E. Curry, S. Hasan, and S. O’Riain. Enterprise energy
management using a linked dataspace for Energy
Intelligence. In SustainIT, pages 1-6, 2012.

[5] Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, and
P. M. Fischer. Path Sharing and Predicate Evaluation
for High-Performance XML Filtering. ACM Trans.
Database Syst., 28(4):467-516, 2003.

[6] G. H. L. Fletcher and P. W. Beck. Scalable indexing of
RDF graphs for efficient join processing. In CIKM,
pages 1513-1516, 2009.

[7] A. Harth, K. Hose, M. Karnstedt, A. Polleres, K.-U.
Sattler, and J. Umbrich. Data Summaries for
On-Demand Queries over Linked Data. In WWW,
pages 411-420, 2010.

[8] A. E. James, J. Cooper, K. G. Jeffery, and G. Saake.
Research Directions in Database Architectures for the
Internet of Things: A Communication of the First
International Workshop on Database Architectures for
the Internet of Things (DAIT 2009). In BNCOD,
pages 225-233, Birmingham, UK, 2009. Springer.

[9] E. Liarou, S. Idreos, and M. Koubarakis. Evaluating
Conjunctive Triple Pattern Queries over Large
Structured Overlay Networks. In ISWC), pages
399-413, 2006.

[10] D. L. Phuoc, M. Dao-Tran, J. X. Parreira, and
M. Hauswirth. A Native and Adaptive Approach for
Unified Processing of Linked Streams and Linked
Data. In ISWC| pages 370-388, 2011.

[11] Y. Qin, Q. Z. Sheng, and E. Curry. Matching Over
Linked Data Streams in the Internet of Things. IEEFE
Internet Computing, 19(3):21-27, 2015.

[12] Y. Qin, Q. Z. Sheng, N. J. G. Falkner, S. Dustdar,

H. Wang, and A. V. Vasilakos. When Things Matter:
A Data-Centric View of the Internet of Things. CoRR,
abs/1407.2704, 2014.

[13] Y. Qin, Q. Z. Sheng, N. J. G. Falkner, A. Shemshadi,
and E. Curry. Towards Efficient Dissemination of
Linked Data in the Internet of Things. In CIKM,
pages 1779-1782, 2014.

[14] P. Ravindra, H. Kim, and K. Anyanwu. An
Intermediate Algebra for Optimizing RDF Graph
Pattern Matching on MapReduce. In ESWC, Part 11,
pages 46-61, 2011.

[15] A. Seaborne. Rdql - a query language for RDF. In
W3C Member Submission, 2001.

[16] M. Vidal, E. Ruckhaus, T. Lampo, A. Martinez,

J. Sierra, and A. Polleres. Efficiently Joining Group
Patterns in SPARQL Queries. In ESWC, Part I, pages
228-242, 2010.

