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Abstract. Nature-inspired algorithms such as genetic algorithms, particle swarm
optimisation and ant colony algorithms have successfully solved computer science
problems of search and optimisation. The initial implementations of these tech-
niques focused on static problems solved on single machines. These have been ex-
tended by adding parallelisation capabilities in the vein of distributed computing
with a centralised master/slave approach. However, the natural systems on which
nature-inspired algorithms are based possess many additional characteristics that
are of potential benefit within computing environments. In this paper, we discuss
the benefits of nature-inspired techniques within modern and emerging computing
environments. Software entities within these environments execute and interact in
a fashion that is parallel, asynchronous, and decentralised. Given that the natural
environment is in itself parallel, asynchronous and decentralised, nature-inspired
techniques are an excellent fit for computing environments that exhibit these char-
acteristics. Future research challenges for nature-inspired techniques within emerg-
ing computing environments are also discussed.
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1. Introduction

Nature-inspired techniques are problem solving approaches that share the characteristic
of being loosely based on a natural metaphor. Such metaphors include evolution’s search
through the vast space of potential organisms and the coordinated movement of flocks
of birds through a three dimensional space. Further examples of natural metaphors and
their corresponding nature-inspired techniques are listed in Table

Nature-inspired algorithms such as genetic algorithms [[7], particle swarm optimisa-
tion [11] and ant colony algorithms [3] have achieved some remarkable successes. In-
deed, they are the solution technique of choice for some problems. With a few excep-
tions, nature-inspired techniques have primarily been applied in the domain of heuris-
tics. That is, these techniques have been used to create approximate algorithms for hard
search and optimisation problems. The solutions they offer are beginning to draw atten-
tion from technology investors [4]], resulting in the establishment of several companies
that develop and deploy these technologies. Bonabeau and Meyer [4]] cite several large
multinational companies such as Unilever, McGraw-Hill, Capital One, Hewlett-Packard,



and France Télécom that have benefited from nature-inspired approaches. Some smaller
companies are also beginning to consult on swarm technologiesﬂ

Applications have, for the most part, been to static problems solved on single ma-
chines. Any attempts at parallelisation of these heuristics have been in the vein of tradi-
tional distributed computing with a centralised master/slave approach. This is, of course,
a sensible approach when engineering performance improvements for the original do-
mains tackled.

However, the natural systems on which these successful heuristics are based possess
many other interesting properties.

They typically contain massive numbers of relatively simple participants.

They are completely decentralised.

They operate in parallel and asynchronously.

They use relatively simple signals for communication.

Their desired functionality emerges from the interactions of their participants.
This is achieved despite (and because of) their simple participants that have no
global information.

These characteristics make natural systems robust to loss of members, inherently
parallel in ‘execution’, and evidently adaptable to a highly dynamic problem domain—
their natural environment.

Depending on circumstances, we can consider these as properties that are desirable
for a computer system or as properties that are enforced on the systems we develop.
As an example of the former, simple communication and emergent functionality reduce
communication costs and eliminate centralised bottlenecks. As an example of the latter,
modern computing environments such as the Internet, Grids and Enterprise Computing
contain massive numbers of participants interacting and executing in a fashion that is (1)
parallel, (2) asynchronous and (3) decentralise

Each of these three characteristics poses a challenge for the development of software
entities that reside in the environment. These include scalability, robustness, adaptability,
manageability, redundancy, cooperation, and coordination. Given that the natural envi-
ronment is in itself parallel, asynchronous and decentralised, nature-inspired techniques
are an excellent fit for computing environments that exhibit these characteristics. It is
vital that disciplined scientific and engineering investigations are undertaken to success-
fully transfer these algorithms, techniques and infrastructures into emerging computing
environments.

Section [2|reviews some examples of research that has applied nature-inspired tech-
niques to computing environments that are parallel, asynchronous and/or decentralised.
Section [3|details our vision of the most important challenges and open questions for this
field. Section ] summarises our conclusions.

1 AntOptima (http://www.antoptima.com/) and EuroBios (http://www.eurobios.com/)
2 One should note that distribution is often assumed within these environments. However, the environment
can be parallel, asynchronous, and decentralised without being distributed.


http://www.antoptima.com/
http://www.eurobios.com/

2. Nature-Inspired Systems for Parallel, Asynchronous and Decentralised
Environments (NISPADE)

Since nature-inspired systems are the foundation of NISPADE research, we begin with an
overview of the most popular traditional systems and highlight their current limitations.

2.1. Traditional Nature-Inspired Systems

One of the most well-established nature-inspired techniques is the Genetic Algorithm
(GA) [17]]. This approach is based on nature’s Darwinian evolution. Potential solutions to
a search or optimisation problem are encoded as strings, reminiscent of nature’s DNA.
These solutions are evaluated with a fitness function that determines how good a solution
they represent. The fittest solutions are selected as parents to breed the next generation
of solutions. Other genetic operators such as crossover and mutation can be performed
on the encoding strings. These add a randomising component to the search process. Af-
ter many such generations, the evolved solutions improve in fitness. Traditionally, GA
implementations use a centralised comparison of all population members and a synchro-
nised fitness evaluation phase. Parallel extensions of this have used a master/slave ap-
proach.

Nature-inspired systems based on social insect colonies have grown in popularity in
recent years. We can see two major behaviours that have been adapted into successful
algorithms. The first of these is marker-based stigmergy. This occurs when social in-
sects such as ants and termites place artificial markers in the environment to help coor-
dinate their actions. In ant foraging, one of the most popular sources of inspiration for
ant algorithms, the ants use chemical markers called pheromones to guide one another
along routes to food. This indirect communication via the environment allows relatively
simple ants with limited local information to find optimal routes across relatively large
distances. This foraging behaviour has been adapted to find paths through graphs, for
example [6]. A second major behaviour is called sematectonic stigmergy. This involves
insects adjusting their behaviours according to specific environment states. The most
successful algorithms to adapt sematectonic stigmergy have been based on ant colony
brood sorting. In the natural environment, some ant species move and sort their broods
and cemeteries based on environment states such as the size of larvae adjacent to one an-
other and the sizes of clusters of larvae they observe. When combined with probabilistic
decision processes and thresholds for activation of behaviours, colonies of insects per-
form remarkable sorting without any global knowledge of the order they are creating.
Again, ant colony algorithms typically use globally calculated pheromone updates and
synchronised pheromone trail laying.

Of course, one of the most awe-inspiring natural intelligences is the human mind
itself. There are many theories of how minds work and perhaps one of the better known
is Minsky’s ‘Society of Mind’ [13]. Simply stated, this theory argues that minds can be
composed of a ‘society’ of many fundamental competencies. When a mind is stimulated,
these competencies compete with one another to be activated as the mind’s response. The
appeal of such a theory is that the overwhelming complexity of minds can be ‘reduced’ to
the competition and interaction of relatively simple competencies (albeit on a massively
parallel scale).

There are, of course, many other natural metaphors that have been adapted into
artificial nature-inspired systems. Some, such as Particle Swarm Optimisation [11f], are



based on further examples of natural swarms such as flocks of birds. Others, such as
Simulated Annealing [[12]], are based on physical systems.

As discussed, the current implementations of these techniques have focussed on cen-
tralised, synchronous approaches. The next logical step is to investigate the other char-
acteristics from the natural environment—parallelism, asynchronoicity and decentralisa-
tion.

3. NISPADE Challenges Ahead
We identify the following engineering and scientific challenges for the NISPADE field.
3.1. Engineering

A key step for mainstream acceptance of nature-inspired techniques is a maturing of
their software engineering practices. As the development of nature-inspired techniques
matures it is important to capture successful design and engineering practices to manage
their complexity.

3.1.1. Design and Programming Abstractions

The investigation of suitable design and programming abstractions can help to manage
the complexity of parallel, asynchronous, and decentralised nature-inspired techniques.
Techniques such as software architectures, component frameworks, programming ab-
stractions and design patterns simplify the development of nature-inspired systems. They
provide the programmer with the mental infrastructure needed to manage the complexity
large-scale parallel, asynchronous and decentralised computing environments. Appropri-
ate design abstractions arm developers with the necessary mental building blocks to em-
brace the concepts of parallel, asynchronous, and decentralised systems in a straightfor-
ward manner. A number of challenging design considerations merit investigation. These
include the choice of where to place the burden of complexity and computation; should
environments be richer to reduce the load on agents [15], [[17]], or should the agent con-
tain the complexity?

3.1.2. Tool and Infrastructure Support

The development of tool support and infrastructure for nature inspired systems is an im-
portant step. Development tools such as IDE extensions and debugging tools are impor-
tant to improve the productivity of developers. These tools will encourage the acceptance
of nature-inspired techniques.

High-quality support infrastructure such as middleware, software architectures, and
software platforms provide common plumbing for systems, allowing developers to con-
centrate on application logic. Support infrastructure can perform a number of tasks such
as distribution, consistency, persistence and mobility. Brueckner, for example, presents
an infrastructure to support ant-based pheromone activities [3]]. Furthermore, the integra-
tion of nature-inspired system with legacy systems already operating within the environ-
ment will require the development of integration services and brokers.



3.1.3. Standards

Another important step is the standardisation of relevant protocols and ontologies to fa-
cilitate interaction between NISPADE systems and other legacy systems currently oper-
ating within these environments. In order for any standardization effort to succeed, there
is a need for consensus within the community. Efforts such as FIPAE] illustrate the benefit
of developing standards in an open collaborative environment. When developing such
standards it is important to reach a balanced a mixed between industrial and academic in-
terests. Community developed standards benefit from risk reduction afforded by an inter-
nationally coordinated and managed effort, reducing risk for individual research efforts
by creating useable standards that are implemented and supported by others.

3.1.4. Self-organisation

The challenge of how to engineer self-organising behaviour is still an open issue. We
are fortunate to have the benefit of biological models of self-organisation and successful
nature-inspired heuristics based on these models. However, their transfer to a parallel,
asynchronous and decentralised environment is a new endeavour and we cannot assume
that this can be achieved without some modifications and further insights.

3.1.5. Agent Redundancy

The use of large numbers of participants intuitively enhances the robustness of a nature-
inspired system to loss of members. However, much experimentation is needed to mea-
surably demonstrate that this is the case. Furthermore, the impact of large numbers on
system coordination is not known. Typical ant algorithms, for example, use a number
of ants in the order of tens rather than the tens of thousands seen in natural colonies. Is
there a cut-off point between sufficient numbers for robustness and sustainable system
performance?

3.1.6. Messaging costs

Even with experiments that do address some of the aforementioned issues, it is frequently
the case that research ignores the engineering reality of considerations such as messaging
costs. While simulations demonstrate useful results, we must not lose sight of the NIS-
PADE field’s aim—developing software for a parallel, asynchronous and decentralised
environment. At the very least, simulated results that fail to incorporate considerations
such as messaging should acknowledge this omission. Ideally, realistic estimates of mes-
saging costs should be included in simulations or results should be tested in realistic en-
vironments. Some nature-inspired systems rely on large numbers of simple communica-
tions. We believe that balancing the complexity and frequency of communication is one
of the most important considerations.

3.2. Science
As with any scientific or engineering discipline, reproducibility and the strength of con-

clusions are of prime importance. Ultimately, progress of any value will depend on the
use of rigorous experiment designs, clear reporting and well-defined hypotheses sup-

3 http://www.fipa.org/



ported by appropriate statistical tools. Unfortunately, such rigour is currently the excep-
tion rather than the rule. While performance analysis engineers and heuristics design-
ers have been aware of these issues for quite some time [[LO] [819], the nature-inspired
systems community has only recently acknowledged them [[1] [2]. These issues are also
extremely relevant to NISPADE practitioners.

3.2.1. Benchmarks

A representative class of benchmark problem instances is vital to consolidate research
and to facilitate the comparison of various research approaches. What are appropriate
benchmarks for the performance of NISPADE systems? How to we experimentally con-
trol important factors in dynamic environments? It would greatly help progress in the
field if authors made available their problem instances and problem generators.

3.2.2. Parameter Tuning

In common with their nature-inspired heuristic heritage, NISPADE systems often use a
large number of tuning parameters. Unfortunately, these parameters are usually tuned in
an ad-hoc way with authors reporting that after some experimentation, particular param-
eter values were found to be satisfactory. This poses several problems.

Firstly, we have no idea of the human and machine resources used to perform this
tuning. Such resources are clearly an important factor for the practicality of the proposed
method when competing with simpler alternatives. Such a simpler alternative could have
been run many times when ad-hoc parameter tuning of the NIPSADE system was taking
place.

Secondly, by not performing tuning in a clearly defined and methodical way, we
may be misrepresenting the potential of the proposed NISPADE system. Even small
changes in tuning parameters can result in dramatic improvements in performance. There
are well-established experiment designs and statistical tools for performing such tuning
[Li16l14].

Finally, in the absence of a clearly defined and reported tuning procedure, any con-
clusions about the proposed system must be limited to the particular parameter values
reported. Clearly, addressing the parameter tuning problem with scientific rigour will
increase the impact and usefulness of NISPADE research.

3.2.3. Design of Experiments

The field of Design of Experiments (DOE) [[14] provides established experiment designs
and statistical analysis tools that allow us to efficiently gather data and draw conclusions
with mathematical preciseness. DOE helps us answer questions such as: which factors to
vary and what levels to vary them at; how many replicates of an experimental treatment
to run; how confident can we be in our conclusions; is one system better than another
or is the difference just due to chance? We see an excellent opportunity to improve the
experimental rigour in both the design and analysis of NISPADE experiments. We would
hope to see greater attention paid to the existing DOE literature and software.



4. Concluding Remarks

Nature-inspired heuristics have already achieved noteworthy successes. The genetic al-
gorithm has demonstrated the usefulness of a population-based search with randomi-
sation from artificial implementations of cross-over and mutation. Ant Colony Optimi-
sation has profited from the self-reinforcing trail-laying behaviour of real ant colonies.
Clustering algorithms have been developed from the brood sorting behaviours of real
ants. Particle Swarm algorithms have adapted flocking and shoaling behaviour to search
through problem spaces.

This article has highlighted the common characteristics shared between emerging
computing environments and natural environments. We believe that further character-
istics of natural environments are worth investigating, either because these characteris-
tics are desirable or because similar characteristics are forced on us by new computing
environments.

In certain circumstances, parallel execution and asynchronous communication can
improve performance. In other circumstances, these characteristics are a requirement of
the operating environment. As computing systems increase in size, the feasibility of a
centralised design approach diminishes. Decentralisation is a necessity to overcome bot-
tlenecks in communication and obstacles to scalability. It is possible that existing nature-
inspired systems may benefit from parallel implementations. Furthermore, their self-
organising characteristics may help address the problem of coordinating decentralised
execution.

We have highlighted our view of the most important engineering and scientific chal-
lenges that lie ahead. We look forward to continued advances in this new and challenging
field of NISPADE research.
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Behaviour

Nature-inspired technique

Path formation by ants

Network routing and discrete combinatorial optimi-
sation.

Nest sorting by ants

Data clustering

Task allocation by several social in-
sect species

Task assignment in computer and human domains

Schooling and flocking in fish and
birds

Particle swarm optimisation.

Darwinian selection of successful
organisms

evolutionary computation for search and optimisation

Table 1. Example natural metaphors and their corresponding nature-inspired techniques
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