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Abstract—Public datasets are becoming more and more avail-
able for organizations. Both public and private data can be
used to drive innovations and new solutions to various problems.
The Internet of Things (IoT) and Open Data are particularly
promising in real time predictive data analytics for effective
decision support. The main challenge in this context is the
dynamic selection of open data and IoT sources to support
predictive analytics. This issue is widely discussed in various
domains including economics, market analysis, energy usage, etc.
Our case study is the prediction of energy usage of a building
using open data and IoT. We propose a two-step solution: (1) data
management: collection, filtering and warehousing and (2) data
analytics: source selection and prediction. This work has been
evaluated in real settings using IoT sensors and open weather
data.

Keywords—Predictive Analytics; Autonomic System; Machine
Learning; IoT; Open Data; Energy Management;

I. INTRODUCTION

A relatively recent development in the field of computer
science is the concept of the Internet of Things (IoT), a vision
where the planet is covered with sensors, from wireless sensors
monitoring the welfare of farm animals to Internet connected
utilities, traffic monitors, and many other devices. Today there
are approximately 9 billion devices connected to the Internet
with this number set to reach 15 billion by 2015 [1]. IoT is
enabling a future of smart environments, e.g. smart cities, smart
buildings and smart grids.

In 2011, IBM estimated that 90% of data created by
mankind had been created in the previous 2 years [2]. Data
being generated by a multitude of Internet connected devices
can quickly become infeasible to cope with in traditional
ways. At the same time, autonomic computing systems are
being developed as a way to cope with large and increasingly
complex systems. Autonomic systems can manage themselves
when given high-level objectives from administrators, freeing
them from low-level tasks [3]. If an infrastructure is to cope
with Big Data, it needs to be self-managing to remove as much
of the burden as possible.

This paper aims to provide a methodology for managing
Open Data collected from the web or from IoT sensors for
effective decision making in the context of a smart environ-
ment. A smart environment contains embedded sensors and
actuators to make the environment as a whole more efficient,
more reliable and more comfortable for its occupants [4]. A
smart building is a localisation of this idea and addresses a
subset of the needs of a smart environment, e.g. adjusting
building systems in response to occupant comfort and energy
demands.

In Predictive Analytics, knowledge of an event occurring
before it occurs enables action to be taken to mitigate the oc-
currence of the event or prepare for its eventuality. The concept
of Predictive Analytics applied to building energy management
can provide insight into the future energy usage; this can
enable scheduling of building operations in a more efficient and
effective manner. This paper is concerned with the evaluation
and selection of optimal sensor data sources from the Internet
of Things that are most suited to prediction of power use in
a building. The Web source selection process is demonstrated
in an autonomic building management environment where it is
used to select weather data upon which predictions for future
electricity usage are made.

In the same context, the literature proposes various so-
lutions [5], [6], [7], [8], [9] for predicting energy use using
weather data. Unlike most of these contributions that use a
single source of weather data, we propose in our work a
methodology that uses multiple sources. Additionally, we focus
on proposing an autonomous system [10] that provides accurate
results rapidly even without historical data.

The remainder of the paper is organized as follows: After
defining the context and motivating the research problem in
Section II, Section III details our proposed multi-layer open
data management architecture. Then in Section IV, we discuss
our approach for the selection of data from the Internet and
sensor networks for effective predictive analytics. Section
V lists our technology choices for the development of the
proposed system. For evaluating the autonomous aspect of the
designed system as well as the used machine learning algo-
rithms, we carried out three experiments reported in Section
VI. Before concluding the paper in Section VIII, we analyse
related works in Section VII.

II. CONTEXT AND MOTIVATION

The aim of this work is to use open weather data accessible
from free APIs provided by various online sources in combi-
nation with building electricity use data from local sensors to
predict future electricity use in an accurate and reliable manner.
When working with data taken from sensors connected to the
Internet and other Web sources, the data is from a 3rd party and
the quality and reliability is outside of our control. This leads
to the problem of having to pick data sources from the Web
that best suit our needs. In addition, this must be done in such
a way that the system is reliable and continues making the best
possible predictions over time so that prediction consumers can
depend on the quality of the predictions made.

This work attempts to develop a way of quickly and
efficiently evaluating open weather data sources to be used



in predictive analytics. The source selection is part of an
autonomic system that maintains and improves the quality of
the predictions over time while being self-managing [10]:

• Self-configuration:
◦ Automatic installation and initiation: The sys-

tem can be installed into any building and
automatically start being useful with minimal
intervention by a skilled worker.

◦ Easily generalised to any building: There
should be low configuration effort to adapt the
system to another building to encourage re-use.

• Self-optimization:
◦ Select the best data sources from the Web:

The system chooses the best sources of open
weather data to make the best possible predic-
tions for future power consumption.

◦ Adapt to changes in the building use: The
predictions should react to changes in building
use, e.g. expansion or contraction of a work-
force, extensions, renovations etc.

◦ Low user interaction: The system should con-
tinue working with no supervision.

• Self-healing:
◦ Transparency to end users in the case of failure

of a data source: In the case of a failure of
a data source (i.e. a weather station malfunc-
tion), the system should continue to make a
best effort prediction so that agents dependent
on it can continue to operate.

◦ Continuously maintain good predictions: Pre-
dictions must remain accurate as poor predic-
tions may cause consumers of the data to make
wrong decisions.

◦ Quick identification of faults: Faulty data
sources (e.g. a damaged sensor) should be
identified quickly so that an alternative data
source can be used.

In order to build an efficient energy prediction systems
in such context, two main challenges need to be handled:
heterogeneous data management and source selection.

1) Heterogeneous data management: In smart environ-
ments, sharing information and data is a big challenge due to
various aspect. Indeed, data produced in such environments
is dynamically and heterogeneously generated by different
applications in different domains across different enterprises,
etc. Consequently, there is a need to transform data in a format
that is easily exchangeable and integrateable. A promising
solution in this context is the use of Linked Data.

Linked data is set of best practices for representing in-
formation in RDF format and relating or connecting this
information. The basic ingredient of linked data is structured
data and links between structured data. The main philosophy
of linked data is to create data that can be shared and reused.

2) Data Source Selection: The selection of data sources is
important as the data from the sources influence the results of
predictive analytics. In a 2011 review of trust in networked
data sets [11], authors note that the process of selecting a data

source is subjective based on the needs of the consumer. A
common method for selecting a dataset to answer a query
is to examine the metadata associated with the data source,
e.g. size of the dataset, date and frequency of updates [12].
Another method for determining correct information is to
establish a consensus from several sources [11]. Our proposed
methodology for selecting the right data source consists of
evaluating the results of the predictive analytics and select the
data source with the best results.

III. OPEN DATA MANAGEMENT

For predictive analytics, data needs to be collected, con-
verted and stored in a proper format. We propose in this section
a multi-layer architecture for managing open data. After an
overview of this architecture in Section III-A, we discuss data
linking formalism used in this work in Section III-B.

A. Architecture Overview

We consider three primary types of open data: i.e., weather
observation, weather forecast and IoT sensor data. We defined
a multi-layer data management architecture that performs data
collection, conversion and storage as illustrated in Fig. 1.
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Fig. 1. Data Management Architecture

1) Data Sources layer: The top layer of the proposed
architecture introduces the sources of data to be considered in
the entire system. We consider at least two sources of weather
observation and weather forecast (open data) and at least one
source of energy reading (sensor data). There is no restriction
on these sources, they can be a combination of Web services
and devices from the Internet of Things.

2) Data Collectors layer: For each data source, a dedi-
cated data collector is designed. The data is collected in its
individual format and access mechanism, e.g., HTTP requests
or download from FTP servers, then sent to the converter.



3) Data Converters layer: The objective here is to receive
messages from data collectors and convert them to RDF
using predefined ontologies for every data type. Ontologies
are discussed in Section III-B.

4) Data Storage layer: Listeners are created for each type
of RDF which persist the data into the triple store.

B. Linked Data Ontologies

Ontologies constitute formal specifications of shared con-
ceptualisations [13] which, in essence, fosters the reuse of
existing assets. To this end, the available ontologies relating to
sensor readings and weather data should be surveyed before a
choice is made whether to use an existing ontology, extend an
existing or develop a new one.

We reviewed a set of proposed ontologies with respect to
these criteria:

• In use: The ontology should be in use and well
documented for easy learning.

• Relevance: The ontology should correspond to the
conditions experienced by the building. Ontologies
should correspond to surface readings and not for
describing space or marine meteorological conditions.

• Numerical: The ontology needs to be numerical and
precise to be suitable for machine learning. Vague
terms such as “Hot” or “Humid” would lead to in-
terpretation problems and imprecision.

1) IoT Sensor Readings Ontology: We propose the use of
Semantic Sensor Network Ontology (SSN for short) [14] that
is developed by W3C Semantic Sensor Networks Incubator
Group (SSN-XG) for describing sensors and related concepts.

2) Weather Observation Ontology: We recommend using
AEMET Weather Observation Ontology [15] for describing
weather observations. This ontology was developed by the
Ontology Engineering Group at Universidad Politécnica de
Madrid and has been been proven to be effective in large
deployment. Details of its creation and implementation are
available in [16].

3) Weather Forecast Ontology: The recommended ontol-
ogy is the “meteo” ontology developed by Sean B. Palmer, as
it was the only ontology that satisfies the three criteria [17].
The ontology is very simple, listing times a prediction was
made, when the prediction is for and the expected values of
the meteorological phenomena at each time. This ontology also
aligns well with the weather observation ontology from the
Ontology Engineering Group.

IV. SOURCE SELECTION AND PREDICTIVE ANALYTICS

This section discusses the current approach taken for the
selection of data sources from the Internet and sensor networks.

The prediction component is designed according to the
architecture depicted in Fig. 2. It consists of five components:
i.e., Error Comparison module, Re-selection Controller, Source
Selector, error database and the user interface. The database
holds the prediction results over time. It is queried at intervals
by the re-selection controller to determine how well the model
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Fig. 2. Source Selection and Predictive Analytics Architecture

is performing. The user interface is the actual consumer of
the predictions made by the system. It informs users how the
system is performing, showing information about the weather
sources being used, predictions for the near future, the current
power use, and the historical error of the system. As we
propose to design an autonomic system, there is no opportunity
or necessity for human input through the interface.

A. Error Comparison Module

The error comparison module makes predictions of power
consumption which can be queried by any interested parties
(e.g., the UI). The predictions are held for later comparison
with the actual power use. Predictions are also made using
the current conditions and compared with the current power
readings as an indication of the current performance of the
system and to identify when the power use is unusually high
and investigate if actions need to be taken. Additionally, pre-
dictions are compared with actual power readings to generate
an error percentage, which is then displayed in the UI and sent
to the Re-Selection controller for analysis and storage.

Please note that we use the Mean Absolute Percentage
Error (MAPE) and Root Mean Squared Error (RMSE) as error
indicators.

B. Re-selection controller

The re-selection controller is responsible for controlling
when to select the sources used for prediction. Re-selects
involve building many prediction models, which is costly and
time consuming, so trade-offs should be made between the
frequency of re-selections and maintaining the best prediction
model possible. We suggest to use hard limits of 15 minutes
and one month for the upper and lower bounds of the re-select
interval, but the exact value interval should be kept dynamic.
The criteria for re-selections are shown in Table I and discussed
further below.

1) Timed error check: is done by checking the recent per-
formance against the expected performance of the prediction
model. This check is for long term trends in the data set. Error
checks are less costly than builds so they happen on a more
frequent basis than timed builds. The error check becomes



TABLE I. SOURCE RE-SELECTION CRITERIA

Reasons to
re select the
sources used

Reasoning How performed Autonomic
characteristic
addressed

Timed error
checks

Checking if the pre-
diction model has be-
come less accurate.

Query the inter-
nal error DB for
the sources being
used.

Self-optimising
Self-healing

Timed builds
(regardless of

errors)

Data collected may
allow a more accu-
rate prediction model
than is currently being
used.

Send flag to re-
select

Self-optimising

Very high
error in the

incoming
stream

May Indicate a fail-
ure in a sensor or data
source.

Short-term Error
check

Self-healing

New source
event received

New source may be
more accurate than
existing sources.

Send flag to re-
select

Self-configuring
Self-optimising

more frequent every time the error is returned is too high and
less frequent when the error found is under the acceptable
threshold. Changeable conditions make it check more often to
include the newest and most relevant data and prevent data
aging. The error check is for 25% of the time the prediction
model is in place, so that the newest data is given high priority.

The error check uses Student’s t-distribution to deter-
mine when the mean error is too high. It does this by
checking that the average error is lower than a threshold
computed using: Threshold = (expectedMAPE) + 0.674 *
(standarddeviation).

During the evaluation of this module, we found that this
equation corresponds to a 75% one-tailed test, i.e. 75% of
predictions should be lower than this error %. The 0.674 figure
is valid for more than 120 data instances, which corresponds
to 30 hours of data. e.g., if mean error is 7.819% and the
standard deviation of the error is 6.411%, the threshold would
be: Threshold=( 7.819)+ 0.674*(6.411)= 12.14.

2) Timed Build: is for the initial implementation phase
of the system. It addresses the potential for improvement of
the prediction model, whereas the error checking prevents
degradation of the quality of predictions. The timed interval
begins at 15 minutes and increases by 50% every time a re-
select flag is sent due to the time interval being exceeded.
The timed interval between re-selections is reset if a re-select
message is sent due to an error check or a new source detected.

3) High error detected: criteria checks for deteriorations in
the quality of the predictions such as a failure of a data source
or other error. This uses the previous formula, with 10% of
the time the prediction model is in place: ( expected MAPE)
+ 2*(standard deviation).

4) New source detected: is activated if a listener picks up a
weather observation from a new source. This adds the source
to the pool of available options sooner than otherwise waiting
for re-select cycle and would be very useful if a new dataset
was added to the triple store in bulk with the addition of a
new source.

C. Source selector

This component evaluates the sources and builds a predic-
tion model from the best available IoT and open data sources.

It then sends a SelectionResult object containing the prediction
model, sources to be used, MAPE, RMSE, and the time it was
created.

The main pillar of this component is the machine learning
algorithm that it uses. We identified a set of requirements
for choosing the right machine learning algorithm. These
requirements are listed below in descending order, from highest
to lowest priority.

• Reasonable accuracy: The model should generate ac-
curate predictions.

• Quick prediction model generation: The model should
be quickly generated.

• Work well with little data: The system should be able
to be deployed and quickly make accurate predictions.
This requires the system to not over-fit to the training
set and make drastically incorrect predictions.

• Work well with nominal and numeric inputs: Both
nominal and numeric data will be used as inputs and
need to be handled by the prediction model.

• Generalisation outside of the available training data:
This is important as the prediction model will be used
in a real-time system where data encountered will
often be outside the range of data in the training set.

• Low configuration: Low configurations are required
for a portable system.

• Low pre-processing of data: Pre-processing of the data
requires a skilled user to setup. This is often automated
when using a software suite.

• Give insights into the factors influencing the pre-
diction: Dependency analysis is generated for user
information and understanding.

With respect to these requirements, we carried out a
comparison of the common machine learning algorithms found
in the literature in order to chose the most suitable one. The
comparison is shown in Table II. The performance of these
algorithms is discussed in Section VI-C.

The source selector needs to be scalable and efficient in
its operation. The technical challenges this module faces are
high memory use, processing time and latency. As the system
generates multiple prediction models using training sets that
potentially can span a very large time, care is required to drop
references to datasets as soon as they are not needed so garbage
collection and memory freeing can take place.

The processing time should be kept low by selecting
sources with a greedy-type method. Evaluation of data sources
is initially done over a large number of sources with small
datasets and changes to more comprehensive evaluation for
fewer sources. As such, reduced effort is spent on poor data
sources. Latency (from queries to a remote data store) is
addressed by only querying the triple store for data that is
necessary and reducing duplicate queries where possible. Pre-
diction models are built using the following attributes; power
reading, time, day of week, temperature, pressure, humidity,
wind speed, and wind direction.



TABLE II. COMPARISON OF MACHINE LEARNING ALGORITHMS

Multiple linear re-
gression

Artificial Neural network Regression tree Kernel regression analysis Support vector machine

Gives insight into
input importance

Yes No (sensitivity analysis possible [8]) Yes (tree shows which vari-
ables are important)

Yes Yes

Over-fitting pre-
vention

Not prone to over fit-
ting

Methods available Pruning to stop over fitting
may be required

Not prone to over fitting Not prone to over fitting

Ease of imple-
mentation

simple Requires manual tuning of nodes and
layers

simple to understand and
implement

Moderate Moderate - standardised
implementations exist

Computational
cost

low Typically high. Depends on training
function

low Depends on training func-
tion

High on large data, scales
O(n2) to O(n3) (adap-
tations available[18])

Other benefits Simple and quick De-facto solution for regression on
non-linear data. Extensive literature

Simple and quick works well outside of train-
ing data range- smooth ker-
nels

works well outside of
training data

Disadvantages Poor with non-linear
relationships

Prediction outside of training data
can be drastically incorrect (correc-
tions exist for this). Unimportant in-
puts may worsen predictions.

Predictions not in a contin-
uous range-binned values

needs normalizing of input
data

needs normalizing of in-
put data

V. TECHNOLOGY CHOICES AND DEPLOYMENT

A. Open Data Management

1) Data Collectors: For the sensor data collectors, we used
existing data collectors [19] in the same settings. However,
this work focuses more on developing data collectors for open
weather data that query web addresses and receive back XML
or JSON objects. The collected data is then broadcast to be
further enriched. The data collectors developed for this work
are:

• NUIG Weather Station Collector Weather is
recorded as a CSV file onto an ftp server (in campus).
A runnable Jar file queries this every minute and
publishes the result as CSV to the JMS server.

• OpenWeatherMap Station Collector This station is
not a physical station, but is estimation from the fore-
casting model made by OpenWeatherMap.org, which
is then corrected with readings from other weather
stations. This is accessed with an http request to a Json
API every minute. The result is parsed and forwarded
as a CSV text message to the JMS server.

• YR.no Forecast Collector A request is sent to the
correct URL and a forecast is returned as Json. The
result is parsed and forwarded as a CSV text message
to the JMS server. As the Forecasts are created ap-
proximately every 12 hours, we decided to query this
service every 6 hours.

• Ham Weather Forecast Collector Similarly to the
yr.no generator, the Ham Weather Collector publishes
new forecasts every 6 hours. The API in this case
returns XML data which is parsed using a SAX feed
parser.

2) Data Converters: The data converters receive CSV data
and convert to RDF/XML using templates according to the
chosen ontologies. The ontologies are validated using the W3C
online validation service 1.

3) Data Storage: We use Virtuoso 2 a triple store. For each
type of data, there is a runnable Jar with a JMS Listener for
data storage. On receiving the RDF data it persists it to the
appropriate Virtuoso graph.

1http://www.w3.org/RDF/Validator/ , accessed on: 06/06/2014
2http://virtuoso.openlinksw.com/

B. Source Selection and Predictive Analytics

We discuss, in the following, the development choices that
we made for optimal system configuration.

1) Reduction of sources: In order for the system to be
quick, scalable and memory efficient, a greedy method is used.
Prediction models are built for an increasing period of time,
starting with the most recent data available. Poorly performing
data sources are eliminated in rounds, with a number of sources
eliminated each time.

Predictions models are built for all sources initially using
one day data. The dataset size is doubled for every subsequent
iteration. Datasets are randomised and split into training and
tests sets in the ration 90:10, and are judged on the RMSE
found in the test set. Options for reducing the number of
sources in each iteration could have been a fixed percentage
or for fixed learning time (which would aid scalability). These
would have implications for accuracy but were ultimately not
tested due to a lack of available appropriate sources.

2) Data set size limits: When the data sources are reduced
to two, more data is added until the RMSE is no longer de-
creasing. Due to the randomisation of training and test datasets,
this may give less accurate results with small datasets. This will
be counteracted with small datasets improving rapidly past one
day.

3) Forecast selection: As the prediction model is built
using data from a weather station, a forecast source should
provide weather predictions as close to values recorded by the
selected station as possible. This is calculated with a linear
correlation of data from each forecast source to the selected
weather station using Pearson correlation. However, a weighted
forecast selector would be better such as that implemented in
[6], [20].

4) Memory use: The prediction model generator was tested
on two machines, one with 8Gb memory and one with 2Gb
memory. With the 8Gb system, the prediction model gener-
ator used 1Gb memory. On the 2Gb system approximately
200Mb memory was used. Informal tests did not indicate that
additional memory allocation was necessary as the running
time was roughly similar. The model generation is also single
threaded as building multiple models at once would increase
memory usage. With total running time being less than one
minute for a week data for two weather stations, multithreading
was not further investigated.



5) Machine Learning: We decided to use a third party
library instead of developing and testing an algorithm from
scratch. This makes use of the work and experience of spe-
cialist groups with thoroughly tested solutions and allows for
easy comparison between algorithms. The options for this
include native java libraries and libraries in other languages
via wrappers. The WEKA Machine learning software set is
selected because of its simple API and its active community.
WEKA is maintained by the University of Waikato, New
Zealand [21].

C. User Interface

The UI is implemented using the GWT client side tools.
The data on the page is updated using timed remote pro-
cedure calls to the error comparison module. Fig. 3 shows
the Interface of the system. The top row contains a graph
of the current power consumption and what the prediction
model would predict for the current conditions. This gives a
rough indication of the performance of the prediction model
and gives confidence to users. Also in the top row are the
sources currently being used for predictions and details about
the prediction model, such as the time it was created and the
MAPE. The second row shows the predictions for three, six
and twelve hours in the future and beside that, the current
weather conditions. The bottom row shows the error rates for
the three, six and twelve hour predictions.

Fig. 3. The User Interface of the System

VI. EVALUATION AND DISCUSSION

The proposed approach has been tested on a real world
use case realized in the Digital Enterprise Research Institute
(DERI). The building has been retrofitted with energy sensors
to monitor the consumption of power within the building.
In total there are over 50 fixed energy consumption sensors
covering various spaces of the building along with over 20
mobile sensors for devices, light and heaters consumption. A
building-specific aspect of the dataspace has been presented in
[22] with a sensor network-based situation awareness scenario.

We run three experiments for evaluating the autonomous
aspect of the designed system as well as the machine learning
algorithms.

A. Experiment 1 - Initiation of the System

The first experiment investigates the accuracy of the system
after initial installation, i.e. with no historical weather or
electrical power data. Errors in the predictions vs. actual power
readings is observed over time (errors for the three, six and
twelve hour-ahead predictions). Due to space limit, we discuss
here only the three hour-ahead predictions plotted in Fig. 4.

Fig. 4. Three hour prediction error vs. time

It is quite obvious that the system would provide predic-
tions with high error rate at its initiation as there is not enough
historical data for creating an accurate prediction model. This
is shown on Fig. 4 by the first high error rate between 21st and
22nd of August. In addition, high error rates were observed
around midnight on the 22nd of August. This corresponds the
“DayOfWeek” attribute newly introduced, as only one day was
in the training set at that point, the prediction for a new day
was not handled well by the prediction model. Predictions for
the new day hovered around 0%, and due to high percentage
errors are calculated, it caused errors percentages in the 1000s.
Errors quickly fell when the training set was updated with data
points from the new day.

During testing there was an error with the messaging server
connection for sending errors to the Build Trigger between
5am 22/08/13 and 10am 23/08/13 which caused the almost
stable error rate during those days (no new data, no new
prediction model). Power readings and weather observations
were still collected during this time and the timed builds of
the prediction model were still in effect.

The error rises on the 24th of August due to encountering
the first non-working day (Saturday). On non-working days,
the power consumption is lower and varies less than days when
the building is at normal capacity.

After reducing over the weekend, the error % rose on
Monday the 26th as the prediction model adapts to a working
day after two non-working days.

B. Experiment 2 - Partial Failure of a Weather Station

Between the 23/08/2013 16:24 and 26/08/2013 18:11, the
Data source selected for making prediction models was split



between the NUIG weather station and the OpenWeatherMap
weather API in the ratio 64:36. This shows that the data taken
from the station in very close proximity to the building was
slightly more preferable to the data from the weather API,
though both are quite similar.

For this experiment, the system was running for 12 days
to reach a steady error rate and settle on weather sources. The
weather station being used for prediction model generation
was the NUIG weather station and had remained that way for
several days. The data collector for the NUIG weather station
was altered to provide 0.0 for all temperature readings and the
time for the other weather station to be selected was measured.
The temperature reading is chosen to be altered as the literature
shows that temperature is one of the strongest influences for
Short-Term Load Forecasting [6], [20].

TABLE III. EVENT LOGGING DURING THE EXPERIMENT

Data and Time Event
21/08/13 12:00 Fault introduced.
21/08/13 14:28 Re-selection occurred, NUIG weather station still used.
21/08/13 15:47 Switched to the other available weather station and maintained

selecting it for future prediction models.

Table III reports on the time and date of the events that were
observed during this experiment. We notice that the system
took almost 4 hours for the prediction models to be built
from an alternative weather observation source after a fault
was incurred. In this time, a re-selection occurred where the
source with the induced error was still used as the basis for the
prediction model. This could be due to the randomisation of
the data sets being used or despite there being a small amount
of erroneous data, it remained better overall at that time.

C. Experiment 3 - Machine Learning Algorithms Testing

Four Machine Learning algorithms in WEKA [21] were
tested for short (1 week) and long term data sets (five weeks).
The datasets were for building mains incoming power and the
weather observations of the NUIG weather station. For both
datasets, the training set comprised of 66% of the available
data and the remainder was used as the test set for evaluation.
The data sets used for the testing contained the same attributes
as the implemented system i.e. 15 minute averages of power
reading, time, day of week, temperature, pressure, humidity,
wind speed, and wind direction. The datasets were randomised
and each experiment was performed three times with average
values taken. Unless stated, all configurations (see Table IV)
are the defaults chosen by developers of the WEKA library
ver. 3.7.3.

TABLE IV. ALGORITHM CONFIGURATIONS IN WEKA FOR TESTING

Config. 1 SMOReg. The WEKA implementation of a support vector machine for
regression.

Config. 2 One hidden Layer back propagation ANN with default WEKA values.
Config. 3 Two hidden layer back propagation ANN with default WEKA hidden

layer one and 10 nodes in hidden layer two.
Config. 4 Linear Regression. Default WEKA implementation for multiple linear

regression.

The result of the evaluation of the machine learning al-
gorithm using short and long term data sets are respectively
shown on Table V and VI. We notice from these tables that
the Neural Networks, though more accurate, were far slower
than the other two learning algorithms, and were not used

TABLE V. MACHINE LEARNING TESTING RESULTS FOR ONE WEEK
[DATASET SIZE= 672, TRAINING DATA SIZE= 443, TEST DATA SIZE= 229].

Mean
Ab-
solute
Error
(kW)

RMSE
(kW)

Time (s) Corre-
lation
coeffi-
cient

Config 1 (SMOReg) 5.3638 6.9759 0.851 0.6233
Config 2 (1 Layer ANN) 2.7606 3.6242 47.004 0.9158
Config 3 (2 Layer ANN) 3.0473 4.1506 50.842 0.8961
Config 4 (Linear Regression) 4.8586 5.9283 0.759 0.7396

TABLE VI. MACHINE LEARNING TESTING RESULTS FOR 5 WEEKS
[DATASET SIZE= 3298, TRAINING DATA SIZE= 2176, TEST DATA SIZE=

1122].

Mean
Ab-
solute
Error
(kW)

RMSE
(kW)

Time (s) Corre-
lation
coeffi-
cient

Config 1 (SMOReg) 4.6755 6.5965 32.4 0.8054
Config 2 (1 Layer ANN) 3.3332 4.5841 229.7 0.9162
Config 3 (2 Layer ANN) 3.7566 4.7279 247.0 0.9221
Config 4 (Linear Regression) 4.7579 6.0173 2.4 0.8396

in the system. The Linear regression and SMOReg took ap-
proximately the same amount of time, with Linear Regression
being more accurate. This may be due to the homogeneity
of the summer dataset not presenting non-linear trends. For
the implemented system, SMOReg was chosen due to the
documented ability to handle non-linear and data outside of
the training set well, despite the inferior results from testing.
The ANNs were initially experimented on hourly power and
weather readings for 3 months from October to December,
where different combinations of hidden nodes were tested.
During this testing, the second hidden layer with 10 nodes was
found to improve the RMSE by 1% over the single layer ANN.
This improvement did not carry over to the more granular data
in the real system, where adding the second decreased the
accuracy of the system.

VII. RELATED WORK

Zavala et al use a numerical weather prediction model to
pre-empt weather conditions and adjust heating/cooling based
on the thermal resistance and thermal inertia of a building
[5]. The framework proposed is based on the solution of
a stochastic dynamic real-time optimization with a single
weather data source.

Beccali et al use a recurrent ANN to hold the values of the
hidden layer for the next time step [6] when predicting house-
hold energy consumption. Yang et al compare periodic training
of ANNs with all accumulated data against ANNs trained
on a sliding window of 20 days, finding the sliding window
method to perform better over real data of the consumption of a
building chiller [7]. Even though they found the smaller sliding
window training set contributed to less processing overhead,
our solution requires less data for providing acceptable results.
Ismail et al compared ANNs with new methods for updating
the training set [8] with large data. They used an accumulative
training set, growing from the initial three months data. The
sliding windows were 3, 4 and 5 months. The authors note the
5 month window yields the lowest RMSE, but they recommend
the 3 month window as “the amount of data is adequate to train
the model and predict accurately”.



Penya et al compare day-ahead power use in non-residential
buildings for several algorithms, finding an auto regressive
time series algorithm be most accurate in predicting day- ahead
hourly electricity. They then used the same algorithm for four,
five and six days ahead, finding the Mean Absolute Percentage
Error (MAPE) to increase from 9.53% to 11.69%, 11.54% and
12.32% respectively [9].

To conclude, with respect to the evaluation of data sources,
most research used just one source of weather data for short-
term load forecast without assessment. Additionally, for real-
time systems with continuous improvement, the majority of
research used large static historical datasets for their testing
while our approach does not require historical data.

VIII. CONCLUSION

We proposed in this paper an architecture for evaluating
open data sources for real-time predictive analytics. This
architecture was developed and tested on a real world case.
The system is found to be achieving its goals satisfactorily.
Experiment 1 shows that the system complies with the re-
quirement of self-configuration and experiment 2 shows that
the system complies with the goal of self-healing.

Experiments were conducted over summer period, with
ambient temperatures within the human comfort zone (re-
ducing the need for extra heating/cooling) hence the weather
dependence may have been reduced compared to times when
heating is necessary, allowing a linear combination of the time
segments to approximate power use of the building.

The choice of best data source changed frequently in the
running system. This could be due to the randomisation of the
datasets for learning and testing in each case. Larger datasets
would reduce the issue of individual points affecting the chosen
source, but these larger datasets would also be more costly
to process. As Experiment 2 shows, there was a slight bias
towards the weather station that was directly on campus, which
is expected.

As part of our future work, fully autonomic behaviour (i.e.
specifying goals and the system managing itself) could be
achieved with improvements in the Internet of Things. For
example, searching for data sources was based on an exist-
ing work, but the Linked Data Web would enable machines
discover data in an autonomic manner.

Higher accuracy of the ANNs tested was countered by
large increase in computational cost over other algorithms.
Methods for reducing the time taken for creating ANNs could
be investigated in future, such as hybrid training schemes.

In the implemented system, bank holidays and other non-
working weekdays would be treated as a regular working day
and would consequently cause large errors. Web services for
determining bank holidays were investigated for future work
but ultimately not implemented in the current iteration.
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