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Abstract

This work introduces Distributional Relational Net-
works (DRNs), a Knowledge Representation (KR)
framework which focuses on allowing semantic approx-
imations over large-scale and heterogeneous knowledge
bases. The proposed model uses the distributional se-
mantics information embedded in large text/data cor-
pora to provide a comprehensive and principled solu-
tion for semantic approximation. DRNs can be applied
to open domain knowledge bases and can be used as a
KR model for commonsense reasoning. Experimental
results show the suitability of DRNs as a semantically
flexible KR framework.

Introduction

Relational and logical models provide an expressive system
for representing concepts, objects, their attributes @sd-a
ciations. In addition to the representation of conceptbal a
stractions, these models provide formalized definitions fo
operations such as querying and logical inference.

Despite their ability to provide an expressive and princi-
pled representation, existing models have practical &imit
tions for delivering a knowledge representation (KR) frame
work which is able to cope with conceptual model het-
erogeneity, inconsistency, contextual complexity, vagpss

and ambiguity. These requirements become present when

the models start to move outside the controlled environment
of domain specific and manually created models, moving in
the direction of large-scale open domain models.

To provide additional flexibility and cope with variations
in conceptualizations, most KR approaches today depend
on the explicit addition of statements and rules to the KB.
These statements and rules can automatically materialize
new statements in the KB under alternative conceptualiza-
tions using a deductive reasoning model. Under this perspec
tive the ability to provide a KB which is able to cope with
all possible conceptual models for all possible KB users de-
pends on the following assumptions: (i) on the ability of the
KB designer to anticipate all possible conceptual models,
(ii) on the ability to generate a large set of statements and
rules to cope with all possible conceptual models, (iii) ivhi
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keeping consistency and scalability. This KR model does not
scale to large KBs.

The lack of properties such as a principled mechanism of
semantic approximation which is not dependent on the con-
struction of a large-scale consistent commonsense KB, and
the ability to scale to large volume knowledge bases proved
in practice to be a strong limitation of most of the existing
KR frameworks.

More recentlydistributional semanticfl] have emerged
from the empirically supported evidence that models ddrive
from statistical co-occurrence patterns on large cobeti
of text can provide simplified but comprehensive seman-
tic models. Distributional semantic models can be automat-
ically built from large corpora, not requiring manual con-
struction effort on the creation of the semantic model.

With the availability of large volumes of text on the Web,
comprehensive distributional semantic models can be. built
Distributional semantic models also providejaantitative
perspective on semantics, which can be used in the process
of semantic matching and approximation. Additionally,-dis
tributional semantic models are associated with vectarespa
models (VSMs), where existing dimensional reduction ap-
proaches or inverted list indexes can provide the scatabili
for the instantiation of large-scale distributional madel

While theoretical and applied aspects of distributional se-
mantic models (DSMs) have been investigated in the Com-
putational Linguistics and Information Retrieval circlése
interaction between DSMs and KR models is not yet fully
explored.

This work analyzes the complementary aspects between
distributional semanticandrelational/logic-based KR mod-
els Distributional Relational Network¢DRNSs) are intro-
duced as a KR framework which unifies these two per-
spectives, where the relational/graph structure provides
fine-grained semantics and it is complemented by the dis-
tributional model, which works as krge-scale coarse-
grained associational structur®RNs provide a principled
and built-in mechanism to include semantic approximation
in the process of querying and reasoning over KBs, allow-
ing the embedding and usage of large-scale unstructured and
structured commonsense information into the querying and
reasoning process.

The property of embedding large-scale conmmonsense
information into KBs allows a common semantic integra-



tion ground between KBs with different conceptual models. framework should be able to address the following require-
The proposed framework can be applied to any KR model ments:

which can be formulated as a labelled graph structure, giv- 1 - apjlity to cope with lexical expression differenceon-
ing generality to its application over different KR models. cepts with strongly related meanings may have differ-

. . ent lexical expressions. For example, the predicate ‘is

Motivational Scenario husband of’ is a gender specific expression of the con-
Open domain/commonsense reasoning is an important part cept ‘spouse’. Lexical variations can cross grammatical
of Al application scenarios such as question-answering sys  classes’ boundaries: the closest term mapping to a verb in
tems and it demands approaches which can cope with the in- a query may be expressed as a noun KiJa.
trinsic contextual semantic complexity and KB scale. Every 5 - apjlity to cope with abstraction level differenceiffer-
knowledge or information artifact (from unstructured text ences in the core concept structures between the database
structured knowledge bases) maps to an implicit or explicit representation and the concepts used in the query. For
set of user intents and semantic context patterns. The mul- example an attribute named ‘is an Actress’ and another
tiplicity of contexts where open domain and commonsense  predicate/attribute ‘is an Artist’ express two differeats
knowledge bases can be used, defines an intrinsic semantic \yhere the former set is contained in the second. In some
heterogeneity scenario for these uses. , cases the abstraction level expressed in the query can be

Different levels of conceptual abstraction or lexical ex- different from the dataset.

pressions in the representation of relations and entities a N . . .
examples where a semantic gap can strongly impact the3: Ability to cope with compositional/structural differersce

inference process. This section introduces the challenges Information may be organized in different KB structures.
which are the focus of this work by using a concrete ex- The attribute ‘is an Actress’ can be expressed as a unary

ample. attr_ibute or can be ex_pressed as the binary relation ‘occu-
Consider that an user wants to ask the quély the pation’ and an associated entity/value ‘Actress’.
mother in law of Stanley Robinson’s son an artiste' a 4. Comprehensive commonsense KBe ability to semanti-
given knowledge base Kb formed by the following set of cally interpret and approximate information is largely de-
facts and rules: pendent on the volume of commonsense knowledge avail-
childO f (katehudson, goldiehawn). able. The KR should have an associated comprehensive

childO f (chrisrobinson, stanleyrobinson). commonsense KB and should be able to use common-
spouse(katehudson ’chrisrobz’nson). sense information in the query and reasoning process.

isanActress(goldiehawn) 5. Performance and Scalabilitythe KR framework should
motherInLaw(A, B) < spouse(B, C) A childO f(C, A) allow approximations for query and reasoning to scale

meaning that Kate Hudson is the child of Goldie Hawn,  OVerlarge KBs.

Chris Robinson is the child of Stanley Robinson, Kate Hud- L .

son is the spouse of Chris Robinson, Goldie Hawn is an ac- Distributional Semantics

tress and A is mother in law of B when the spouse of B is a Distributional semantics is built upon the assumption that

child of A. the context surrounding a given word in a text provides im-
Suppose that the wuser is not aware of the portantinformation about its meaning [1]. A rephrasing of

terms and concepts inside Kb, while querying it: thedistributional hypothesistates that words that occur in

?—s0n0O f(X, stanleyrobinson) AmotherInLaw(Y, X)A similar contexts tend to have similar/related meaning [1].

isanArtist(Y). Distributional semantics focuses on the construction of
The inference over Kb will not materialize the answer a semantic representation of a word based on the statisti-

X = chrisrobinson andY = goldiehawn, because de- cal distribution of word co-occurrence in texts. The avail-

spite the statement and the rule describing the same subdo-ability of high volume and comprehensive Web corpora

main, there is no precise vocabulary matching between the brought distributional semantic models as a promising ap-

guery and the Kb. proach to build and represent meaning. Distributional se-
In order for the reasoning to work, ttsemantic approx- mantic models are naturally represented \Ilgctor Space

imation of the following terms would need to be estab- Models(VSM), where the meaning of a word is represented

lished: 'sonOf’ ~ 'childOf’, ’isanArtist’ ~ 'isanActress’. by aweighted concept vector

To close thesemantic/vocabulary gam a traditional de- However, the proper use of the simplified model of mean-

ductive knowledge base it would be necessary to increase ing provided by distributional semantics implies underdta
the size of the Kb to such an extent that it would contain ing its characteristics and limitations. In distributibrse-
all the facts and rules necessary to cope with any potential mantics differences of meaningre mediated bdifferences
vocabulary difference. Together with the aggravation ef th  of distributionin a reference corpora. As a consequence,
scalability problem, it would be necessary to provide aprin  distributional semantic models allow tligiantification of
cipled mechanism to build such a large scale and consistent the amount of association or difference in meaning between
set of facts and rules. linguistic entities. This can be used to quantify geman-
These are limitations of most of the existing KR ap- tic relatedness between wordghe intuition behind this ap-
proaches. To cope with semantic approximation, a KR proach is that two terms which are highly semantically re-



lated in a distributional model are likely to have a close-(im  text can be defined by different spatio-temporal locality cr
plicit) relation. Note that distributional semantic moslebn teria (in a natural language text a context can be a sentence,
be specialized to exclude certain types of semantic related paragraph or document) (Figure 1).
ness such as antonyms or relations in a negation context. The  Distributional semantic models can be represented as a
computation of semantic relatedness between pairs of words vector space, where each dimension represents a context
is one instance in which the strength of distributional niede identifier or a co-occurring symbol(word) in the corpus. The
and methods is empirically supported [2]. distributional vector space supports the definition of a ge-
There are three core elements at the center of the Dis- ometric interpretation for each symbol in relation to other
tributional Relational Network (DRN) model: (i) the use of  symbols in the corpus, and provides a principled process for
semantic relatedness measuassaprincipled semantic ap- approximating two symbols (words), which consists in the
proximation operatiorfor queryingand reasoning(Q&R) calculation of a similarity measure between the interpreta
over conceptual and lexical KR models; (ii) the use of dis- tion vectors (e.g. cosine similarity).
tributional semantics to build the semantic relatedness-me A co-occurrence context set, is defined by a set of co-
sures; (iii) the use of a compositional model for querying occurring symbols in a context defined over the corpus. The

and reasoning over the relational structure. distributional interpretatior{[s]] of a symbol s is defined by
integrating all the co-occurrence contexts sets of the sym-
Semantic Relatedness bol and by defining anembership degreassociated with

each co-occurrence context set. Thembership degreis

a function of the co-occurrence frequency in each context
in the corpus and defines a specificity measure by weight-
ing out co-occurrence patterns which are shared among dif-
Ferent contexts sets (e.g. symbol frequency/inverse gbnte
frequency).

Once a distributional space is built for a set of symlfls
new structured and unstructured data can be embedded in the
space using the interpretation reference frame from anothe
reference corpus. Thetomic context-levak defined by the
compositional(syntactic) structure of symbols and can be
used to define eelational structureover symbols, which can
be represented as relational vectorgif the distributional
space.

The concept okemantic relatedneds described [5] as a
generalization oBemantic similaritywhere semantic sim-
ilarity is associated with taxonomic relations between-con
cepts (e.gcar andairplane sharevehicleas a common tax-
onomic ancestor) and semantic relatedness covers a broade
range of semantic relations (e@ar anddriver). Since dif-
ferences in conceptual models can both ctas®nomical
andgrammatical clas®orders, the more generic concept of
semantic relatedness is more suitable to the task of setnanti
approximation over these datasets.

Until recently, resources such as WordNet were used
in the computation of semantic similarity and relatedness
measures. The limitations of the representation present in
WordNet include the lack of a rich representation of non-
taxonomic relations (fundamental for the computation ef se o o
mantic relatedness measures) and a limited number of mod- Distributional-Compositional Models

elled concepts. The availability of large amounts of urstru  piqyripytional semantic models are complemented by com-
tured text on the Web motivated the creation of semantic ositional models which provide principled mechanisms to

relatedness measures based on large text collections us'nglcjompose the meaning of multiple distributional interpreta
distributional semantic models. These measures focus on tion vectors

o oo baSe0 SPproaoiee. Clark & Puman 6] provide & formal descrpion o a
2] 9 9 compositional model of meaning, where distributional mod-
. . . els are unified with a compositional theory of grammati-
g E(_)gn;t)_arat:ve evaluatlonfs t{[(ra]tween V\{{or;jNet-}lgased atf‘d cal types. The approach focuses on the unification of the
'T’ rt" (ljj lonal approac ﬁs or h € cotrr?puta |ontho fstehmadn' 'f. guantitative strength of distributional approaches with t
relaledness measures have snown Ine strengtn ot tne dis rI'compositionality provided by symbolic approaches. The fi-

butional model, reaching a high correlation level with huma nal mathematical structure uses vectors to represent word
assessments [2,4]. meanings, and the tensor product to allow the composition
C . . . of meaning and types. Coecke et al. [7] addresses some of
Distributional Semantics Principles the shortcomings present in the model of Clark & Pulman
In a distributional model, the observation of the reality is [6] proposing a generalized mathematical framework for a
mediated by aeference data corpusvhich captures a set ~ compositional distributional model of meaning.
of observation viewsf the reality under aymbolic repre- Erk & Pado [9] introduce a structured vector space model
sentation schemd&he representation scheme is defined by a which integrates syntax into the computation of word mean-
set of symbols which may be unstructured (e.g. as in natural ing in its syntactic context. Baroni & Lenci [8] propose a
language texts). distributional semantic memory, a graph of weighted links
The relation between objects obeys a locality principle between words which can be specialized to different corpus-
which can be related to thepatio-temporal localitfe.g. de- based semantics tasks. Both works propose models that in-
pendent on the distance of these objects on space and time)duce graphs describing the corpus syntactic relations.
or to acategorical locality where objects are similar in rela- While these compositional models propose the integra-
tion to a set of features. In the corpus, a co-occurrence con- tion of distributional semantics and syntactic modelss thi



work proposes the integration between distributional and space. The semantics of Kb is defined by the vectors in the
relational models, approaching compositionality under th  distributional space used to represent the elements of Kb.
perspective of a semantic representation, exploring the co

nections with KR. Geometrical Model

The DRN space is namédSpacd3]. The T-Spaces a dis-

Distributional Relational Networks (DRNS) tributional structured vector space model which allows the

Distributional Relational Networks (DRN) mergelational representation of the elements of a KB under a distributiona
and distributional representation models in order to allow semantic model.

semantic approximation over existing relational modeis. | The T-Space coordinate systambuilt from a document
the context of this work, a relational model is defined as gjiectionC. The setl'erm — {ky,---,k;}, of all terms

alabelled graphwhere all symbols associated with nodes 5yailable inC is used to define the basiEermi,..
(entities) and edges (attributes/relations) have coomdp
ing elements in aeference data corporgunstructured or
structured data collection used to build the distributiona The set of all distributional concept§oncept —
model). DRNs can be applied to different KR frameworks n
which can be mapped to the generic labelled graph rep- ({:gln’ce {Qt}eargextrac;t?g i;c;m ae:jet[%rzr:]c? d%%rtii)flijesr a\l/cgi;?(:h
resentation, including semantic networks, logical KBs and pte; H oncep PP o Each
relational/Entity-Attribute-Value(EAV) databases. _rgpre_?ents L? co occurrenﬁe hpatterkn mht e corpus.h ac
A DRN embeds the structure defined by relational models L?grt;ﬁ? cc;ccﬁrlrnezs '?h?:tsg[ iISC ustrea(ljc tg (t:ois('i?uncf'?)t(;e\:lvbaegies
in a distributional vector spacs,. Every entity and relation Clonce tt = {?' = } of vectors that spans the
has an associated weighted concept vector representationd. t.bpt.b““f ; b &Sém Fi 1 P
in the distributional concept space. The distributional as Istributional vector spac (Figure 1). .
sociational information embedded in the distributionat-co Thus, the set of contexts where a term occurs define the
cept space is used to semantically complement the knowl- concept vectors associated with the term, which is a repre-

edge expressed in the relational model (Figure 1). The dis- SEntation of its meaning on the reference corpus. Each con-
tributional information is then used to allow approximativ Cﬁpt vector |s”we!ghtid according to the term distribution i

querying/reasoning (Q&R) processes, differently from tvha e corpus, allowing the concept vector space coordinate ba
happens in a relational model, where Q&R processes are SIS to be defined in terms _of a term vector space coordinate
constrained by strict syntactical definitions of entitiesla  PaSiS where each dimension maps to a word in the corpus.

dist Term
relations, and only exact matches allow the Q&R processes S°: & vectoiX € V.5**" can be mapped t&'S™*""" by the
application of the following transformation:

— — .
{kq, -+, k} of unit vectors that spans therm vector
spaceV/ sTerm,

to continue.

Once a knowledge base Kb is embedded in a distribu- ¢
tional space, all the symbols and its associations as well as X = Z omﬂ”?» 1)
the Q&R processes have an associated geometric represen- — e

tation. These processes have an associative nature, \kere t

relational graph is navigated, guided by g@mantic relat- wherev? is the term co-occurrence pattern over a corpus and
ednessnatching between the external user query or reason- «; is a second-order transformation tensor which is defined
ing terms (i.e. thaisers’ semantic inteptThe semantic re- by the set of term vectors of distributional concepts.

latedness measure works asemantic heuristiggguiding

the Q&R process in the direction of the Q&R answer and  pRNs: Linking Relational and Geometrical Models

reconciling the common intent of both conceptual models . .

(the Kb and querying), independent of the vocabulary used In order to obtain an approach that supports an approxima-

to express it. tive semantic Q&R model, we link the relational and geo-
Another important characteristic of DRNs is that they are metrical models so that the geometrical model could enrich

not committed to a particular relational model neither veith ~ @nd ground the semantics of the relational model.

particular distributional model, allowing the combinatiof The first step is to build th&-Space concept spabased

different models. The following subsections detail some of on the reference corpus.

the elements of the DRN model. The second step is to translate the elements of the sig-
natureX = (P, E) of a KB to elements oft’ ST and

Relational Model V. S¥ist The vector representation d?, respectively, in

The relational model has a signatute= (P, E') formed by visterm andV st is defined by:

a pair of finite set of symbols used to represent relatipas ;

P between entities € E. We assume that both elements in ﬁ e wz_)E)‘ for eachp € PV (2
P and E are represented using distributionally meaningful vere {p:p ; L hy b @
descriptors (symbols present in the reference corpus).

The signature is used, in conjunction with a set of opera-
tors to construct a knowledge base Kb. Each element in the ﬁvsdm —{F:P = Z WP, foreachp € P} (3)
signatureX. i, is represented as a vector in a distributional =

o+



and the vector representationof respectively, i/ GTerm
andV S%t is defined by:

t

Eygron={€: ¢ = w
=1

t
va?i, foreache € E} (5)
1=1
wherew$ andw? are defined by co-occurrence weighting
schemé andv¢ ando? are defined by the weighting scheme
over the distributional model.

The third step refers to the translation of Kb atoms into
T-Spaceslements. As each relation and entity symbol has a
vector representation, we can define the vector representa-
tion of a relational atom in the concept vector space by the
following definition.

Definition: Let B, e1 andes be the vector representations,
respectively, op, e; andes. An atom vector representation
(denoted byT) is defined by:(p — &) if p(e1); (P —
ei,e3 — B) if plei, e2).

e
?

ﬁi, for eache € E} (4)

<

Evsdist = {? :

Querying & Reasoning

The embedding of Kb in the distributional vector space al-
lows the definition of a geometric interpretation for the Q&R
processes. The proposed Q&R model usestisine simi-
larity ([3]) as a semantic approximation and navigation oper-
ation in theT-SpaceThe distributional semantic relatedness

Distributional Relational Network (DRN)

T-Spacl

Relational Model Kate Hudson

childOf | /g v/)
/ :spouse

6, ",
Chris Robinson
/
Operations &
Navigational
Model

Stanley Robinson

symbol/term
space

-

- R concept space

semantic relatedness = cos(6) =

Distributional Semantic Model

Reference Data Corpus ﬁ

relational context k
same symbol
-

symbol s

—_—
daughter . child = 0.234

context ¢

-

distribution of symbol
associations

predicate p
constant e

- Observer Il /
Observer |

1

Reality ... achild (plural: children) is a human between ...
...is the third child and only son of Prince ...

... was the first son and last child of King ...

measure can be used to establish an approximate semantic

equivalence between two elements in the context of a given
Q&R navigation step.

Semantic Relatedness A semantic relatedness function
sr o V.§dist 5 7 §dist [0, 1] is defined asr(pi,ps) =
cos(d) = pi.ps. A threshold; € [0,1] could be used to
establish the semantic relatedness between the two vectors
s7(P1,P3) > 1.

Querying & Reasoning: Matching and Navigation The
first element to be resolved in the ordered query, calhed
semantic pivgtnormally is a symbol which represents an
entity. The semantic pivot, as the more constraining elémen

Figure 1: Depiction of a DRN construction and query work-
flow.

In the first iteration,?o € VS9ist the vector represen-
tation of the pivotg), can be resolved to a vecta (Fig-
ure 1). The entity, defines a vector subspace which can be
explored by the next query term (which spans the relations
associated with the entity). The second query tergj can
be matched with one or more relations associated wjth

o =
for examplepo, considering thatr(q’ 1, Po) > 7, wheren

in the query, helps to reduce the search space since just thejs 5 semantic relatedness threshold. The entities assdciat

elements in Kb associated with the pivot at a given itera-
tion are candidates for the semantic matching. Note that the
query sequence is embedded in the vector spag&st, al-
Iovﬂpg E identifx) it with the following sequence of vectors

< q/Oa q,17 Tty q/n >.
Definition: Given a queryq, its entities and relations,
denoted bygqo,q1,...,q, are ordered in a sequence
4,4, -+ ,q, > using a heuristic measure of specificity
hspecificity from the most specific to the less specific, that
iS,Vi € [Oa n]a hspecificity(qg) > hspe(:ificity(q§+1)-

The goal behind this heuristic is to force the reasoning
process to prioritize the hardest constraints in the query,
which normally have the less semantic ambigdity

Yfor example, the term-frequencylinverse document fre-
quency(TF/IDF).

2in practice this specificity measure can be defined by a combi-
nation of grammatical classes weights and TF/IDF.

with p, (for examplee;) are used as new semantic pivots.

At each iteration of the (Q&R) process, a set of semantic
pivots are defined and are used to navigate to other points
in the V.St This navigation corresponds to the reconcil-
iation process between the semantic intent defined by the
qguery and the semantic intent expressed in the KB. The
reconciliation process can be defined as the sequence of

NN TN = N
vectors< (q'1 — P1),(d'2 — P2), ,(d'n — Pn) >
The proposed approximate Q&R process can also be repre-
sented geometrically as the vecters(€ o — Po), (Bo —
€1),....(Pn_1 — €n) > over the T-Space, which repre-
sents the process of finding the answer in the DRN.

Discussion

The quality of the semantic approximation in the Q&R pro-
cess over DRNs is dependent on the quality of distribu-
tional models and on the intrinsic ambiguity of human lan-



same dataset showed achiewrd). recall=0.81 mean avg.

®) N . C precision=0.62andmean reciprocal rank=0.49
',  Keorelational graph ouice i The quality of the selectivity of distributional models suc
' slepwise Inference . .
vector feld S S rection as ESA, as a semantic matching model was evaluated sep-

€2 )
o

arately in [4], achieving avg. p@5=0.732. While ESA pro-
vides a comprehensive semantic model, where the semantic
Jo, " . g relatedness measure can be used as a ranking score [4], it
[ /Bt e does not provide absolute precision. Solutions to circum-
' entity ye . . . . . .
e vent the limitation, which should be present in all distri-
—>k ’,  butional models, include the composition of distributibna
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr e, / models which are more restrictive with more comprehen-
,/kn concept Ck sive approaches, and the application of user disambiguatio
space operations. The quality of the semantic approximation pro-
vides some preliminary indication that DRNs can cope with
requirements 1,2,3,4.

From the scalability and performance perspective, DRNs
can be implemented as adnverted index which can be
segmented into parallel indexes, split by the entities @& th
some Q&R processes may return spurious answers togethergraph' Experiments over DBpeQ|a+YAGO datasets had an
with the relevant answers (as in information retrieval sce- 8’5.30 ms average query execution time Wh'(.:h supports re-
narios). Principled disambiguation and user dialogs epera quirement 5. Additionally, the approach.prowdes a mecha_l-
tors can be defined at each semantic approximation step to nism Wh'.c.h demands no dat'aset qdaptatlon effort, not requir
increase its accuracy. ing specific manual semantic enrichment.
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