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Abstract

This work introduces Distributional Relational Net-
works (DRNs), a Knowledge Representation (KR)
framework which focuses on allowing semantic approx-
imations over large-scale and heterogeneous knowledge
bases. The proposed model uses the distributional se-
mantics information embedded in large text/data cor-
pora to provide a comprehensive and principled solu-
tion for semantic approximation. DRNs can be applied
to open domain knowledge bases and can be used as a
KR model for commonsense reasoning. Experimental
results show the suitability of DRNs as a semantically
flexible KR framework.

Introduction
Relational and logical models provide an expressive system
for representing concepts, objects, their attributes and asso-
ciations. In addition to the representation of conceptual ab-
stractions, these models provide formalized definitions for
operations such as querying and logical inference.

Despite their ability to provide an expressive and princi-
pled representation, existing models have practical limita-
tions for delivering a knowledge representation (KR) frame-
work which is able to cope with conceptual model het-
erogeneity, inconsistency, contextual complexity, vagueness
and ambiguity. These requirements become present when
the models start to move outside the controlled environment
of domain specific and manually created models, moving in
the direction of large-scale open domain models.

To provide additional flexibility and cope with variations
in conceptualizations, most KR approaches today depend
on the explicit addition of statements and rules to the KB.
These statements and rules can automatically materialize
new statements in the KB under alternative conceptualiza-
tions using a deductive reasoning model. Under this perspec-
tive the ability to provide a KB which is able to cope with
all possible conceptual models for all possible KB users de-
pends on the following assumptions: (i) on the ability of the
KB designer to anticipate all possible conceptual models,
(ii) on the ability to generate a large set of statements and
rules to cope with all possible conceptual models, (iii) while
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keeping consistency and scalability. This KR model does not
scale to large KBs.

The lack of properties such as a principled mechanism of
semantic approximation which is not dependent on the con-
struction of a large-scale consistent commonsense KB, and
the ability to scale to large volume knowledge bases proved
in practice to be a strong limitation of most of the existing
KR frameworks.

More recently,distributional semantics[1] have emerged
from the empirically supported evidence that models derived
from statistical co-occurrence patterns on large collections
of text can provide simplified but comprehensive seman-
tic models. Distributional semantic models can be automat-
ically built from large corpora, not requiring manual con-
struction effort on the creation of the semantic model.

With the availability of large volumes of text on the Web,
comprehensive distributional semantic models can be built.
Distributional semantic models also provide aquantitative
perspective on semantics, which can be used in the process
of semantic matching and approximation. Additionally, dis-
tributional semantic models are associated with vector space
models (VSMs), where existing dimensional reduction ap-
proaches or inverted list indexes can provide the scalability
for the instantiation of large-scale distributional models.

While theoretical and applied aspects of distributional se-
mantic models (DSMs) have been investigated in the Com-
putational Linguistics and Information Retrieval circles, the
interaction between DSMs and KR models is not yet fully
explored.

This work analyzes the complementary aspects between
distributional semanticsandrelational/logic-based KR mod-
els. Distributional Relational Networks(DRNs) are intro-
duced as a KR framework which unifies these two per-
spectives, where the relational/graph structure providesthe
fine-grained semantics and it is complemented by the dis-
tributional model, which works as alarge-scale coarse-
grained associational structure. DRNs provide a principled
and built-in mechanism to include semantic approximation
in the process of querying and reasoning over KBs, allow-
ing the embedding and usage of large-scale unstructured and
structured commonsense information into the querying and
reasoning process.

The property of embedding large-scale conmmonsense
information into KBs allows a common semantic integra-



tion ground between KBs with different conceptual models.
The proposed framework can be applied to any KR model
which can be formulated as a labelled graph structure, giv-
ing generality to its application over different KR models.

Motivational Scenario
Open domain/commonsense reasoning is an important part
of AI application scenarios such as question-answering sys-
tems and it demands approaches which can cope with the in-
trinsic contextual semantic complexity and KB scale. Every
knowledge or information artifact (from unstructured textto
structured knowledge bases) maps to an implicit or explicit
set of user intents and semantic context patterns. The mul-
tiplicity of contexts where open domain and commonsense
knowledge bases can be used, defines an intrinsic semantic
heterogeneity scenario for these uses.

Different levels of conceptual abstraction or lexical ex-
pressions in the representation of relations and entities are
examples where a semantic gap can strongly impact the
inference process. This section introduces the challenges
which are the focus of this work by using a concrete ex-
ample.

Consider that an user wants to ask the query ’‘Is the
mother in law of Stanley Robinson’s son an artist?’’ to a
given knowledge base Kb formed by the following set of
facts and rules:

childOf(katehudson, goldiehawn).
childOf(chrisrobinson, stanleyrobinson).

spouse(katehudson, chrisrobinson).
isanActress(goldiehawn)

motherInLaw(A,B)← spouse(B,C) ∧ childOf(C,A)

meaning that Kate Hudson is the child of Goldie Hawn,
Chris Robinson is the child of Stanley Robinson, Kate Hud-
son is the spouse of Chris Robinson, Goldie Hawn is an ac-
tress and A is mother in law of B when the spouse of B is a
child of A.

Suppose that the user is not aware of the
terms and concepts inside Kb, while querying it:
?−sonOf(X, stanleyrobinson)∧motherInLaw(Y,X)∧
isanArtist(Y ).

The inference over Kb will not materialize the answer
X = chrisrobinson andY = goldiehawn, because de-
spite the statement and the rule describing the same subdo-
main, there is no precise vocabulary matching between the
query and the Kb.

In order for the reasoning to work, thesemantic approx-
imation of the following terms would need to be estab-
lished: ’sonOf’∼ ’childOf’, ’isanArtist’ ∼ ’isanActress’.
To close thesemantic/vocabulary gapin a traditional de-
ductive knowledge base it would be necessary to increase
the size of the Kb to such an extent that it would contain
all the facts and rules necessary to cope with any potential
vocabulary difference. Together with the aggravation of the
scalability problem, it would be necessary to provide a prin-
cipled mechanism to build such a large scale and consistent
set of facts and rules.

These are limitations of most of the existing KR ap-
proaches. To cope with semantic approximation, a KR

framework should be able to address the following require-
ments:

1. Ability to cope with lexical expression differences:Con-
cepts with strongly related meanings may have differ-
ent lexical expressions. For example, the predicate ‘is
husband of’ is a gender specific expression of the con-
cept ‘spouse’. Lexical variations can cross grammatical
classes’ boundaries: the closest term mapping to a verb in
a query may be expressed as a noun in aKB.

2. Ability to cope with abstraction level differences:Differ-
ences in the core concept structures between the database
representation and the concepts used in the query. For
example an attribute named ‘is an Actress’ and another
predicate/attribute ‘is an Artist’ express two different sets
where the former set is contained in the second. In some
cases the abstraction level expressed in the query can be
different from the dataset.

3. Ability to cope with compositional/structural differences:
Information may be organized in different KB structures.
The attribute ‘is an Actress’ can be expressed as a unary
attribute or can be expressed as the binary relation ‘occu-
pation’ and an associated entity/value ‘Actress’.

4. Comprehensive commonsense KB:The ability to semanti-
cally interpret and approximate information is largely de-
pendent on the volume of commonsense knowledge avail-
able. The KR should have an associated comprehensive
commonsense KB and should be able to use common-
sense information in the query and reasoning process.

5. Performance and Scalability:The KR framework should
allow approximations for query and reasoning to scale
over large KBs.

Distributional Semantics
Distributional semantics is built upon the assumption that
the context surrounding a given word in a text provides im-
portant information about its meaning [1]. A rephrasing of
thedistributional hypothesisstates that words that occur in
similar contexts tend to have similar/related meaning [1].

Distributional semantics focuses on the construction of
a semantic representation of a word based on the statisti-
cal distribution of word co-occurrence in texts. The avail-
ability of high volume and comprehensive Web corpora
brought distributional semantic models as a promising ap-
proach to build and represent meaning. Distributional se-
mantic models are naturally represented byVector Space
Models(VSM), where the meaning of a word is represented
by aweighted concept vector.

However, the proper use of the simplified model of mean-
ing provided by distributional semantics implies understand-
ing its characteristics and limitations. In distributional se-
mantics,differences of meaningare mediated bydifferences
of distribution in a reference corpora. As a consequence,
distributional semantic models allow thequantificationof
the amount of association or difference in meaning between
linguistic entities. This can be used to quantify theseman-
tic relatedness between words. The intuition behind this ap-
proach is that two terms which are highly semantically re-



lated in a distributional model are likely to have a close (im-
plicit) relation. Note that distributional semantic models can
be specialized to exclude certain types of semantic related-
ness such as antonyms or relations in a negation context. The
computation of semantic relatedness between pairs of words
is one instance in which the strength of distributional models
and methods is empirically supported [2].

There are three core elements at the center of the Dis-
tributional Relational Network (DRN) model: (i) the use of
semantic relatedness measuresas aprincipled semantic ap-
proximation operationfor queryingand reasoning(Q&R)
over conceptual and lexical KR models; (ii) the use of dis-
tributional semantics to build the semantic relatedness mea-
sures; (iii) the use of a compositional model for querying
and reasoning over the relational structure.

Semantic Relatedness
The concept ofsemantic relatednessis described [5] as a
generalization ofsemantic similarity, where semantic sim-
ilarity is associated with taxonomic relations between con-
cepts (e.g.car andairplanesharevehicleas a common tax-
onomic ancestor) and semantic relatedness covers a broader
range of semantic relations (e.g.car anddriver). Since dif-
ferences in conceptual models can both crosstaxonomical
andgrammatical classborders, the more generic concept of
semantic relatedness is more suitable to the task of semantic
approximation over these datasets.

Until recently, resources such as WordNet were used
in the computation of semantic similarity and relatedness
measures. The limitations of the representation present in
WordNet include the lack of a rich representation of non-
taxonomic relations (fundamental for the computation of se-
mantic relatedness measures) and a limited number of mod-
elled concepts. The availability of large amounts of unstruc-
tured text on the Web motivated the creation of semantic
relatedness measures based on large text collections using
distributional semantic models. These measures focus on
addressing the limitations of resource-based approaches by
trading structure for volume of commonsense knowledge
[2].

Comparative evaluations between WordNet-based and
distributional approaches for the computation of semantic
relatedness measures have shown the strength of the distri-
butional model, reaching a high correlation level with human
assessments [2,4].

Distributional Semantics Principles
In a distributional model, the observation of the reality is
mediated by areference data corpus, which captures a set
of observation viewsof the reality under asymbolic repre-
sentation scheme. The representation scheme is defined by a
set of symbols which may be unstructured (e.g. as in natural
language texts).

The relation between objects obeys a locality principle
which can be related to thespatio-temporal locality(e.g. de-
pendent on the distance of these objects on space and time)
or to acategorical locality, where objects are similar in rela-
tion to a set of features. In the corpus, a co-occurrence con-

text can be defined by different spatio-temporal locality cri-
teria (in a natural language text a context can be a sentence,
paragraph or document) (Figure 1).

Distributional semantic models can be represented as a
vector space, where each dimension represents a context
identifier or a co-occurring symbol(word) in the corpus. The
distributional vector space supports the definition of a ge-
ometric interpretation for each symbol in relation to other
symbols in the corpus, and provides a principled process for
approximating two symbols (words), which consists in the
calculation of a similarity measure between the interpreta-
tion vectors (e.g. cosine similarity).

A co-occurrence context setcn is defined by a set of co-
occurring symbols in a context defined over the corpus. The
distributional interpretation[[s]] of a symbol s is defined by
integrating all the co-occurrence contexts sets of the sym-
bol and by defining amembership degreeassociated with
each co-occurrence context set. Themembership degreeis
a function of the co-occurrence frequency in each context
in the corpus and defines a specificity measure by weight-
ing out co-occurrence patterns which are shared among dif-
ferent contexts sets (e.g. symbol frequency/inverse context
frequency).

Once a distributional space is built for a set of symbolsS,
new structured and unstructured data can be embedded in the
space using the interpretation reference frame from another
reference corpus. Theatomic context-levelis defined by the
compositional(syntactic) structure of symbols and can be
used to define arelational structureover symbols, which can
be represented as relational vectors (r) in the distributional
space.

Distributional-Compositional Models
Distributional semantic models are complemented by com-
positional models which provide principled mechanisms to
compose the meaning of multiple distributional interpreta-
tion vectors.

Clark & Pulman [6] provide a formal description of a
compositional model of meaning, where distributional mod-
els are unified with a compositional theory of grammati-
cal types. The approach focuses on the unification of the
quantitative strength of distributional approaches with the
compositionality provided by symbolic approaches. The fi-
nal mathematical structure uses vectors to represent word
meanings, and the tensor product to allow the composition
of meaning and types. Coecke et al. [7] addresses some of
the shortcomings present in the model of Clark & Pulman
[6] proposing a generalized mathematical framework for a
compositional distributional model of meaning.

Erk & Pado [9] introduce a structured vector space model
which integrates syntax into the computation of word mean-
ing in its syntactic context. Baroni & Lenci [8] propose a
distributional semantic memory, a graph of weighted links
between words which can be specialized to different corpus-
based semantics tasks. Both works propose models that in-
duce graphs describing the corpus syntactic relations.

While these compositional models propose the integra-
tion of distributional semantics and syntactic models, this



work proposes the integration between distributional and
relational models, approaching compositionality under the
perspective of a semantic representation, exploring the con-
nections with KR.

Distributional Relational Networks (DRNs)
Distributional Relational Networks (DRN) mergerelational
and distributional representation models in order to allow
semantic approximation over existing relational models. In
the context of this work, a relational model is defined as
a labelled graphwhere all symbols associated with nodes
(entities) and edges (attributes/relations) have correspond-
ing elements in areference data corpora(unstructured or
structured data collection used to build the distributional
model). DRNs can be applied to different KR frameworks
which can be mapped to the generic labelled graph rep-
resentation, including semantic networks, logical KBs and
relational/Entity-Attribute-Value(EAV) databases.

A DRN embeds the structure defined by relational models
in a distributional vector spacecn. Every entity and relation
has an associated weighted concept vector representation
in the distributional concept space. The distributional as-
sociational information embedded in the distributional con-
cept space is used to semantically complement the knowl-
edge expressed in the relational model (Figure 1). The dis-
tributional information is then used to allow approximative
querying/reasoning (Q&R) processes, differently from what
happens in a relational model, where Q&R processes are
constrained by strict syntactical definitions of entities and
relations, and only exact matches allow the Q&R processes
to continue.

Once a knowledge base Kb is embedded in a distribu-
tional space, all the symbols and its associations as well as
the Q&R processes have an associated geometric represen-
tation. These processes have an associative nature, where the
relational graph is navigated, guided by thesemantic relat-
ednessmatching between the external user query or reason-
ing terms (i.e. theusers’ semantic intent). The semantic re-
latedness measure works as asemantic heuristics, guiding
the Q&R process in the direction of the Q&R answer and
reconciling the common intent of both conceptual models
(the Kb and querying), independent of the vocabulary used
to express it.

Another important characteristic of DRNs is that they are
not committed to a particular relational model neither witha
particular distributional model, allowing the combination of
different models. The following subsections detail some of
the elements of the DRN model.

Relational Model
The relational model has a signatureΣ = (P,E) formed by
a pair of finite set of symbols used to represent relationsp ∈
P between entitiese ∈ E. We assume that both elements in
P andE are represented using distributionally meaningful
descriptors (symbols present in the reference corpus).

The signature is used, in conjunction with a set of opera-
tors to construct a knowledge base Kb. Each element in the
signatureΣKb is represented as a vector in a distributional

space. The semantics of Kb is defined by the vectors in the
distributional space used to represent the elements of Kb.

Geometrical Model

The DRN space is namedT-Space[3]. TheT-Spaceis a dis-
tributional structured vector space model which allows the
representation of the elements of a KB under a distributional
semantic model.

TheT-Space coordinate systemis built from a document
collectionC. The setTerm = {k1, · · · , kt}, of all terms
available inC is used to define the basisTermbase =

{
−→
k 1, · · · ,

−→
k t} of unit vectors that spans theterm vector

spaceV STerm.
The set of all distributional conceptsConcept =
{c1, · · · , ct} are extracted from a reference corpus and each
conceptci ∈ Concept is mapped to an identifier which
represents the co-occurrence pattern in the corpus. Each
identifier ci defines a set which tracks the context where
a termkt occurred. This set is used to construct the basis
Conceptbase = {−→c 1, · · · ,

−→
c t} of vectors that spans the

distributional vector spaceV Sdist (Figure 1).
Thus, the set of contexts where a term occurs define the

concept vectors associated with the term, which is a repre-
sentation of its meaning on the reference corpus. Each con-
cept vector is weighted according to the term distribution in
the corpus, allowing the concept vector space coordinate ba-
sis to be defined in terms of a term vector space coordinate
basis where each dimension maps to a word in the corpus.
So, a vector−→x ∈ V Sdist can be mapped toV STerm by the
application of the following transformation:

−→
x =

t∑

i=1

αiv
x
i

−→
k i (1)

wherevxi is the term co-occurrence pattern over a corpus and
αi is a second-order transformation tensor which is defined
by the set of term vectors of distributional concepts.

DRNs: Linking Relational and Geometrical Models

In order to obtain an approach that supports an approxima-
tive semantic Q&R model, we link the relational and geo-
metrical models so that the geometrical model could enrich
and ground the semantics of the relational model.

The first step is to build theT-Space concept spacebased
on the reference corpus.

The second step is to translate the elements of the sig-
natureΣ = (P,E) of a KB to elements ofV STerm and
V Sdist. The vector representation ofP , respectively, in
V STerm andV Sdist is defined by:

−→
PV STerm = {−→p : −→p =

t∑

i=1

w
p
i

−→
k i, for eachp ∈ P} (2)

−→
PV Sdist = {−→p : −→p =

t∑

i=1

v
p
i
−→
c i, for eachp ∈ P} (3)



and the vector representation ofE, respectively, inV STerm

andV Sdist is defined by:

−→
EV STerm = {−→e : −→e =

t∑

i=1

we
i

−→
k i, for eache ∈ E} (4)

−→
EV Sdist = {−→e : −→e =

t∑

i=1

vei
−→
c i, for eache ∈ E} (5)

wherewe
i andwp

i are defined by co-occurrence weighting
scheme1 andvei andvpi are defined by the weighting scheme
over the distributional model.

The third step refers to the translation of Kb atoms into
T-Spaceelements. As each relation and entity symbol has a
vector representation, we can define the vector representa-
tion of a relational atomr in the concept vector space by the
following definition.
Definition: Let−→p ,−→e1 and−→e2 be the vector representations,
respectively, ofp, e1 ande2. An atom vector representation
(denoted by−→r ) is defined by:(−→p − −→e1) if p(e1); (

−→
p −

−→
e1,
−→
e2 −

−→
p ) if p(e1, e2).

Querying & Reasoning
The embedding of Kb in the distributional vector space al-
lows the definition of a geometric interpretation for the Q&R
processes. The proposed Q&R model uses thecosine simi-
larity ([3]) as a semantic approximation and navigation oper-
ation in theT-Space. The distributional semantic relatedness
measure can be used to establish an approximate semantic
equivalence between two elements in the context of a given
Q&R navigation step.

Semantic Relatedness A semantic relatedness function
sr : V Sdist × V Sdist → [0, 1] is defined assr(−→p1,

−→
p2) =

cos(θ) = −→p1.
−→
p2. A thresholdη ∈ [0, 1] could be used to

establish the semantic relatedness between the two vectors:
sr(−→p1,

−→
p2) > η.

Querying & Reasoning: Matching and Navigation The
first element to be resolved in the ordered query, calledthe
semantic pivot, normally is a symbol which represents an
entity. The semantic pivot, as the more constraining element
in the query, helps to reduce the search space since just the
elements in Kb associated with the pivot at a given itera-
tion are candidates for the semantic matching. Note that the
query sequence is embedded in the vector spaceV Sdist, al-
lowing to identify it with the following sequence of vectors

<
−→
q′

0,
−→
q′

1, · · · ,
−→
q′

n >.
Definition: Given a queryq, its entities and relations,
denoted byq0, q1, ..., qn are ordered in a sequence<
q′0, q

′

1, · · · , q
′

n > using a heuristic measure of specificity
hspecificity from the most specific to the less specific, that
is, ∀i ∈ [0, n], hspecificity(q

′

i) ≥ hspecificity(q
′

i+1).
The goal behind this heuristic is to force the reasoning

process to prioritize the hardest constraints in the query,
which normally have the less semantic ambiguity2.

1for example, the term-frequency/inverse document fre-
quency(TF/IDF).

2in practice this specificity measure can be defined by a combi-
nation of grammatical classes weights and TF/IDF.
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Figure 1: Depiction of a DRN construction and query work-
flow.

In the first iteration,
−→
q′

0 ∈ V Sdist, the vector represen-
tation of the pivotq′0 can be resolved to a vector−→e 0 (Fig-
ure 1). The entitye0 defines a vector subspace which can be
explored by the next query term (which spans the relations
associated with the entitye0). The second query termq′1 can
be matched with one or more relations associated withe0,
for examplep0, considering thatsr(

−→
q′

1,
−→
p 0) ≥ η, whereη

is a semantic relatedness threshold. The entities associated
with p0 (for examplee1) are used as new semantic pivots.

At each iteration of the (Q&R) process, a set of semantic
pivots are defined and are used to navigate to other points
in theV Sdist. This navigation corresponds to the reconcil-
iation process between the semantic intent defined by the
query and the semantic intent expressed in the KB. The
reconciliation process can be defined as the sequence of

vectors< (
−→
q′

1 −
−→
p 1), (

−→
q′

2 −
−→
p 2), · · · , (

−→
q′

n −
−→
p n) >.

The proposed approximate Q&R process can also be repre-
sented geometrically as the vectors< (−→e 0 −

−→
p 0), (

−→
p 0 −

−→
e 1), ..., (

−→
p n−1 −

−→
e n) > over the T-Space, which repre-

sents the process of finding the answer in the DRN.

Discussion
The quality of the semantic approximation in the Q&R pro-
cess over DRNs is dependent on the quality of distribu-
tional models and on the intrinsic ambiguity of human lan-
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guage. Despite the selectivity of the distributional model
some Q&R processes may return spurious answers together
with the relevant answers (as in information retrieval sce-
narios). Principled disambiguation and user dialogs opera-
tors can be defined at each semantic approximation step to
increase its accuracy.

While pure relational models demand an a priori recon-
ciliation of the symbols in a consistent conceptual model,
distributional semantics allows the quantification of differ-
ent usage contexts of a symbol. The distributional semantics
representation model captures the superposition of different
contexts. The disambiguation process can be performed un-
der reasoning time, by either providing additional contextual
information or by the interaction with an external agent in
the model. The capture of superposition of different senses
for a symbol, motivated attempts to bridge distributional se-
mantics with models based on formalisms of Quantum Me-
chanics (Hilbert Spaces).

Relational graphs from different domains can be sup-
ported by different distributional models and different dis-
tributional reference corpora. Spaces with different distribu-
tional models can form patches in a more complex distribu-
tional manifold. Additionally, different distributionalmod-
els can be used in parallel to support multiple interpretation
of the elements embedded in the space.

An initial DRN model was implemented in [3], which
proposes a structured vector space model (T-Space) target-
ing vocabulary-independent (schema-agnostic) and open do-
main natural language queries over heterogeneous Semantic
Web data. The vector space is built using Explicit Semantic
Analysis (ESA) as a distributional model and Wikipedia as
a reference data corpus. The approach was evaluated using
DBpedia, a heterogeneous graph database containing 45,767
predicates, 5,556,492 classes and 9,434,677 instances and
the Question Answering over Linked Data test collection
(50 complex natural language queries)3, and achievedavg.
recall=0.491, mean avg. precision=0.482andmean recip-
rocal rank=0.516[3].

More recent experiments done by the authors with an
increased query set (102 natural language queries) for the

3http://www.sc.cit-ec.uni-bielefeld.de/qald-1

same dataset showed achievedavg. recall=0.81, mean avg.
precision=0.62andmean reciprocal rank=0.49.

The quality of the selectivity of distributional models such
as ESA, as a semantic matching model was evaluated sep-
arately in [4], achieving avg. p@5=0.732. While ESA pro-
vides a comprehensive semantic model, where the semantic
relatedness measure can be used as a ranking score [4], it
does not provide absolute precision. Solutions to circum-
vent the limitation, which should be present in all distri-
butional models, include the composition of distributional
models which are more restrictive with more comprehen-
sive approaches, and the application of user disambiguation
operations. The quality of the semantic approximation pro-
vides some preliminary indication that DRNs can cope with
requirements 1,2,3,4.

From the scalability and performance perspective, DRNs
can be implemented as aninverted index, which can be
segmented into parallel indexes, split by the entities in the
graph. Experiments over DBpedia+YAGO datasets had an
8,530 ms average query execution time which supports re-
quirement 5. Additionally, the approach provides a mecha-
nism which demands no dataset adaptation effort, not requir-
ing specific manual semantic enrichment.
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