
A Comparison of Deep Learning Models in Human 

Activity Recognition and Behavioural Prediction on the 

MHEALTH Dataset 

Jamie O’Halloran1, and Edward Curry2  

Data Science Institute,  
National University of Ireland Galway, Galway, Ireland 

Abstract. The problem of classifying body gesture and motion along with 
aiming to predict states of action or behaviour during physical activity is 
refered to as Human Activity Recongition (HAR). Inertial Measurement 
Units (IMUs) prevail as the key technique to measure range of motion, speed, 
velocity and magnetic field orientation during these physical activities. On-
body inertial sensors can be used to generate body motion and vital signs 
recording signals that can successfully learn models and accurately classify 
physical activities. In this paper, we compare the approaches of Extreme 
Gradient Boosting (XGBoost), Multilayer Perceptron (MLP), Convolutional 
Neural Network (CNN), Long Short-Term Memory Network (LSTM), CNN 
+ LSTM Hybrid (ConvLSTM) and Autoencoder by Random Forest (AE w/
RF) to classify human activities on the MHEALTH dataset. All six of our
classification models use raw, unstructured data obtained from 4 inertial on-
body sensors. We examine multiple physical activities and on-body inertial
sensors, showing how body motion and vital signs recordings can be
modified to be fed into machine learning models using diverse network
architectures. We also compare the performance of the machine learning
models to analyse which model best suits multisensory fusion analysis. The
experimental results of this paper on the MHEALTH dataset consisting of 12
physical activities collected from 10 subjects with the use of four differnet
inertial sensors, are highly encouraging and consistently outperform exisiting
baseline models. MLP and XGBoost attain the highest performance measures
with accuracy (90.55%, 89.97%), precision (91.66%, 90.09%), recall
(90.55%, 89.97%) and F1 score (90.7%, 89.78%) respectively.

Keywords: human activity recognition, deep learning, classification, 
extreme gradient boosting, neural networks 

1  Introduction 

Human Activity Recognition (HAR) using wearable sensors entails recognising a 
subjects physical movements by analysing data generated from on-body wearable 
sensors. These inertial sensors are accelerometers, gyroscopes and magnetometers 
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while the activities identify as Activities of Daily Living (ADL). As mentioned in 
[1], ADL’s involves one’s self and body, with specific emphasis on mobility. 
Sensor-based HAR is dominating current research due to the applicability of sensor 
fusion which entails the integration of sensor data from multiple sensors which 
drives analytical results in terms of reliability, accuracy and completeness. 

On this view, deep learning methods are continuing to consistently advance and 
improve the field of HAR. XGBoost is leading the forefront with its in-depth 
knowledge and computational ability to take data-oriented classification tasks and 
successfully select and process invaluable features from the data. In this paper, we 
apply 6 machine learning models to the HAR problem. We build and train several 
models using on-body sensor signal data generated from 4 different sensors, and we 
analyse the results in order to identify which model best suits the data in terms of 
accuracy, precision, recall, F-score and total amount of misclassified instances. This 
paper shows that XGBoost is the highest performing model due to its ability to 
peform parallel optimisation and tree pruning while limiting overfitting and 
consistently learning sparse features. 

The rest of this paper is structured as follows: Section 1.1 gives a brief overview 
of the problem description detailing how HAR usage can aid the healthcare domain. 
Section 2 presents an overview of the related work for human activity recognition. 
Section 3 provides an overview of the MHEALTH dataset, the architecture of each 
model and the approach taken throughout the research. Experiment results are 
discussed in section 4. Section 5 presents a discussion section while the final 
section, section 6, discusses future work as well as an overall conclusion. 
 
1.1  Motivation  
 
Human activity recognition has shown to be effective in benefiting clinicians in the 
treatment and remote monitoring of patients. This field is not only vital for diagnosis 
and treatment, but also an assessment of how likely a medical patient will fall ill or 
die from certain diseases or health problems. To show the great importance of 
activity recognition in the health sector, analytically driving an improvement in 
accuracy in classifying patients’ activities improves the relationship of patients and 
clinicians as well as reducing the possibility of a fatality. 

This paper revolves around the topic of using deep learning to benefit the 
healthcare industry. One aspect that deep learning could benefit is Remote Patient 
Monitoring (RPM). The sufficient monitoring of remote persons’ activities in real-
time can yield great benefits in medical environments. Doctors, nurses and 
clinicians can build strong relationships with, and improve the experience of their 
patients, by analysing data send to them via RPM technologies. The data sent to 
them via RPM can develop a personalised care plan and engage in joint decision-
making to foster better outcomes. Wearable sensors, generating this data, can feed 
data to a clinician in real-time, leading to a significant reduction in continuous 
patient monitoring and aid diagnostic analysis. 

This system could be beneficial to the elderly, those suffering from chronic 
illness and those who are prone to heart attacks (or serious medical conditions). 
According to [2], chronic heart failure (CHF) is the most common cause of 
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readmission for patients in the USA. It is estimated that up to 84% of readmissions 
within a 7-day period were considered preventable, while 76% of 30-day 
readmission were also considered preventable [2]. The best way to provide 
protection to patients that are prone to chronic heart failure, chronic illness, disease 
spreading as well as aiding remote patient monitoring and providing a quick 
response to fall detection is a Human Activity Recognition Health Model.  

In regards to preventing disease spreading, the primary task of the model should 
be the early detection and prevention of the disease as oppose to recommending 
preventative measures to cure the diagnosis. The model could provide accurate and 
timely measures ensuring the disease does not come to surface. It could provide 
benefits to remote patient monitoring as a part of the intervention could be the early 
detection and prevention of an elderly person falling, signalling them to control 
certain movements and be more aware of surroundings. This leads to monitoring 
patients who are suffering from chronic illness. Similar to preventing the spreading 
of disease, the model could monitor and control the illness to ensure it does not take 
hold of the patient and suggest preventative measures if the patient is in critical 
condition.  

2  Related Work  

Sensor-based activity recognition is a a continuously evolving field of AI, with a 
wide-range of research being produced annually. Nguyen, Fernandez, Nguyen and 
Bagheri [3] give an extensive introduction to HAR, with the integration of multiple 
sensors. Nguyen et al. [3] built an XGBoost machine learning method using wrist-
worn accelerometer data, RGB-D camera data and environmental sensor data to 
classify activities. This unique approach achieved an increased improvement of 
38% accuracy in comparison to previous studies. An average recognition accuracy 
of 90% and a brier score of 0.1346 was also achieved. Mo, Li, Zhu, and Huang [4] 
compares convolutional neural networks and multilayer perceptron performance on 
the classification of activities based on the CAD-60 Dataset. The CAD-60 Dataset 
[5] contains RGB-D video sequences of subjects performing physical activities. The 
Microsoft Kinect sensor recorded the sensor signals. Mo et al. [4] focuses on data 
pre-processing along with feature extraction to generate highly accurate 
performance results. The model presented combines CNN and MLP by using CNN 
for feature extraction and using MLP for the classification of the activity. Their 
model achieved 81.8% accuracy across twelve different types of activities, 
outperforming existing state-of-the-art. 

One aspect that is missing from the previously discussed related work about 
machine and deep learning models is a comparison of the classification performance 
of  XGBoost, MLP, CNN, ConvLSTM, AE w/ RF and LSTM. Our aim of this paper 
is to conduct an investigation and compare these six different machine and deep 
learning algorithms with each other to evaluate which network best suits the 
MHEALTH dataset.  
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3  Experiments  

The purpose of this paper is to analyse the performance comparison of deep learning 
algorithms on the MHEALTH dataset. We aim to identify the best deep learning 
algorithm suited to the MHEALTH dataset, using on-body inertial sensor data, with 
respect to the activity classification task.  

3.1  MHEALTH Dataset  

We analyse a dataset collected by Oresti Banos, Rafael Garcia and Alejandro Saez 
that is freely available from The UCI Machine Learning Repository [6]. The 
MHEALTH dataset consists of body motion and vital signs recordings from ten 
subjects with each of different characteristics [6][7]. The subjects’ task is to perform 
12 different types of activities. The accelerometer, gyroscope and magnetometer 
placed on the subjects’ body measure acceleration, rate of turn and magnetic field 
orientation. These sensors measures the range of motion experienced by each 
subjects’ body parts. The collected dataset comprises body motion and vital 
recordings of the ten subjects’ performing the physical activities as stated above. 
Shimmer2 [BUR10] wearable sensors were used for the recordings. Elastic straps 
complement the sensors on the subjects’ chest, right wrist and left ankle.  
 

 
Figure 1 The following figure outlines three subjects’ performing three different activities: 
'lying down', 'cycling' and 'waist bends forward'. The Shimmer2 [BUR10] wearable sensors 
which are attached by elastic straps are clearly visible on the subjects’ chest, right wrist and 
left ankle. 

 

3.2  Approach  
 
In regards to the input adaptation, the streaming signals were fed into the neural 
networks using a model-driven approach. The methodology process consisted of 7 
steps; data preparation, feature extraction, one-hot encoding, training/testing split, 
hyperparamter setting, model compilation and model evaluation. The MHEALTH 
dataset consists of static data, it does not change after being recorded and is 
essentially a fixed dataset. Step 1, data preparation, involves feature extraction, 
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encoding labels to one-hot form, converting the raw data into the right shape for 
input into the model, normalising the data and finally splitting the data into training 
and testing. The next step is feature extraction. The MHEALTH dataset consist of 
10 log files, with each log file corresponding to each of the ten subjects. In order to 
extract the features (signal attributes) and labels (activities) of each log file, a feature 
extraction method is used to successfully extract all the features and labels of each 
subjects log file. The third step involves encoding the labels to one-hot form. Step 
4 involves splitting the data into training and testing in the ratio of 80:20. In step 5, 
Hyperparameters such as batch size, number of epochs, learning rate, number of 
hidden layers, type of hidden layers, shape of input, shape of output and the number 
of parameters are set. Step 6 involves compiling the model, ensuring it is ready to 
be fitted. It is necessary to structure each model into organised layers. Once the 
hyperparameters are tuned accordingly, as outlined in step 5, compiling the model 
can begin. The compiled model is then fitted to the training data in order to classify 
the volunteers’ activities. The final step is model training and evaluation. When the 
model is compiled and fitted on the training data, it is evaluated against both the 
training data and the testing data. The models predicted output is compared with the 
true output.  

We built each model revolving around these five aspects: identifying network 
architecture, identifying network layers, choosing an optimiser, choosing the loss 
function and hyperparameter setting. Each network model utilises the data values 
given for each of the 23 signals recorded from the four sensors in order to classify 
our class variable, which is the movement that each subject performs. Fine-tuning 
the hyperparameters allow for beneficial development of the training process 
outcome. 
 
Table 1 MLP Architecture: The MLP model contains 706,317 data instances. The first 
hidden layer contains 128 units, the second hidden layer contains 256 units, the third hidden 
layer contains 512 units while the fourth hidden layer contains 1024 units. 

 
 
Table 2 CNN Architecture: The CNN model contains 245,584 data instnaces. The first 
hidden layer has 128 neurons, the second hidden layer has 256 neurons while the third hidden 
layer has 512 neurons. 

 
 

Input layer
2 Dropout layers 
4 Hidden layers

Output layer

Adam: 
Learning rate 
set to 0.0001

Categorical 
Crossentropy

Batch size: 32         
Number of epochs: 20

MLP

Input layer
2 ID convolution  layers
2 MaxPooling1D layers

2 Dropout layers 
3 Hidden layers

Output layer

Adam: 
Learning rate 
set to 0.0005

Categorical 
Crossentropy

Batch size: 32         
Number of epochs: 20CNN
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Table 3 ConvLSTM Architecture: The ConvLSTM model contains 191,376 data instances. 
The first hidden layer contains 128 units, the second hidden layer contains 256 units while 
the third hidden layer contains 512 units. 

 
 
Table 4 AE w/ RF Architecture: The AE w/ RF model contains 23,711 data instances. The 
first hidden layer contains 128 units, the second hidden layer contains 64 units while the third 
encoding hidden layer contains 512 units, the fourth and fifth hidden layers contain 64 and 
128 units respectively.  

 
 
Table 5 LSTM Architecture: The LSTM model contains 175,373 data instances. The first 
hidden layer contains 128 units, the second hidden layer contains 256 units while the third 
hidden layer contains 512 units. 

 
 

The full architectural structure of each model is presented in tables 1-6. Setting 
up each model involved dropout regularisation, normalising inputs, limiting 
vanishing and exploding gradients and weight initialisation. Dropout regularisation 
allowed 0.4 (40%) of diverse sets of hidden layers to be ‘dropped’ as each epoch is 
initialised, leading each model to learn minute details about the data while updating 
weights during gradient descent. Normalising inputs enhanced performances by 
reducing the amount of time the model takes to learn the data while accelerating the 
training phase. The use of the ReLu activation function led to a reduction in 
vanishing and exploding gradients and significantly enhanced speed, accuracy and 
precision. Adam optimisation was set as the learning rate as the hyper-parameters 
require little or no tuning. The learning rate is fine-tuned to ‘0.0005’ to enhance the 
speed of the learning process for each neuron.  

We set the following hyperparameters for each model: learning rate, number of 
hidden layers, number of hidden units for different layers, batch size and the number 

Input layer
2 ID convolution  layers
2 MaxPooling1D layers

1 LSTM layer
2 Dropout layers 
3 Hidden layers

Output layer

ConvLSTM

Adam: 
Learning rate 
set to 0.001

Categorical 
Crossentropy

Batch size: 32         
Number of epochs: 20

Input layer
Encoding layer
4 Hidden layers

Output layer

AE w. RF

Adam: 
Learning rate 
set to 0.0005

Categorical 
Crossentropy

Batch size: 32         
Number of epochs: 20

Input layer
2 LSTM layers

2 Dropout layers
3 Hidden layers

Output layer

LSTM

Adam: 
Learning rate 
set to 0.0001

Categorical 
Crossentropy

Batch size: 32         
Number of epochs: 20
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of epochs. The number of hidden layers and the number of hidden units for different 
layers varied across each model. They ensure results are conclusive, relevant and 
maximised. The batch size for each model was set to 32 while the number of epochs 
was set to 20. Batch normalisation ensured successful updates in data values across 
more than one layer in each model. Batch normalisation allowed each model to 
reparameterise after each subsequent layer, allowing for successful updates. Batch 
normalisation provides a key role in constant coordination and updates to ensure 
results provided accurate predictions in activity. 
 
Table 6 The following table outlines the hyperparameter settings applied before 
implementation of the XGBoost Architecture. 

 
 

Table 6 outlines the parameters that are set for the implementation of the 
XGBoost model: The maximum depth of the tree used in the model is set to 10. It’s 
vital that the model doesn’t become too complex and lead to overfitting. The 
number of parallel threads used to run XGBoost in this instance is 4. The number 
of classes is set to 13. The evaluation metric is set to ‘merror’, which is multiclass 
classification error rate. The softmax objective is set for the XGBoost model, as it 
is a multiclass classification task.  

In conclusion of the hyperparameter evaluation, we showed that: 1. 
regularisation is excellent in minimising overfitting for the MHEALTH dataset. 2. 
Adam is the best optimisation algorithm that suits this data. 3. Fine-tuning the 
hyperparameters to suit the subject data yields excellent, insightful results while 
speeding up training the model. 4. 
 
3.3  The NULL Class  
 
Human activity recognition systems contain a vast amount of streaming data. Only 
a certain percentage of this streaming data is significant in the performance of a 
HAR system. There is a slight imbalance between the portion of significant data 
and insignificant data. This leads to some of the activities to be easily confused with 
activities that have similar range of motion patterns and are irrelevant in predicting 
the activity in question. For example, jogging is often mistaken for running and 
cycling is often mistaken for running upstairs. These easily confused activities are 
the so-called NULL class. Detecting, monitoring and modelling the NULL class is 
a tough task. The NULL class often represents a massive portion of the dataset. As 

Max_Depth 10

Number of parallel threads 4

Number of classes 13

Evaluation metric merror

Objective multi:softmax

Trainable parameters 161,959

Number of rounds 10

XGBoost Model
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seen in [8], the NULL class represents 72.28% of the whole dataset. It is good 
practice to remove the NULL class if there is a skewed pattern in the dataset. If the 
datasets attribute information and labels differ substantially from the correctly 
classified activities, then the NULL class problem may be identified and appropriate 
action or precautions taken. The NULL class is not a huge problem. At most, it leads 
to minor confusion when classifying activities in HAR systems. As seen in [9], 
applying self-learning can reap benefits of the NULL class. The studies in [9] 
present a performance comparison of self-learning activity spotters to show the 
benefits of this proposed approach. Results yielded an increase of 15% in 
performance, which outlines that the NULL class if managed accordingly can 
generate great model performance. 

4  Experimental results  

A confusion matrix visualises the percentage of misclassified instances of each 
approach. The matrix describe what activities are misclassified, as well as the depth 
in which each misclassification occurred.  
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Figure 2 The XGBoost confusion matrix outlines the accuracy for correctly classifying each 
activity. The XGBoost approach achieved an accuracy of 89.97%. 

As explained in section 3.3, there is a significant class imbalance due to the 
presence of the NULL class. As seen in figure 2, the NULL class has a significant 
contribution on the amount of false positives and false negatives detected. It 
accounts for a large portion of misclassified activities. Including the NULL class in 
the analysis results leads to a high percentage of data processed as ‘not an activity 
of significant interest’ or ‘not a classifiable activity’ in terms of the labels 
(activities).  In order to conduct appropriate analysis of each confusion matrix and 
greater understand the data; the NULL class is ignored as it accounts for 71-72% of 
the dataset, depending on each individual models trainable parameters. As presented 
in table 7, the MLP model slightly struggles in distinguishing between the jogging 
activity and running activity with 7% (425 times) of the activity misclassified, while 
XGBoost misclassified 3% (186 times) of the activity. Similarly, for the activities 
‘jumping front and back’ and ‘jogging’, XGBoost and MLP made little errors with 
19 (<1%) and 46 (<1%) respectively. MLP misclassified 471 instances while 
XGBoost misclassified only 281. CNN, ConvLSTM and LSTM misclassified 1341, 
2533 and 2742 instances respectively. The enhanced performance of XGBoost in 
classifying these activities and producing fewer errors is due to its extreme gradient 
boosting framework that can implement effective tree pruning, regularisation and 
parallel processing subsequently. 

 
Table 7 The total number of misclassified instances for each approach is presented in the 
following table. 

Machine Learning Method Total Misclassified Instances 

XGBoost 281 

MLP 471 
CNN 1341 

ConvLSTM 2533 
AE w/ RF 2689 

LSTM 2742 
 

As presented in table 8, we were able to produce a very competitive accuracy, 
precision, recall and F-score by implementing sensor data from gyroscopes, 
accelerometers, magnetometers and an electrocardiogram. The deep learning 
approaches presented in this paper were able to learn complex relationships from 
inputs to outputs while supporting the 23 features and 12 classes in question. Our 
approaches prevailed as superior with their ability to learn linear and non-linear 
relationships and learn multivariate inputs. 

 
Table 8 The following table presents our approaches performance comparison. Each 
architecture is compared in terms of accuracy, precision, recall and F1 score. Upon 
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comparison of each architecure in terms of each evaluation metric and total misclassified 
instances, XGBoost is the top performing model due to its performance, speed and scalability. 

Architecture Accuracy Precision Recall F1 Score 

MLP 90.55% 91.66% 90.55% 90.7% 
XGBoost 89.97% 90.09% 89.97% 89.78% 

CNN 83.91% 83.47% 83.91% 82.98% 
ConvLSTM 83.89% 83.69% 83.89% 83.2% 
AE w/ RF 83.27% 82.59% 83.25% 81.54% 

LSTM 78.09% 74.86% 78.09% 75.6% 
 

Table 3 compares the accuracy, precision, recall and F1 Score of the proposed 
machine learning approaches. MLP attains the highest percentage of the four 
performance comparison measures, achieving 90% or greater. XGBoost falls 
slightly short of the top spot but still achieving excellent results, achieving 89% or 
greater. ConvLSTM, CNN and AE w/ RF achieve satisfactory results, with LSTM 
being the poorest performing model. 

5  Discussion  

The main conclusions from the comparison of MLP, XGBoost, CNN, LSTM, 
ConvLSTM (CNN+LSTM) and AE w/ RF on the MHEALTH dataset is that: MLP 
and XGBoost reaches a higher accuracy (90.55%, 89.97%), precision (91.66%, 
90.09%), recall (90.55%, 89.97%) and F1-score (90.7%, 89.78%) respectively. 
MLP and XGBoost are significantly superior in their ability to distinguish between 
similar activities (e.g., ‘jogging/running’ and ‘climbing stairs/knees bending 
(crouching)’). To the authors’ knowledge, XGBoost has not been implemented on 
the MHEALTH dataset in order to classify each subjects’ activity. Findings suggest 
that XGBoost can be successfully applied to the MHEALTH dataset and be 
comparable to existing state of the art baselines. 

These conclusions reinforce the hypothesis that an XGBoost model created and 
implemented on the MHEALTH dataset to predict human activities generates 
significant power to learn temporary feature activation dynamics and make decisive 
predictions in classifying the subjects’ predicted activity. The XGBoost architecture 
offers much better analysis characteristics than the other five classification models. 
These characteristics include regularisation, tree pruning, tree depth and sparse 
features. XGBoost identifies the vital signs and range of motion of the activities in 
question more accurately. All of these findings mentioned in this discussion section 
reiterate the hypothesis that XGBoost is the best performing model and is highly 
suited to analysing MHEALTH data. 

Although MLP outperformed XGBoost in terms of accuracy, precision, recall 
and F1-score, MLP misclassified 471 instances while XGBoost misclassified only 
281. CNN, ConvLSTM and LSTM misclassified 1341, 2533 and 2742 instances 
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respectively. In terms of overall accuracy, precision, recall, F1-score and number of 
correctly classified instances, XGBoost is the top performing model. This details 
the known domain of appropriateness for the XGBoost framework, which has never 
been reported on the MHEALTH dataset before. 

Many deep learning architectures implement convolutional, pooling and dropout 
layers successively, to increase model performance and reduce the degree of data 
complexity. However, implementing these layers are not strictly vital. XGBoost 
does not include convolutional, pooling or dropout layers as it processes data under 
the gradient boosting framework. XGBoost is excellent for increasing performance 
and speed due to its ability to implement a variety of gradient boosted decision trees 
to analyse data and generate meaningful, decisive conclusions. XGBoosts results 
(accuracy 89.97%, precision 90.09%, recall 89.97%, F1-score 89.78%) proves it 
can generate excellent performance with a high degree of data complexity presented 
by the MHEALTH dataset. Convolutional, pooling and dropout layers also present 
many benefits. They are becoming significantly useful in analysing data spread 
across a more profound period.  

Machine learning architectures, which are fully connected, contain values in the 
dense layer that must be linked with every parameter value of the last feature map  
(previous layer). This leads to the formation of a weight matrix that is significantly 
large, it is vital in ensuring the parameters of the connection doesn’t get out of 
proportion. The Gradient boosting framework built into XGBoost ensures that the 
amount of parameter values needed is minimised. XGBoost is said to me a more 
complex network, but it is formed of a reduced number of parameters, and is directly 
linked to the outstanding benefits it produce in respect to GPU memory and hard 
drive computational processing power.  

6  Conclusion and Future Work 

In this paper, we presented a comparative study of deep learning algoritgms for the 
HAR problem. We focused our research on the MHEALTH dataset, which contains 
a diverse set of activities as well as sensor data extracted from four different 
wearable, electronic sensors. Our aim was to examine the classification proficiency 
of each individual deep learning model. Our experimental results show that Extreme 
Gradient Boosting (XGBoost) achieved the highest classification capability, upon 
analysing its accuracy (89.97%), precision (90.09%), recall (89.97%), F1-score 
(89.78%), confusion matrix and total amount of misclassified instances (281). 
XGBoost can undoubtedly address the problem of human activity recognition in the 
context of MHEALTH data.  

Future work on the application of XGBoost to real-world data, particularly 
around HAR in the healthcare domain, is recommended. To be precise, conducting 
analysis on 100+ subjects’ could be interesting, in order to justify the classification 
capabilities to a broader range of subjects’, which could lead to more insightful 
conclusions showing why and how the model behaved on certain subjects like it 
did. Long-term monitoring is another possibility of future work. Another possibility 
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for future work is to compare the neural networks models performance metrics 
when using data from individual sensors or subsets of the MHEALTH dataset. This 
would increase practicality in producing a real world HAR solution. 

An important addition to this project would be to focus more on the XGBoost 
implementation due to the successful performance it achieved. XGBoost is 
excellent for model interpretability, which is a huge aspect in machine and deep 
learning nowadays. Due to time constraints, analysing XGBoost shapley values 
wasn’t feasible. Shapley values allows the XGBoost model to analyse a feature set 
and identify each feature’s marginal contribution to the overall classification 
prediction. Shapley values provide a very detailed account as which features greatly 
influenced the model. They offer transparency as well as global approximations. 
LIME (Local Interpretable Model-agnostic Explanations) is another technique, 
which would have benefited this research greatly. It also offers detailed account of 
model interpretability, detailing the highly important influential features. Lime 
offers local approximations while shapley offers global approximations. Upon 
extending this research, a comparison of both measures to improve model 
interpretability would greatly benefit the whole research. 
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