

Reflective Channel Hierarchies

Edward Curry, Desmond Chambers and Gerard Lyons
{edward.curry, des.chambers, gerard.lyons}@nuigalway.ie

Department of Information Technology,
National University of Ireland, Galway, Ireland.

Abstract

Hierarchical channel structures are used to create granular sub-channels from a parent channel. Utilized in routing
situations that are more or less static, they require that the channel namespace schema be both well defined and
universally understood. The publish/subscribe messaging model currently requires a message publisher to place
messages into a specific channel within the hierarchy. A relocation of responsibility for channel selection logic
from the publishing client to the middleware service would open up static channel hierarchies to the application of
reflective techniques. This shift in responsibilities enables the service more control over the definition, creation and
maintenance of the channel hierarchy. The service is now able to apply reflective and adaptive techniques to
dynamically adapt, grow and improve the hierarchy to better meet the needs of its changing environment and
operating conditions. This paper describes work-in-progress on the definition of reflective channel hierarchies.

1. Introduction

The field of messaging middleware is a broad one,
ranging from basic message delivery issues to questions
regarding the semantic richness of client subscription
interests. Our research focuses on the hierarchical
channels or topics within publish/subscribe messaging
systems.

 This type of channel structure allows for channels to
be defined in a hierarchical fashion, so that channels
may be nested under other channels. Each sub-channel
offers a more granular selection of the messages
contained in its parent channel. Clients of hierarchical
channels subscribe to the most appropriate level of
channel in order to receive the most relevant messages.
In large-scale systems, the grouping of messages into
related types (i.e. into channels) helps to manage large
volumes of different messages.

 Channel hierarchies are analogues to event type
hierarchies used in Hermes [1]. Similar relationships
exist between a channel and sub-channels, as does
between parent and child event types in Hermes. This
relationship allows for super-type subscriptions, where
subscriptions that operate on a parent channel/type will
also match all subscriptions of descendant
channels/types.

 A channel hierarchy for an automotive trading
service could be structured by categorizing messaging
into buys or sells, then further sub-categories breaking
down for vehicle types. A sample hierarchy illustrating
this categorizing structure is presented in table 1.

Sell.vehicles
Sell.vehicles.cars
Sell.vehicles.trucks
Sell.vehicles.motorcycles
Buy.vehicles
Buy.vehicles.cars
Buy.vehicles.trucks
Buy.vehicles.motorcycles

Table 1: An Automotive Hierarchical Channel Structure.

 Hierarchical channels are used in routing situations
that are more or less static. They require that the
channel namespace schema be both well defined and
universally understood by the participating parties.
Responsibility for choosing a channel in which to
publish messages is left to the publishing client; this
channel selection logic is integrated in the publisher’s
application code. The location of this logic results in a
tight coupling between the channel hierarchy and
publisher. Any alterations to this logic will need to be
propagated throughout the codebase of the publisher’s,
making changes in the hierarchy difficult, restricting the
ability of the hierarchy to evolve and grow.

Figure 1: Current Messaging Architecture.

 As illustrated in figure 1 the tight coupling between
publishers and consumers to the channel hierarchy
make it important to define accurate and correct
channel hierarchies early in the development process.
Alterations made to the hierarchy downstream will
result in a high cost of change; once a system is
deployed it becomes problematic to modify the
hierarchy. Consumer clients are responsible for
selecting the channel from which they wish to receive
messages. Coupling between consumers and the
hierarchy also hampers large-scale changes in the
hierarchy’s structure.

2. Research Overview

Research carried out at the IBM T.J. Watson center in
New York has taken a unique approach with application
message conditions. This work has identified that
message receipt and processing by final recipients are
often important criteria that represent a condition on
further processing by the sender [2]. For example, a
message representing the notification of a group
meeting is sent to a set of participants, some of whom
may be required to acknowledge the receipt and accept
before the meeting can be scheduled and databases (for
room reservation and other purposes) can be updated.
At present no defined middleware support exists to aid
in the development of applications that require the
management of conditions on messages. The IBM
solution uniquely shifts the responsibility for
implementing the management of conditions on
messages from the application to the middleware.

 The static nature of channel hierarchies has limited
research opportunities in this domain. Currently, it is
necessary for a publisher to place messages into a
specific channel within the hierarchy. We propose to
move the responsibility of the channel selection to the
middleware. This relocation of responsibility unlocks
channel hierarchies to the application of new techniques
allowing the service more control over the definition,
creation and maintenance of the channel hierarchy. The
enhanced service is now able to apply reflective and

adaptive techniques to dynamically grow and improve
the hierarchy to meet the needs of its changing
environment and operating conditions. The resulting
service is analogous to a post office: messages are
placed into a black box, how the messages are sorted
(published) is of little concern to the sender.

 This work-in-progress research is conducted within
the Virtual Logistics multi-Agent Brokerage (V-LAB)
research project at the Department of Information
Technology, National University of Ireland, Galway.
The objective of V-LAB is to develop a system for the
virtual brokerage, optimisation and management of
road freight carriers. V-LAB combines diverse
technologies to create a multi-agent software system
that will facilitate companies competing for extra work
convenient to their individual schedule. The remainder
of this paper contains a brief overview of our current
progress on defining a service that provides reflective
channel hierarchies.

3. Chameleon Messaging Service

In order to realize our hypothesis we are developing a
new reflective messaging service called Chameleon.
This section presents an illustration of the Chameleon
architecture in figure 2 and gives a brief description of
the key areas of the architecture.

3.1. Channel Hierarchy Administrator

Responsible for the management of the channel
hierarchy at run-time, the channel hierarchy
administrator exposes a meta-model to express the
structure of the channel hierarchy. This meta-model is
a causally-connected representation of the channel
hierarchy; any alternations to the model will be
replicated in the underlying hierarchy structure enabling
its run-time inspection and adoption.

3.2. Reflection Engine

The instigator of adaptive behavior in the service is the
reflection engine. The engine inspects and adapts the
behavior of the hierarchy by modifying the hierarchy
model exposed by the channel hierarchy administrator.
The engine exposes a meta-interface that allows for
reflection policies to be plugable. These intelligence
policies contain the rules and strategy used in the
adoption of the service.

Figure 2: The Chameleon Reflective Architecture implementing Reflective Channel Hierarchies.

3.3. Reflection Policies

Reflective policies control the reflective behavior of the
service. These policies can be designed with different
motivations for the adaptation of the hierarchy, using
different techniques to achieve them.

 Potential policies could be designed to optimize the
distribution mechanism for group messaging using IP
multicasts or to provide support for federated
messaging services using techniques from Hermes [1]
or Herald [3]. Policies could also be designed to work
with different levels of filtering (subject, content,
content + patterns) or to support different formats of
message payloads (XML, JPEG, PDF, etc).

3.4. Publisher and Consumer Interceptors

Interceptors are a mechanism used by the reflective
engine to carry out the work of its policies. Reflective
policies can use these interceptors to dynamically
introduce a behavior into the service. The role of the
publisher interceptor is to capture messages submitted
to the service and perform any desired processing on
them. Consumer interceptors are used to allow policies
to alter the interaction of the service with its consumers.

4. Reflective Channel Hierarchies

The Chameleon messaging architecture will be used to
implement reflective channel hierarchies. In order to
achieve this objective the following policies and related
interceptors have been defined.

4.1. Message Publisher Interceptor

The eradication of responsibility for channel selection
from the publisher has placed the burden of channel
selection on the middleware. In order to handle this a
publisher interceptor is used to publish messages in the
hierarchy. Once a message is intercepted based on the
rules of the active reflective policies the interceptor
selects the most relevant channel for the message to be
published in.

4.2. Consumer Migration Interceptor

Consumer migration is an important consideration
when new channels are being created. The consumers
for whom the channel has been created must migrate to
the new channel seamlessly. To aid in this transition a
consumer migration interceptor has been introduced to
the service. This interceptor will liaise with consumers
to gracefully migrate them to their new channel.

 Currently a consumer subscribes to a specific "hard
coded" channel within a hierarchy, receiving messages
from it. However with reflective hierarchies there is no
guarantee that a channel will exist.

 Consumers know the type of message they wish to
receive. In order for true runtime consumer adoption of
the hierarchy to take place, consumers are now
responsible for informing the service of their
requirements. Once the service receives these
requirements from a consumer it needs to recommend
the most relevant channel in the hierarchy to the

consumer. The service is responsible for directing the
consumer to the channel most relevant to its needs.

4.3. Reflective Channel Hierarchy Policies

The objective of these policies is to adapt the channel
hierarchy to better represent its contents, and to meet
the requirements of its users. Currently two policies
have been identified to create reflective channel
hierarchies.

4.3.1. Consumer Filter Monitoring

This policy monitors the filtering carried out by
consumers on channels within the hierarchy. Consumer
filters are examined to expose the common fields of a
message being filtered and reveal the most frequent
values applied in these filters. If large numbers of
similar filters for a specific field exist, the policy reacts
by instructing the reflective channel administrator to
create a new sub-channel to publish these messages in.

 The message publisher interceptor is instructed to
place any messages with this common filter into the
newly created sub-channel. With the new sub-channel
in place, the consumer migration interceptor transfers
the relevant consumers to the new channel. The
consumer interceptor is updated with the relevant
information for the new channel; the interceptor has the
role of directing consumers to the channel that best
suits their needs. There is now no need for these
consumers to apply this filter on the messages in this
new channel. This policy will be developed to utilize a
variety of filtering mechanisms with support for
multiple message payload formats.

4.3.2. Message Traffic Pattern Analysis

Designed to complement the consumer filter monitoring
policy as a cause of adoption in the service, the
message traffic pattern analysis policy adapts the
hierarchy through the pattern analysis of messages
submitted to the service. New sub-channels are created
based on this analysis. This policy will create new sub-
channels, or locate appropriate existing channels within
the hierarchy to publish these messages in.

As with the consumer filter monitoring policy, support
for multiple filter types and payloads is envisioned.
Depending on the message format, subject, attribute or

content based filtering may to used to perform an
analysis of messages. The choice of filtering would be
dependant on the type of message as some payloads are
more amenable to inspection, for example an XML
payload would be easier to examine than a JPEG.

4.4. Benefits of Reflective Hierarchies

The benefits that reflective channel hierarchies have
over conventional hierarchies will now be explored
further.

4.4.1. Hierarchy Decoupling

Potentially, each of the major international stock
exchanges could have their own stock notification
services with a uniquely structured channel hierarchy.
Unless the exchanges have reached a consensus on the
structure and namespace schema of a single common
hierarchy, a consuming client wanting to connect to
these exchanges will need to be hard coded (coupled) to
interact with each of the individual exchange
hierarchies. With a reflective hierarchy, a consuming
client is decoupled from the hierarchy. It only needs to
specify its interests to the exchanges notification
service and be dynamically directed to the relevant
channel.

4.4.2. Hierarchy Growth

Depending on the deployment environment of the
service, different criteria become important to the
participating parties. We provide the motivating
scenario of a system that deals with job requests for the
courier/logistics sector. A job’s location and completion
time are an important factor for companies competing
in this marketplace. However, depending on the
scenario of the deployment, the scales used to measure
the location and times differ.

 In a continental deployment the country of origin and
destination are of high priority to shippers, as not every
company will service all the potential countries and
regions. Completion times are measured in days and
weeks. A potential channel hierarchy structure for a
continental scale deployment is outlined in table 2. In
this example structure, channels are sorted first by
country, then regions of the country, then by the
required time-scale of the delivery.

Ireland
Ireland.Dublin
Ireland.Dublin.within_2_Days
Ireland.Dublin.within_1_Week
…
Ireland.Galway
…
Germany
Germany.Munich

Table 2: Continental Deployment.

 With a metropolitan scale deployment the source and
destination become less important as it is more likely
that any city courier will service the entire city, criteria
such as package size and speed of delivery become
more important, with completion times in hours. A
potential channel hierarchy for a metropolitan scale
deployment is shown in table 3. Channels are sorted by
package weight and then by time scale of delivery.

Under_10_KG.within_1_Hour
Over_10_KG.within_2_Hours

Table 3: Metropolitan Deployment.

 Other deployment scenarios with different domain
specific criteria include fruit, furniture, money,
dangerous materials, liquid, oil, gas, cars, etc. A static
channel hierarchy requires predefined criteria for every
potential deployment scenario in advance. An approach
utilizing a reflective channel hierarchy lets the
consumers choose the criteria, allowing a channel
hierarchy to evolve (or grow) and constantly adapt into
one customized specifically for the deployment
environment. Starting from a single channel (seed) a
customized channel hierarchy (tree) can grow based on
the expressed requirements of its consumers.

5. Future Plans

Future plans focus on completing the development of
the Chameleon architecture and the implementation of
policies for the definition of reflective channel
hierarchies. Policies to improve integration with agent-
based systems will also be explored.

 A benefit of Agent Based Systems has been for
messages to be constructed from a common universally
understood ontology. Through the use of this ontology
each of the agents in a system has agreed on the
semantic meaning of certain words and their usage.
Reflective channel hierarchy will be dynamically
created at run-time; consumers that understand the
semantics of the channel names would have an

advantage when interacting with the service. If the
naming scheme used in the hierarchy was linked with
an ontology, agents (consumers) familiar with the
ontology could browser the hierarchy and reason as to a
channel’s contents and purpose.

6. Conclusions

This paper describes work-in-progress on a messaging
service for the V-LAB project at the Department of
Information Technology, National University of
Ireland, Galway. A central goal of this research is to
introduce reflective techniques into pub/sub systems,
specifically channel hierarchies. This is an area where
its application has not been investigated.

 The introduction of reflective capabilities has been
achieved by relocating channel selection
responsibilities to the middleware in publish/subscribe
systems. This shift has opened the static domain of
hierarchies to the application of new techniques. As a
result the producer is no longer tightly coupled to the
channel hierarchy, and is now able to treat message
services like a Post Office. They simply need to place
their messages into a box and let the service worry
about sorting (publishing) it correctly. The middleware
is now able to adapt its channel hierarchies to suit its
deployment scenario. Based on consumer usage
patterns (filter monitoring and traffic analysis) channel
hierarchies can adapt to meet the current needs of the
user base. Hierarchies can also grow from a single
channel into a customized channel hierarchy based on
the expressed requirements of its consumers.

7. Acknowledgement

The support of the Informatics Research Initiative of
Enterprise Ireland is gratefully acknowledged.

Copyright 2002/2003 Enterprise Computing Research
Group.

8. References

[1] P. R. Pietzuch and J. M. Bacon, "Hermes: A Distributed Event-

Based Middleware Architecture," 2002.
[2] S. Tai, T. Mikalsen, I. Rouvellou, and S. M. S. Jr, "Conditional

Messaging: Extending Reliable Messaging with Application
Conditions," presented at 22 nd International Conference on
Distributed Computing Systems, Vienna, Austria, 2002.

[3] L. F. Cabrera, M. B. Jones, and M. Theimer, "Herald: Achieving
a Global Event Notification Service," presented at 8th Workshop
on Hot Topics in OS, 2001.

