
A JMS Message Transport Protocol for the JADE Platform

Edward Curry, Desmond Chambers and Gerard Lyons
Department of Information Technology,

National University of Ireland, Galway, Ireland.
{edward.curry, des.chambers, gerard.lyons}@nuigalway.ie

Abstract
A prerequisite of joining an enterprise system is the

ability to cope with the rigorous demands experienced
within such systems. One of the most fundamental of
these demands is the requirement for enterprise-level
systems to have guaranteed reliable messaging between
the participants of the system. Our research involves
integrating an agent platform with an enterprise
messaging service. This first step in combining agent
technology with a mainstream messaging service is vital
to the participation of agent systems within the digital
enterprise. This paper introduces a new Message
Transport Protocol (MTP) for the Java Agent
DEvelopment (JADE) platform. The new protocol uses
the Java Messaging Service (JMS) to deliver inter-
platform communication between agent platforms. The
paper provides a brief overview of the design of this new
MTP, evaluates its performance, and examines the
benefits of the MTP in comparison to the other available
MTPs, it then concludes and highlights plans for the
development of the MTP.

1. Introduction

The Foundation for Intelligent Physical Agents (FIPA)
is an international organisation that is dedicated to
promoting the industry of intelligent agents by openly
developing specifications to support interoperability
amongst agents and agent-based systems. FIPA require
that a Message Transport Service (MTS) [1] must provide
inter-platform agent-based communication. This MTS is
used to send and receive FIPA compliant ACL messages
to and from remote agents. The MTS can use a number of
different Message Transport Protocols (MTP) to handle
the physical delivery of the messages, current MTPs
include HTTP [2], WAP [3] and IIOP [4].

A basic requirement for enterprise-level systems is a
need for guaranteed reliable messaging between
participants of the system, these messaging requirements
are provided by Enterprise-Messaging Services (EMS) or
Message-Orientated Middleware (MOM). Domain
experts in messaging such as IBM, Sun and Sonic

Software implement such messaging services. Deployable
as a standalone server or integrated into an application
server, EMS/MOM provides reliable messaging and
decoupling for large-scale systems, more advanced high-
end commercial implementations ease integration issues
and provide massive-scalability with clustering support to
avoid a single point of failure.

This work is being conducted within the scope of the
Virtual Logistics multi-Agent Broker (V-LAB) research
project at the Department of Information Technology,
National University of Ireland, Galway. V-LAB uses the
Java Agent DEvelopment (JADE) platform as its agent’s
platform. JADE [5] is a FIPA compliant software
framework designed to assist the development of agent
applications in compliance with the FIPA specifications
for interoperable intelligent multi-agent systems. JADE is
designed to simplify the development of a software agent
while ensuring standard compliance through a
comprehensive set of system services and agents.

Researchers have noted that no agent platform
implementation to date has reached the quality of
commercial software applications [6]. A central theme of
our research is to integrate the JADE agent platform with
an EMS/MOM in order to allow JADE agents to
participate within an enterprise system. Development has
been completed on 1.0 version of the Java Messaging
Service-Message Transport Protocol (JMS-MTP) and this
has been released under the LGPL open source license,
available for download from the JADE website or from
http://ecrg.it.nuigalway.ie/jade.

The remainder of this paper gives an overview of the
JADE messaging architecture and EMS/MOM. The paper
also covers the design, implementation and evaluation of
the JADE JMS-MTP with conclusions and future
development plans.

2. JADE messaging

JADE is a FIPA compliant agent platform and
development framework. Agent platforms are responsible
for dealing with agent services such as messaging
(transport, encoding and parsing), scheduling, agent life-

cycle management and other common resources. JADE
agents are executed in a container where they share these
services with other agents present in the container. Our
main interest in the JADE platform concerns its messaging
capabilities.

2.1. JADE messaging architectural overview

Messaging within the JADE agent platform falls into
two categories, intra-platform and inter-platform agent
messaging. Intra-platform messaging takes places when
two or more agents that resided in the same platform wish
to communicate, these communications take place over
JADEs Internal Message Transport Protocol (IMTP).
IMTP techniques currently used by JADE are Java Event
passing (passing memory locations, very efficient) for
intra-container messaging and Remote Method Invocation
(RMI) for inter-container messaging. Our research
focuses on inter-platform communications.

2.2. Inter-platform communications

��������	��
���������������������������������	��
���������������������������������	��
���������������������������������	��
��������������������������

Figure 1 further illustrates the role of the IMTP and
MTP within JADEs messaging architecture. Inter-
platform communication takes place through the Agent
Communication Channel (ACC), which can use a number
of MTPs to transport agent messages to external
platforms. As of version 2.1, JADE has been designed to
allow ‘plugable’ MTP implementations; achieved by
exposing a number of Java interfaces in the jade.mtp
package [7].

There are a number of MTPs currently available for the
JADE platform CORBA IIOP based on the Sun ORB
(default MTP that ships with JADE), CORBA IIOP based
on the ORBACUS ORB [8] and a HTTP MTP [9].

2.3. Messaging-orientated middleware

As enterprises continue to deploy distributed
applications on ever increasing scales, transcending
geographical, organisational and traditional commercial
boundaries, the demands placed upon their
communication and transaction infrastructures increases
exponentially. Upon examination, direct RMI or Remote
Procedure Call (RPC) mechanisms quickly fail to meet the
challenges presented in such environments.

In order to cope with the demands of these systems, an
alternative to the RPC mechanism of distribution has
emerged. This new mechanism called Message-
Orientated Middleware or MOM provides a clean method
of communication between disparate software entities.
MOM systems are one of the cornerstone foundations that
distributed enterprise systems are built upon. MOM can
be defined as any middleware infrastructure that provides
messaging capabilities; in the context of this paper, we use
the term MOM to define Enterprise-Messaging Services
(EMS) such as, WebSphere MQ, SonicMQ, etc. These
services provide the backbone infrastructure to create
cohesive distributed applications.

The main benefits of MOM come from its
asynchronous interaction model and its use of message
queues. These queues allow each participating system to
proceed at its own pace without interruption. MOM
introduces transactional capability and a high Quality of
Service (QoS) not found in the RPC model, it also
provides a number of messaging models to solve a variety
of different messaging challenges. The process of
building dynamic, highly flexible, cohesive enterprise-
class distributed systems can be simplified by utilising an
EMS/MOM as the communications backbone.

2.4. Java messaging service

The Java Message Service (JMS) [10] specification
provides an API and a set of semantics that describe the
interface and general behaviour of an EMS. The goal of
the JMS specification is to provide a universal way to
interact with multiple heterogeneous EMS in a consistent
manner. An application using the JMS API is able to
plug-in any JMS compatible EMS, this allows the
developer to choose the best EMS implementation for the
applications requirements.

3. The JMS-MTP

The goal of this research is to implement a Java
Messaging Service (JMS) Message Transport Protocol
(MTP) for the JADE agent platform; this new
transportation plug-in is called the JMS-MTP. The
remainder of this section examines its design and
highlights some features of the new MTP.

3.1. JMS-MTP overview

The premise of the JMS-MTP is based on the notion
that inter-platform messages for a JADE platform are
enhanced by sending them to external entities using an
EMS as the delivery and decoupling mechanism. Areas of
particular interest in the MTPs design include, the queue

structure on the JMS provider, the encoding formats of the
messages and support for multiple JMS providers.

3.2. Queue structure

The JMS-MTP utilises a queue structure, as illustrated
in Figure 2, which requires each platform to have its own
queue for incoming messages. Only one platform may
read messages from a queue, however a platform may
have multiple queues on a single provider as a load
balancing mechanism, or could have multiple queues on
different providers.

To avoid naming conflicts we prefer for all JADE
platform queues to be placed under the ‘/jade’ prefix and
for each JADE platform to listen to a queue with the same
name as its host. For example, a platform with a
hostname of ‘frodo’ would listen to a queue called
‘/jade/frodo’ while a platform with a host of ‘IBM’ would
listen to a queue of name ‘/jade/IBM’.

When a platform connects to a JMS server they are
required to check for the existence of a queue for their
host, if one exists they should connect to it and start
listening, if a queue does not exist they are required to
connect to the JMS provider’s administration interface
and create a new queue for the platform.

�������� 	��
���������� 	��
���������� 	��
���������� 	��
�� ������ � ��������������� � ��������������� � ��������������� � �����������������

3.3. Message encoding formats

Messages sent with the JMS-MTP can be in two
formats, using FIPA compatible XML in a JMS
TextMessage or with a custom JMS-MTP MapMessage.

Messages encoded as XML are converted to the FIPA
Agent Message Transport Envelope Representation in
XML Specification [11]. Messages are encoded and
decoded using the JDOM framework, with Apaches
Xerces as the default SAX parser and delivered using a
JMS TextMessage. The overhead of parsing XML may
elongate the time required for the agent platform to
process the message, thereby limiting the overall message
throughput of the MTP.

In many respects, the MapMessage has all the same
virtues as XML without the performance hit of text
parsing. With regard to portability, most JMS vendors
will automatically convert a MapMessage produced by a
Java application to a non-Java environment. Hence, the
MapMessage is an alternative to using the XML format.

However, currently there is no FIPA specification for
such a hash format, thus usage of this format is limited to
scenarios where both sides of the communication are
performed using the JMS-MTP. It is our hope that FIPA
will address this issue by defining a standard specification
for a HashTable-like message format; our implementation,
using the JMS MapMessage, may provide a good
foundation for this standard.

3.4. Supported JMS providers

The fundamental concept of JMS is to provide a
universal interface to proprietary vendor specific EMSs.
Numerous vendors currently ship JMS compatible MOM
products; these include IBM's WebSphere MQ (formerly
MQSeries), Sun's JMQ, Sonic Software’s SonicMQ and
JBoss Group’s JBossMQ.

The JMS specification provides a consistent API set
that gives access to the common features of an EMS.
However, it does not define every aspect of a service, such
as the administration interface of a messaging service.
Hence service management and configuration is still
vendor specific such as, the dynamic creation of a queue
at runtime. Since the JMS-MTP relies on the ability of a
platform to create a new queue on a provider at runtime,
we have exposed an interface to allow new JMS
providers, with their vendor specific code, to be easily
‘plugable’ into the JMS-MTP. Once this interface has
been implemented, the JMS-MTP can dynamically load
the new provider at runtime, allowing for simultaneous
usage of multiple JMS compatible EMS providers. The
JMS-MTP currently ships with support for the JBossMQ
[12] and SonicMQ [13] JMS compatible EMSs.

3.5. Configurability of JMS-MTP

A number of settings that controls the JMS-MTP are
configurable, these include the default setting for the
XML parser, default platform address and any JMS

provider specific configurations. The Quality of Service
(QoS) level may also be set with the option for persistent
and non-persistent messages. When messages are marked
as persistent, it is the responsibility of the JMS provider to
guarantee that the message will never be lost. In order to
fulfil this responsibility the JMS provider must store the
message in a non-volatile medium such as a hard disk or
solid-state ram.

4. Research evaluation

In order to evaluate this new MTP, it shall be
compared against other available MTPs for performance
and scalability in a message throughput environment. The
JMS-MTP also provides a number of unique benefits for
the JADE agent platform. These benefits will be
highlighted.

4.1. Performance and scalability

In order to compare the JMS-MTP to other JADE
MTPs in performance and scalability we performed
benchmarking tests. These tests were carried out using
the test-suite [14] for JADE MTPs developed by Telecom
Italia Lab (TILAB). This test-suite consists of a number
of sender and receiver agent couples; these agents
measure the average roundtrip time (avgRTT) for a
circular exchange of an ACL message between a sender
agent and a receiver agent. The test-bed assembled to run
the benchmarks is of comparable performance to that used
by TILAB in their own benchmarks tests [14]. Running
their tests on our test-bed produced similar results.

4.2. Benchmarking results

The benchmark results, presented in Figure 3, show
that when used with its custom MapMessage format the
JMS-MTP outperforms all other currently available JADE
MTPs in tests run from 1 to 100 agent couples. When
used in conjunction with FIPA compliant XML, the JMS-
MTP is comparable to the performance of the HTTP MTP
even though the JMS-MTP has to make double the
number of network trips due to the EMS acting as
message intermediary in the roundtrip.

�������� 	��� ����� ��� �� ����� �������������� 	��� ����� ��� �� ����� �������������� 	��� ����� ��� �� ����� �������������� 	��� ����� ��� �� ����� ����������

4.3. Benefits of JMS-MTP

The main advantage the JMS-MTP has over the current
MTPs is guaranteed reliable messaging and flexibility.
The JMS-MTP offers support for the redelivery of failed
messages and message queuing for when a platform is
offline or temporarily out of contact (network/service
outage): - an agent platform is no longer required to be
available for a message to be sent to it. The JMS-MTP is
also more proficient in coping with high-volume traffic
bursts, allowing for an agent platform to process messages
at its own pace, buffering messages until it is ready to
process them. The JMS-MTP also offers multiple
message formats to maximise for performance or
portability.

Through the use of the JMS-MTP, you are able to
leverage high quality distributed infrastructure services
written by domain leaders within the messaging
middleware industry. When constructing large-scale
systems it is vital to utilise an enterprise-level EMS/MOM
implementation. Enterprise-level messaging platforms
normally have built-in support for service federation,
load-balancing and clustering, these services allow for
massive-scalability (some commercial implementations
support tens of thousands of clients with tens of thousands
of operations per second) [15].

The JMS-MTP is a flexible solution for
interconnecting agent platforms as it leverages the benefits
of EMS/MOM in the areas of decoupling, scalability,
system availability, and cohesiveness. This reduces the
effort required to add and remove participants from an
interconnected group of agent platforms.

 The JMS-MTP allows for a simple and flexible
integration of agent-based systems into heterogeneous
enterprise systems. It provides a straightforward
mechanism to easily integrate agent-based systems with
traditional, non agent-orientated, based software solutions.

The JMS-MTP has been used to integrate a JADE agent
system with a Java 2 Enterprise Edition (J2EE) based e-
business system.

5. Future plans

The next stage of our research is focusing on the
integration of the Publish/Subscribe messaging model,
found in EMS/MOM, into the JADE agent platform.
Along with a version 2.0 release of the JMS-MTP we also
plan to develop the MTP into a Java Agent Services (JAS)
[16] transport service, this would allow for the MTP to be
easily used within other agent platforms. The definition
of services, tools and techniques to further enable a
streamlined integration of agents and agent-based systems
into Enterprise Application Environments (EAE) is also
being investigated.

6. Conclusions

This work forms the necessary next step in integrating
agent-based systems into enterprise applications. This
paper describes work-in-progress on agent-based
messaging in the V-LAB project at the Department of
Information Technology, National University of Ireland,
Galway, Ireland.

Agent researchers have observed that one of the key
obstacles to the widespread deployment of agent
technology is the relative immaturity of agent technology
with regard to scalability, federation, persistence,
transactions, security, deployment lifecycle, management,
and integration with legacy systems [6]. We believe that
the current messaging capability of agent technology is
also an obstacle to deployment in enterprise systems. To
rectify this we have developed a Message Transport
Protocol (MTP) for the Java Agent DEvelopment (JADE)
platform that uses an Enterprise-Messaging Service
(EMS), via the Java Messaging Service API, to transport
inter-platform agent messages.

The JMS-MTP opens the world of EMSs to JADE;
these services are used to build highly reliable, scalable
and flexible distributed applications. EMSs provide a
host of powerful advantages over conventional distributed
computing models, they encourage loose coupling and
provide guaranteed reliable message delivery.

The JMS-MTP for JADE offers a number of
advantages to the developers of agent-based systems.
These benefits include the ability to easily communicate
and integrate agent-based systems with non agent-
orientated systems. The use of JMS has removed vendor
lock-in to a proprietary EMS implementation; this allows
an agent platform to use the most relevant EMS for its
requirements.

We believe the JMS-MTP moves JADE and agent
platforms a step closer to streamlined flexible integration
with business environments and full-scale participation in
the digital enterprise.

7. Acknowledgement

The support of the Informatics Research Initiative of
Enterprise Ireland is gratefully acknowledged.

8. References

[1] FIPA, "FIPA Agent Message Transport Service
Specification," 2002.
[2] FIPA, "FIPA Agent Message Transport Protocol for HTTP
Specification," 2002.
[3] FIPA, "FIPA Agent Message Transport Protocol for WAP
Specification," 2002.
[4] FIPA, "FIPA Agent Message Transport Protocol for IIOP
Specification," 2002.
[5] F. Bellifemine, A. Poggi, and G. Rimassa, "JADE - A FIPA-
compliant agent framework," presented at PAAM, London,
1999.
[6] D. Cowan and M. Griss, "Making Software Agent
Technology Available to Enterprise Applications," HP Labs
Technical Reports, 2002.
[7] F. Bellifemine, G. Caire, T. Trucco, and G. Rimassa, "JADE
Administrator's Guide," 2002.
[8] "Orbacus ORB MTP", http://sharon.cselt.it/projects/jade/
[9] "HTTP MTP", http://liawww.epfl.ch/
[10] Sun Microsystems, "Java Message Service: Specification,"
2001.
[11] FIPA, "FIPA Agent Message Transport Envelope
Representation in XML Specification," 2002.
[12] JBoss Group - JBossMQ", http://www.jboss.org
[13] Sonic Software - Sonic MQ", http://www.sonicmq.com
[14] E.Cortese, F.Quarta, and G.Vitaglione, "Scalability and
Performance of JADE Message Transport System," presented at
AAMAS Workshop on AgentCities, Bologna, 2002.
[15] MSF Group, "Deployment Strategies focusing on Massive
Scalability," 2003.
[16] JCP, "Java Agent Services API Specification",
http://www.java-agent.org

