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Increasing MOM Flexibility
with Portable Rule Bases

Message-oriented middleware (MOM) provides an effective integration mechanism

for distributed systems,but it must change frequently to adapt to evolving business

demands.Content-based routing (CBR) can increase the flexibility of MOM-based

deployments. Although centralized CBR improves a messaging solution’s

maintainability, it limits scalability and robustness. This article proposes an

alternative, decentralized approach to CBR that uses a portable rule base to

maximize MOM-based deployments’ maintainability, scalability, and robustness.

Integration presents a common chal-
lenge for the software community.
Whether connecting two simple appli-

cations or a collection of complex distrib-
uted systems, integration can be
demanding. At its most basic level, inte-
gration involves connecting one system’s
inputs and outputs to another’s. Faced
with integrating multiple distributed
systems, however, developers need to
consider numerous additional concerns.
When choosing an integration approach,
they must ask themselves how the solution
will perform within the operating envi-
ronment. How manageable is the solution?
What is the maintenance burden? Will the
solution scale? Is it heterogeneous and
flexible, with support for current and
future legacy systems? These key factors
determine integration’s success.

Message-oriented middleware (MOM)
is an effective and flexible mechanism for
interconnecting systems. It simplifies the
integration of multiple applications and

enables the creation of flexible and adapt-
able deployments. MOM provides a diverse
range of messaging capabilities, including
the point-to-point and publish–subscribe
messaging models, message filtering,
transactional messaging, and once-and-
once-only message delivery. In addition,
MOM successfully reduces the interface
and temporal coupling that synchronous
Remote Procedure Call-based mecha-
nisms experience, resulting in a highly
cohesive, decoupled approach to con-
necting multiple systems.1

However, MOM is not a silver bullet
for system integration — several chal-
lenges still exist. Application/business
logic (ABL) drives a MOM’s configuration.
Because this form of logic frequently
changes to meet current business de-
mands, the MOM’s configuration will also
need to change. A MOM-based integra-
tion approach must accommodate these
changes in a flexible manner. Here, I
examine MOM’s role within the integra-

26 NOVEMBER • DECEMBER 2006 Published by the IEEE Computer Society 1089-7801/06/$20.00 © 2006 IEEE IEEE INTERNET COMPUTING

M
es

sa
ge

-O
ri

en
te

d 
M

id
dl

ew
ar

e



tion process and, in particular, how its configura-
tion can introduce obstacles.

Integration Challenges
Successfully integrating two systems requires that
the developer reconcile or bridge both systems’
semantics. In a large-scale heterogeneous integra-
tion effort, this is one of the greatest challenges.
To achieve a successful integration, all participants
must have a common conceptualization of the
problem domain. David Orchard highlights some
of these issues:2

Imagine a Purchase Order system. A sender sends Pur-
chase Orders to a receiver, who responds with successful
completion of the order or failures. The receiver must
understand all the nuances and details of the purchase
order messages. Any interface or type change — such as
changing the authentication structures, changing the tim-
ing of the authentication step, changing the purchase order
messages, etc. — [will] require that the sender change. And
that means a programmer must perform the change.

The issues go beyond simply bridging low-level
interfaces and message formats to reconciling the
system’s ABL, which affects all areas of system
development. Most prominently from an integration
perspective, it directs the definition of messages: who
should receive the information, and how and when.

The MOM domain uses several constructs —
queues, topics, journals, destination hierarchies, and
so on — for message exchange. The developer con-
figures these constructs to meet the demands of the
particular application domain. In many cases, the
domain’s ABL will heavily influence their configu-
ration and will dictate how an application uses the
MOM to exchange messages, creating a tight cou-
pling to a specific destination configuration and
coupling the application to the MOM infrastructure.
This can influence the messaging solution in ways
that affect its flexibility, maintainability, and scal-
ability. To illustrate this form of infrastructure cou-
pling and the challenges it creates, consider the
following hypothetical scenario.

Hypothetical Scenario
A diverse set of domains — including news and
weather services, online auctions, marketplaces,
enterprise application environments, and a wide
range of information dissemination systems — use
MOM. The following scenario from the enterprise
application integration (EAI) domain illustrates the
impediments and issues ABL and MOM can pro-

duce. Although the scenario is EAI-specific, the
issues apply to a broad range of messaging sce-
narios. This example assumes the presence of a
message standard such as ebXML, the Universal
Business Language, or RosettaNet.

Consider the case of two multinational compa-
nies, Foo and Bar. Each company operates its own
independent MOM. When designing its communi-
cations infrastructure, each company created des-
tinations relevant to its own message consumers’
needs and associated ABL. For simplicity’s sake,
this scenario limits the consumers’ needs and the
ABL’s concerns to the regional divisions of mes-
sages. However, a company can use other concerns
to route communications along several lines,
including departmental divisions, business units,
document types (invoice or purchase order, for
example), message priorities, and so on. Each addi-
tional concern division increases the infrastruc-
ture’s complexity and the effort that connecting an
application requires.

Direct Integration Example
In this scenario, the application on the left side of
Figure 1 produces messages for the consumers on
the right; the MOM in the center delivers these
messages. For the application to communicate with
either company’s message consumers, it must place
its messages in the relevant destination. Foo has
four possible message destinations: Europe, North
America, Asia, and a catchall destination for mes-
sages outside those regions. Bar has a simpler
infrastructure, with only two destinations: Europe
and all other regions.

The most straightforward method of integration
available is to hardcode the application directly to
both communication infrastructures, connecting
directly to the destinations in each MOM. This solu-
tion’s main advantages, as Figure 1 shows, are its
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Figure 1. Direct integration. The application connects directly to each
company’s message destinations.
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straightforward implementation and decentralized
message delivery. Distributed message delivery will
increase the overall deployment’s scalability, but
this approach has limitations.

Direct Integration Limitations
Direct integration requires developers to “wire up”
their applications to each MOM’s messaging infra-
structure. Although hardcoding two simple
messaging infrastructures might be trivial, the
process’s complexity and cost grows geometrical-
ly as the messaging infrastructures’ number and
intricacy increase.

Hardcoding the application directly to the
MOM infrastructure creates tight coupling. This
reduces flexibility and manageability. At the same
time, it increases the integration solution’s main-
tenance burden, because any modification to the
MOM infrastructure will require reciprocal alter-
ations in both the consuming and producing appli-
cations. The challenge in this scenario is for the
application to integrate with each company’s
infrastructure in an effective, flexible manner
while minimizing the cost of changes to the mes-
saging infrastructure’s configuration.

Configuration-Oriented
Integration
To solve the problems that changes to ABL can
cause for MOM-based deployments, we must exam-
ine state-of-the-art integration practices. Traditional
integration involves programmatically connecting
two systems. In configuration-oriented integration
(COI), configuration files direct a middleware plat-
form to provide the connection between two sys-
tems’ inputs and outputs. COI is an important
technique that can connect multiple systems and
accommodate frequent ABL changes in a flexible
manner. Service-oriented architectures (SOAs) use
the technique to interconnect via enterprise service
bus (ESB). Configuring the ESB messaging infra-
structure allows services to interconnect within a
SOA. The ESB’s configuration captures the SOA’s
ABL messaging infrastructure requirements.

MOM-based deployments such as the hypothet-
ical scenario have several COI options. One common
solution captures the messaging infrastructure con-
figuration for MOM-based deployments.

Content-Based Routing
To overcome direct integration’s shortcomings, a
middleman such as content-based routing (CBR)
can deliver messages between producers and con-

sumers. CBR transports messages to consumers
based on the messages’ content. This is the mes-
saging counterpart of COI, with routing rules serv-
ing as the equivalent of COI’s configuration
mechanism. The rule base captures the messaging
infrastructure’s ABL.

A messaging system can offer CBR services
either at the MOM infrastructure level or at the
application level via a message router within the
messaging solution. Numerous commercial and
academic MOMs,3 including Tibco,4 WebSphere
MQ (formerly IBM MQSeries),5 Oracle Advanced
Queuing,6 Siena,7 Rebecca,8 Hermes,9 and Elvin,10

offer infrastructure-level CBR.
A downside to infrastructure-level CBR is the

lack of support from messaging standards. Each
MOM provides proprietary CBR functionality with
varying capabilities, from simple message filtering
to advanced composite event detection.9 The wide-
ly adopted Java Message Service (JMS)11 provides
limited support for consumer-side CBR by using
message selectors to flag messages within destina-
tions. However, this approach still requires con-
sumers and producers to locate the relevant
destination to exchange messages. Due to this lack
of standardization, implementing an infrastructure-
level CBR can lock a system into a proprietary
MOM platform.

Another drawback of infrastructure-level CBR
is the frequent lack of centralized rule bases. Many
implementations have consumers define the rout-
ing rules via their subscriptions. This requires con-
suming applications to change when the
infrastructure changes, replicating the high-cost
maintenance from which direct integration suffers.
To avoid proprietary lock-in and ensure the use of
a centralized rule base, a message router can pro-
vide CBR services at the application level.

Centralized
Content-Based Routing
The content-based router is a fundamental design
pattern that messaging solutions commonly use.
The message router contains a rule base that stores
routing instructions in order to direct messages to
the relevant destinations based on their content.
Variations on the pattern include the dynamic
router and the more generic message router.12

Centralized CBR Example
Figure 2 revisits the hypothetical scenario, this
time using the centralized CBR pattern. Messages
take the following steps:
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1. The application produces the message and
sends it to the router.

2. The router evaluates the message against its
rule base to match it to relevant destinations
based on its content.

3. The router forwards the message to the relevant
destinations.

4. The message consumer receives the message.

The centralization of routing responsibility
relieves the tight coupling and inflexibility of direct
integration, decoupling the application from the des-
tinations. The messaging infrastructure can now
adapt to meet current ABL requirements without
requiring the application to change. From the appli-
cation’s perspective, integration is simplified,
because it just delivers all messages to the relevant
company’s router. The cost of integrating with fur-
ther companies is minimal; no matter how complex
the companies’ messaging infrastructure, the appli-
cation simply forwards the messages to their routers.
However, this pattern entails some limitations.

Centralized CBR Limitations
The advantages of the centralized CBR pattern
emanate from its centralization of the message-
sorting process. However, centralization becomes
a weakness when it comes to scalability and
robustness. From a message-delivery perspective,
a centralized delivery mechanism can form a scal-
ability bottleneck, which affects the messaging
solution’s robustness.

Companies that replicate their messaging infra-
structures at multiple sites might not be able to
consolidate all of the routing rules into centralized
locations. Such implementations will need to repli-
cate the CBR rule base at each site, increasing the
solution’s maintenance burden.

The choice of whether to centralize integration
greatly affects the messaging solution’s character-
istics. Centralization simplifies integration, where-
as decentralization improves performance. In
particular, a messaging solution can improve scal-
ability by performing the routing as close to the
producer as possible.13 An ideal routing solution
would maintain the performance advantage of a
distributed message delivery while preserving the
maintenance benefits of a centralized rule base.

Decentralized CBR Integration
A decentralized approach shares the centralized
rule base with message participants, letting the
programs distribute their messages directly to rel-

evant destinations. To implement this, each com-
pany must express its rule base in a portable for-
mat and establish a mechanism for exchanging the
rule base between participants. This would allow
routing to take place along the edges of the inte-
gration scenario. Figure 3 illustrates this enhance-
ment to the CBR approach.

Using this new approach, the hypothetical sce-
nario would operate as follows:

1. The message producer receives routing rules
from each company’s rule base (as in Figure
3a). Routers can also exchange the rule bases
(Figure 3b).

2. The message producer creates a message and
matches it to the relevant destinations based on
the rule base. The producer sends the message
directly to its destinations.

3. The message consumer receives the message.

This solution provides the best of both worlds
by minimizing maintenance with a centralized
rule base while increasing scalability and robust-
ness with decentralized message delivery. It cap-
tures the related ABL in the rule base in the same
manner as the centralized CBR pattern does. How-
ever, the rule base’s runtime portability offers sev-
eral significant advantages.

A portable rule base is particularly useful for
systems that replicate messaging infrastructures at
multiple sites or for broker networks in which
numerous routers possess the same routing respon-
sibility. In these scenarios, which Router B in Fig-
ure 3 represents, the system can transfer the rule
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Figure 2. Centralized content-based routing. An application sends
messages to each company’s router, which uses a rule base to
determine where to send each message.
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base to each site or router, or between routers,
autonomously at runtime. This eases the mainte-
nance burden by consolidating the rule base man-
agement into one location. Developers can thus
make ABL changes related to the messaging infra-
structure in one place, then propagate the changes
to any location within the network.

The major drawback of this integration solution
is the initial cost of setting up the support frame-
work to facilitate the information exchange.14,15 For
simplistic or low-volume messaging environments,
this support framework could be overkill.

A centralized CBR solution needs only stan-
dard messaging facilities and a rule-powered
router. However, decentralized CBR requires two
additional elements: routing rules expressed in a
portable format and a mechanism for exchang-
ing the rules. The MOM framework Generic Self-
Management for Message-Oriented Middleware
(Gismo) supports these requirements.

Gismo
The Gismo framework provides general-purpose,
coordinated self-management techniques for JMS-
compatible MOM providers. Gismo opens up the
internal dynamics of a MOM provider, enabling it
to self-manage at runtime. I designed Gismo using
the concepts from Gregor Kiczales’s work on meta-
object protocols.16 One of the key aspects of his
groundbreaking work is the separation of a system
into two levels: a base level to provide system
functionality and a metalevel to contain policies
and strategies for system behavior. The Gismo
metalevel represents and tracks the state, opera-

tions, and events that exist within a MOM. Gismo
can attach to any base level (that is, any JMS-
compatible message provider) noninvasively using
the Chameleon framework.14 As Figure 4 shows,
Gismo features three distinct metamodels that
cover destinations, subscriptions, and interception
concerns. It also contains an event model and a
reflective engine. 

The destination metamodel tracks the existence
and basic configuration of destinations, whether
queue or topic, within the MOM. If the destination
forms part of a destination hierarchy, the model
captures additional information to track the rela-
tionships between destinations in the hierarchy.

Message consumers drive the main operating
requirements and workload for a MOM. As such,
the subscription metamodel is important for
obtaining the MOM’s current operational demands.
The model monitors client activity by tracking the
subscription details of message consumers, includ-
ing subscription constraints.

Interception is a vital technique for self-
managed systems because it offers a flexible
mechanism for monitoring, altering, and extend-
ing the behavior of a base level at runtime. For
instance, interception can inject functionality to
execute every time the system adds a new sub-
scriber, or when an application sends a message to
a client. The interception metamodel details and
tracks call interception and functionality injection
at specific locations or point cuts within the MOM
base level.

Gismo also provides a first-class event meta-
model that covers all fundamental actions within the
MOM environment, including messaging events,
administrative events, and time-based trigger events.

The reflective engine contains Gismo’s reflective
self-management capabilities. Its objective is to
define locations within the metalevel at which
reflective computations occur and to provide a
standard interface for reflective policies, which
offer an encapsulation mechanism for reflective
computational logic. The engine can place those
policies either in-line with system execution for
synchronous reflection or out-of-line for asyn-
chronous reflection. Once in position, reflective
policies perform their duties using the metalevel’s
full resources — the destination, subscription, inter-
ception, and event models — to effect change and
reconfigure the MOM provider at runtime.

For the purposes of analyzing decentralized
CBR, Gismo’s destination metamodel and coordi-
nation capabilities hold the most relevance.
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Figure 3. Decentralized content-based routing deployment. An
application’s router can receive routing rules either (a) directly from
a company’s rule base or (b) by communicating with other routers.
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Destination Metamodel
In its basic form, the destination metamodel
(DMM) tracks the existence and basic configura-
tion of destinations. This standard structure for
destination state storage contains basic informa-
tion about individual destinations. The core infor-
mation this structure tracks is as follows:

• destination ID,
• destination name,
• destination type (queue or topic), and    
• destination routing condition (optional).

The destination structure can store information on
either a queue or a topic, providing the DMM with
the ability to represent metainformation for desti-
nations within a MOM. The DMM offers addition-
al storage structures, but those are outside this
article’s scope.

With the destination model in place, reflective
policies can access the model and alter it to meet
current messaging requirements. As with any of
the metamodels, reflective policies can create,
update, and delete destinations and their configu-
rations within the DMM. Once the metamodel has
changed, Gismo instructs the underlying MOM
provider to update itself. To achieve this, the
destination metamodel defines a generic adminis-
tration interface that includes common adminis-
tration actions that MOMs take. The current
implementation of the DMM provides realization
support for three JMS-compliant providers: Open-
JMS, ActiveMQ, and SonicMQ.

Open Metalevel Interaction Protocol
Gismo facilitates the coordination of self-man-
agement techniques. The Open Metalevel Interac-
tion Protocol (OMIP), which follows the guidelines
previous work set out for metalevel coordina-
tion,15 provides access to the system’s internal
self-management operations. It allows message
deployment participants, whether clients or
providers, to exchange configuration information,
such as the destination metamodel, with each other,
providing the final piece for a decentralized CBR
approach to integration. 

Decentralized CBR with Gismo
Gismo implements the decentralized CBR pattern
by expressing the routing instructions from the
rule base within the DMM using the condition
attribute. Participants can now easily exchange the
DMM, which contains the rule base, by using

OMIP. Figure 5 shows a sample DMM for the hypo-
thetical scenario.

Using the DMM, information producers can
obtain the purpose of each destination, surmise its
relevance to ABL, and route messages to the rele-
vant location. The current incarnation of decentral-
ized CBR assumes a strict consistency model, with
each client requiring the latest version of the DMM
before it can participate in messaging activity.

By facilitating the coordination of self-
managing messaging systems, Gismo allows

decentralized CBR systems to regulate themselves,
providing another piece in the puzzle of a bal-
anced and flexible MOM solution. Future oppor-
tunities include using Gismo to coordinate MOM
self-management techniques, thus increasing the
flexibility of messaging solutions. However, if
coordination techniques such as portable rule
bases are to succeed, the developer community
must reach a consensus on their definition. To this
end, including Gismo mechanisms such as the
destination metamodel and OMIP within industri-
al messaging standards would facilitate their
widespread use in messaging solutions.
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Figure 5. Destination metamodels for the hypothetical scenario. Routing rules determine message
destinations for (a) company Foo and (b) company Bar.

<DestinationMetaModel>
<Destination id=“Foo_Inbox1” name=“Europe” type=“queue”>
<condition>region=“Europe”</condition>

</Destination>    
<Destination id=“Foo_Inbox2” name=“NorthAmerica” type=“queue”>
<condition>region=“North America”</condition>

</Destination>
<Destination id=“Foo_Inbox3” name=“Asia” type=“queue”>
<condition>region=“Asia”</condition>

</Destination> 
<Destination id=“Foo_Inbox4” name=“RestOfWorld” type=“queue”>
<condition>region NOT IN (“Europe”,”North America”, “Asia”)</condition>

</Destination>    
</DestinationMetaModel>
(a)

<DestinationMetaModel>
<Destination id=“Bar_Inbox1” name=“Europe” type=“queue”>
<condition>region=“Europe”</condition>

</Destination>    
<Destination id=“Bar_Inbox2” name=“RestOfWorld” type=“queue”>
<condition>region NOT IN (“Europe”)</condition>

</Destination>   
</DestinationMetaModel>
(b)


