2

Adaptive and Reflective
Middleware

Edward Curry
National University of Ireland, Galway, Ireland

2.1 Introduction

Middleware platforms and related services form a vital cog in the construction of robust
distributed systems. Middleware facilitates the development of large software systems by
relieving the burden on the applications developer of writing a number of complex infras-
tructure services needed by the system; these services include persistence, distribution,
transactions, load balancing, clustering, and so on.

The demands of future computing environments will require a more flexible system
infrastructure that can adapt to dynamic changes in application requirements and envi-
ronmental conditions. Next-generation systems will require predictable behavior in areas
such as throughput, scalability, dependability, and security. This increase in complexity
of an already complex software development process will only add to the already high
rates of project failure.

Middleware platforms have traditionally been designed as monolithic static systems.
The vigorous dynamic demands of future environments such as large-scale distribu-
tion or ubiquitous and pervasive computing will require extreme scaling into large,
small, and mobile environments. In order to meet the challenges presented in such envi-
ronments, next-generation middleware researchers are developing techniques to enable
middleware platforms to obtain information concerning environmental conditions and
adapt their behavior to better serve their current deployment. Such capability will be a
prerequisite for any next-generation middleware; research to date has exposed a num-
ber of promising techniques that give middleware the ability to meet these challenges
head on.

Adaptive and reflective techniques have been noted as a key emerging paradigm
for the development of dynamic next-generation middleware platforms [1, 2]. These

Middleware for Communications. Edited by Qusay H. Mahmoud
© 2004 John Wiley & Sons, Ltd ISBN 0-470-86206-8

30 Adaptive and Reflective Middleware

techniques empower a system to automatically self-alter (adapt) to meet its environ-
ment and user needs. Adaptive and Reflective system support advanced adaptive behav-
ior. Adaptation can take place autonomously or semiautonomously, on the basis of
the systems deployment environment, or within the defined policies of users or
administrators [3].

The objective of this chapter is to explore adaptive and reflective techniques, their
motivation for use, and introduce their fundamental concepts. The application of these
techniques will be examined, and a summary of a selection of middleware platforms that
utilize these techniques will be conducted. The tools and techniques that allow a system
to alter its behavior will be examined; these methods are vital to implementing adaptive
and reflective systems. Potential future directions for research will be highlighted; these
include advances in programming techniques, open research issues, and the relationship
to autonomic computing systems.

2.1.1 Adaptive Middleware

Traditionally, middleware platforms are designed for a particular application domain or
deployment scenario. In reality, multiple domains overlap and deployment environments
are dynamic, not static; current middleware technology does not provide support for
coping with such conditions. Present research has been focused on investigating the pos-
sibility of enabling middleware to serve multiple domains and deployment environments.
In recent years, platforms have emerged that support reconfigurability, allowing platforms
to be customized for a specific task; this work has led to the development of adaptive
multipurpose middleware platforms.

Adapt—a. To alter or modify so as to fit for a new use

An adaptive system has the ability to change its behavior and functionality. Adaptive
middleware is software whose functional behavior can be modified dynamically to opti-
mize for a change in environmental conditions or requirements [4]. These adaptations
can be triggered by changes made to a configuration file by an administrator, by instruc-
tions from another program, or by requests from its users. The primary requirements of a
runtime adaptive system are measurement, reporting, control, feedback, and stability [1].

2.1.2 Reflective Middleware

The groundbreaking work on reflective programming was carried out by Brian Smith at
MIT [5]. Reflective middleware is the next logical step once an adaptive middleware has
been achieved. A reflective system is one that can examine and reason about its capabilities
and operating environment, allowing it to self-adapt at runtime. Reflective middleware
builds on adaptive middleware by providing the means to allow the internals of a system
to be manipulated and adapted at runtime; this approach allows for the automated self-
examination of systems capabilities and the automated adjustment and optimization of
those capabilities. The process of self-adaptation allows a system to provide an improved
service for its environment or user’s needs. Reflective platforms support advanced adaptive
behavior; adaptation can take place autonomously on the basis of the status of the systems,
environment, or in the defined policies of its users or administrators [3].

Introduction 31

Reflect—v. To turn (back), cast (the eye or thought) on or upon something

Reflection is currently a hot research topic within software engineering and develop-
ment. A common definition of reflection is a system that provides a representation of its
own behavior that is amenable to inspection and adaptation and is causally connected to
the underlying behavior it describes [6]. Reflective research is also gaining speed within
the middleware research community. The use of reflection within middleware for advanced
adaptive behavior gives middleware developers the tools to meet the challenges of next-
generation middleware, and its use in this capacity has been advocated by a number of
leading middleware researchers [1, 7].

Reflective middleware is self-aware middleware [8]

The reflective middleware model is a principled and efficient way of dealing with highly
dynamic environments yet supports the development of flexible and adaptive systems
and applications [8]. This reflective flexibility diminishes the importance of many initial
design decisions by offering late-binding and runtime-binding options to accommodate
actual operating environments at the time of deployment, instead of only anticipated
operating environments at design time. [1]

A common definition of a reflective system [6] is a system that has the following:

Self-Representation: A description of its own behavior
Causally Connected: Alterations made to the self-representation are mirrored in the
system’s actual state and behavior

Causally Connected Self Representation (CCSR)

Few aspects of a middleware platform would not benefit from the use of reflective
techniques. Research is ongoing into the application of these techniques in a number of
areas within middleware platforms. While still relatively new, reflective techniques have
already been applied to a number of nonfunctional areas of middleware. One of the main
reasons nonfunctional system properties are popular candidates for reflection is the ease
and flexibility of their configuration and reconfiguration during runtime, and changes to a
nonfunctional system property will not directly interfere with a systems user interaction
protocols. Nonfunctional system properties that have been enhanced with adaptive and
reflective techniques include distribution, responsiveness, availability, reliability, fault-
tolerance, scalability, transactions, and security.

Two main forms of reflection exist, behavioral and structural reflection. Behavioral
reflection is the ability to intercept an operation and alter its behavior. Structural reflection
is the ability to alter the programmatic definition of a programs structure. Low-level
structural reflection is most commonly found in programming languages, that is, to change
the definition of a class, a function, or a data structure on demand is outside the scope of
this chapter. In this chapter, the focus is on behavioral reflection, specifically altering the
behavior of middleware platforms at runtime, and structural reflection concerned with the
high-level system architecture and selection of plugable service implementations used in
a middleware platform.

32 Adaptive and Reflective Middleware

2.1.3 Are Adaptive and Reflective Techniques the Same?
Adaptive and Reflective techniques are intimately related, but have distinct differences
and individual characteristics:

—An adaptive system is capable of changing its behavior.
—A reflective system can inspect/examine its internal state and environment.

Systems can be both adaptive and reflective, can be adaptive but not reflective, as well
as reflective but not adaptive. On their own, both of these techniques are useful, but when
used collectively, they provide a very powerful paradigm that allows for system inspection
with an appropriate behavior adaptation if needed. When talking about reflective systems,
it is often assumed that the system has adaptive capabilities.

Implementation Techniques 33

2.1.4 Triggers of Adaptive and Reflective Behavior

In essence, the reflective capabilities of a system should trigger the adaptive capabilities
of a system. However, what exactly can be inspected in order to trigger an appropriate
adaptive behavior? Typically, a number of areas within a middleware platform, its func-
tionality, and its environment are amenable to inspection, measurement, and reasoning
as to the optimum or desired performance/functionality. Software components known as
interceptors can be inserted into the execution path of a system to monitor its actions.
Using interceptors and similar techniques, reflective systems can extract useful information
from the current execution environment and perform an analysis on this information.

Usually, a reflective system will have a number of interceptors and system monitors
that can be used to examine the state of a system, reporting system information such
as its performance, workload, or current resource usage. On the basis of an analysis of
this information, appropriate alterations may be made to the system behavior. Potential
monitoring tools and feedback mechanisms include performance graphs, benchmarking,
user usage patterns, and changes to the physical deployments infrastructure of a platform
(network bandwidth, hardware systems, etc).

2.2 Implementation Techniques

Software development has evolved from the ‘on-the-metal’ programming of assembly and
machine codes to higher-level paradigms such as procedural, structured, functional, logic,
and Object-Orientation. Each of these paradigms has provided new tools and techniques
to facilitate the creation of complex software systems with speed, ease, and at lower
development costs.

In addition to advancements in programming languages and paradigms, a number of
techniques have been developed that allow flexible dynamic systems to be created. These
techniques are used in adaptive systems to enable their behavior and functionality changes.
This section provides an overview of such techniques, including meta-level programming,
components and component framework, generative programming, and aspect-oriented pro-
gramming.

2.2.1 Meta-Level Programming

In 1991, Gregor Kiczale’s work on combining the concept of computational reflection
and object-oriented programming techniques lead to the definition of a meta-object pro-
tocol [9]. One of the key aspects of this groundbreaking work was in the separation of a
system into two levels. The base-level provides system functionality, and the meta-level
contains the policies and strategies for the behavior of the system. The inspection and
alteration of this meta-level allows for changes in the system’s behavior.

The base-level provides the implementation of the system and exposes a meta-interface
that can be accessed at the meta-level. This meta-interface exposes the internals of the
base-level components/objects, allowing it to be examined and its behavior to be altered
and reconfigured. The base-level can now be reconfigured to maximize and fine-tune the
systems characteristics and behavior to improve performance in different contexts and
operational environments. This is often referred to as the Meta-Object Protocol or MOP.

34 Adaptive and Reflective Middleware

The design of a meta-interface/MOP is central to studies of reflection, and the interface
should be sufficiently general to permit unanticipated changes to the platform but should
also be restricted to prevent the integrity of the system from being destroyed [10].

Meta Terms Explained
Meta-

Prefixed to technical terms to denote software, data, and so on, which operate at a
higher level of abstraction — Oxford English Dictionary

Meta-Level

The level of software that abstracts the functional and structural level of a system.
Meta-level architectures are systems designed with a base-level (implementation level)
that handles the execution of services and operations, and a meta-level that provides
an abstraction of the base-level.

Meta-Object
The participants in an object-oriented meta-level are known as meta-objects

Meta-Object Protocol

The protocol used to communicate with the meta-object is known as the Meta-Object
Protocol (MOP)

2.2.2 Software Components and Frameworks

With increasing complexity in system requirements and tight development budget con-
straints, the process of programming applications from scratch is becoming less feasible.
Constructing applications from a collection of reusable components and frameworks is
emerging as a popular approach to software development.

A software component is a functional discrete block of logic. Components can be
full applications or encapsulated functionality that can be used as part of a larger appli-
cation, enabling the construction of applications using components as building blocks.
Components have a number of benefits as they simplify application development and
maintenance, allowing systems to be more adaptive and respond rapidly to changing
requirements. Reusable components are designed to encompass a reusable block of soft-
ware, logic, or functionality. In recent years, there is increased interest in the use of
components as a mechanism of building middleware platforms; this approach has enabled
middleware platforms to be highly flexible to changing requirements.

Component frameworks are a collection of interfaces and interaction protocols that
define how components interact with each other and the framework itself, in essence
frameworks allow components to be plugged into them. Examples of component
frameworks include Enterprise Java Beans (EJB) [11] developed by Sun Microsystems,
Microsoft’s .NET [12] and the CORBA Component Model (CMM) [13]. Components
frameworks have also been used as a medium for components to access middleware ser-
vices, for example, the EJB component model simplifies the development of middleware
applications by providing automatic support for services such as transactions, security,
clustering, database connectivity, life-cycle management, instance pooling, and so on. If

e Ql

Overview of Current Research 35

components are analogous to building blocks, frameworks can be seen as the cement that
holds them together.

The component-oriented development paradigm is seen as a major milestone in software
construction techniques. The process of creating applications by composing preconstructed
program ‘blocks’ can drastically reduce the cost of software development. Components
and component frameworks leverage previouse development efforts by capturing key
implementation patterns, allowing their reuse in future systems. In addition, the use of
replaceable software components can improve reliability, simplify the implementation,
and reduce the maintenance of complex applications [14].

2.2.3 Generative Programming

Generative programming [15] is the process of creating programs that construct other
programs. The basic objective of a generative program, also known as a program gen-
erator [16], is to automate the tedious and error-prone tasks of programming. Given a
requirements specification, a highly customized and optimized application can be auto-
matically manufactured on demand. Program generators manufacture source code in a
target language from a program specification expressed in a higher-level Domain Specific
Language (DSL). Once the requirements of the system are defined in the higher-level
DSL, the target language used to implement the system may be changed. For example,
given the specification of text file format, a program generator could be used to create a
driver program to edit files in this specified format. The program generator could use Java,
C, Visual Basic (VB) or any other language as the target language for implementation;
two program generators could be created, a Java version and a C version. This would
allow the user a choice for the implementation of the driver program.

Generative programming allows for high levels of code reuse in systems that share
common concepts and tasks, providing an effective method of supporting multiple variants
of a program; this collection of variants is known as a program family. Program generation
techniques may also be used to create systems capable of adaptive behavior via program
recompilation.

2.3 Overview of Current Research

Adaptive and reflective capabilities will be commonplace in future next-generation mid-
dleware platforms. There is consensus [1, 8] that middleware technologies will continue
to incorporate this new functionality. At present, these techniques have been applied to a
number of middleware areas. There is a growing interest in developing reflective middle-
ware with a large number of researchers and research groups carrying out investigations in
this area. A number of systems have been developed that employ adaptive and reflective
techniques, this section provides an overview of some of the more popular systems to
have emerged.

2.3.1 Reflective and Adaptive Middleware Workshops

Reflective and adaptive middleware is a very active research field with the completion of a
successful workshop on the subject at the IFIP/ACM Middleware 2000 conference [17].

36 Adaptive and Reflective Middleware

Papers presented at this workshop cover a number of topics including reflective and
adaptive architectures and systems, mathematical model and performance measurements
of reflective platforms. Building on the success of this event a second workshop took place
at Middleware 2003, The 2"¢ Workshop on Reflective and Adaptive Middleware [18]
covered a number of topics including nonfunctional properties, distribution, components,
and future research trends.

2.3.2 Nonfunctional Properties

Nonfunctional properties of middleware platforms have proved to be very popular candi-
dates for enhancement with adaptive and reflective techniques. These system properties
are the behaviors of the system that are not obvious or visible from interaction with the
system. This is one of the primary reasons they have proved popular with researchers,
because they are not visible in user/system interactions and changes made to these prop-
erties will not affect the user/system interaction protocol. Nonfunctional properties that
have been enhanced with adaptive and reflective techniques include distribution, respon-
siveness, availability, reliability, scalability, transactions, and security.

2.3.2.1 Security

The specialized Obol [19] programming language provides flexible security mechanisms
for the Open ORB Python Prototype (OOPP). In OOPP, the flexible security mecha-
nisms based on Obol is a subset of the reflective features of the middleware platform
enabling programmable security via Obol. Reflective techniques within OOPP provide
the mechanisms needed to access and modify the environment; Obol is able to access
the environment meta-model making it possible to change and replace security protocols
without changing the implementation of the components or middleware platform.

2.3.2.2 Quality-of-Service

A system with a Quality-of-Service (QoS) demand is one that will perform unacceptably
if it is not carefully configured and tuned for the anticipated environment and deployment
infrastructure. Systems may provide different levels of service to the end-user, depending
on the deployment environment and operational conditions. An application that is targeted
to perform well in a specific deployment environment will most likely have trouble if the
environment changes. As an illustration of this concept, imagine a system designed to
support 100 simultaneous concurrent users, if the system was deployed in an environment
with 1000 or 10,000 users it will most likely struggle to provide the same level of service
or QoS when faced with demands that are 10 or 100 times greater than what it is designed
to handle.

Another example is a mobile distributed multimedia application. This type of application
may experience drastic changes in the amount of bandwidth provided by the underlying
network infrastructure from the broadband connections offered by residential or office
networks to the 9600 bps GSM connection used while traveling. An application designed
to operate on a broadband network will encounter serious difficulties when deployed over
the substantially slower GSM-based connection. Researchers at Lancaster University have
developed a reflective middleware platform [10] that adapts to the underlying network

Overview of Current Research 37

infrastructure in order to improve the QoS provided by the application. This research
alters the methods used to deliver the content to the mobile client, achieved by using an
appropriate video and audio compression component for the network bandwidth available
or the addition of a jitter-smoothing buffer to a network with erratic delay characteristics.

2.3.2.3 Fault-Tolerant Components

Adaptive Fault-Tolerance in the CORBA Component Model (AFT-CCM) [20] is designed
for building component-based applications with QoS requirements related to fault-tolerance.
AFT-CCM is based on the CORBA Component Model (CCM) [13] and allows an appli-
cation user to specify QoS requirements such as levels of dependability or availability
for a component. On the basis of these requirements, an appropriate replication technique
and the quantity of component replicas will be set to achieve the target. These techniques
allow a component-based distributed application to be tolerant of possible component and
machine faults. The AFT-CCM model enables fault-tolerance in a component with complete
transparency for the application without requiring changes to its implementation.

2.3.3 Distribution Mechanism

A number of reflective research projects focus on improving the flexibility of applica-
tion distribution. This section examines the use of adaptive and reflective techniques in
enhancing application distribution mechanisms.

2.3.3.1 GARF and CodA

Projects such as GARF and CodA are seen as a milestone in reflective research. GARF [21]
(automatic generation of reliable applications) is an object-oriented tool that supports the
design and programming of reliable distributed applications. GARF wraps the distribu-
tion primitives of a system to create a uniform abstract interface that allows the basic
behavior of the system to be enhanced. One technique to improve application reliability is
achieved by replicating the application’s critical components over several machines. Group-
communication schemes are used to implement these techniques by providing multicasting
to deliver messages to groups of replicas. In order to implement this group-communication,
multicasting functionality needs to be mixed with application functionally. GARF acts as an
intermediate between group-communication functionality and applications; this promotes
software modularity by clearly separating the implementation of concurrency, distribution,
and replication from functional features of the application.

The CodA [22] project is a pioneering landmark in reflective research. Designed as an
object meta-level architecture, its primary design goal was to allow for decomposition
by logical behavior. Through the application of the decomposition OO technique, CodA
eliminated the problems existing in ‘monolithic’ meta-architectures. CodA achieves this
by using multiple meta-objects, with each one describing a single small behavioral aspect
of an object, instead of using one large meta-object that describes all aspects of an objects
behavior. Once the distribution concern has been wrapped in meta-objects, aspects of the
systems distribution such as message queues, message sending, and receiving can be
controlled. This approach offers a fine-grained approach to decomposition.

e Q2

e Q3
e Q4

38 Adaptive and Reflective Middleware

2.3.3.2 Reflective Architecture Framework for Distributed Applications

The Reflective Architecture Framework for Distributed Applications (RAFDA) [23] is a
reflective framework enabling the transformation of a nondistributed application into a
flexibly distributed equivalent one. RAFDA allows an application to adapt to its environment
by dynamically altering its distribution boundaries. RAFDA can transform a local object
into a remote object, and vice versa, allowing local and remote objects to be interchangeable.

As illustrated in Figure 2.1, RAFDA achieves flexible distribution boundaries by sub-
stituting an object with a proxy to a remote instance. In the above example, objects A
and B both hold references to a shared instance of object C, all objects exist in a single
address space (nondistributed). The objective is to move object C to a new address space.
RAFDA transforms the application so that the instance of C is remote to its reference
holders; the instance of C in address space A is replaced with a proxy, Cp, to the remote
implementation of C in address space B.

The process of transformation is performed at the bytecode level. RAFDA identifies points
of substitutability and extracts an interface for each substitutable class; every reference to
a substitutable class must then be transformed to use the extracted interface. The proxy
implementations provide a number of transport options including SOAPe, RMI, e and IIOPe.
The use of interfaces makes nonremote and remote versions of a class interchangeable, thus
allowing for flexible distribution boundaries. Policies determine substitutable classes and
the transportation mechanisms used for the distribution.

2.3.3.3 mChaRM

The Multi-Channel Reification Model (mChaRM) [24] is a reflective approach that
reifies and reflects directly on communications. The mChaRM model does not oper-
ate on base-objects but on the communications between base-objects, resulting in a
communication-oriented model of reflection. This approach abstracts and encapsulates
interobject communications and enables the meta-programmer to enrich and or replace
the predefined communication semantics. mChaRM handles a method call as a message
sent through a logical channel between a set of senders and a set of receivers. The model
supports the reification of such logical channels into logical objects called multi-channels.
A multi-channel can enrich the messages (method calls) with new functionality. This

Single Address Space Address Space A Address Space B

Figure 2.1 RAFDA redistribution transformation. Reproduced by permission of Springer, in Por-
tillo, A. R., Walker, S., Kirby, G., et al. (2003) A Reflective Approach to Providing Flexibility in
Application Distribution. Proceedings of the 2nd Workshop on Reflective and Adaptive Middleware,
Middleware 2003, Rio de Janeiro, Brazil

Overview of Current Research 39

technique allows for a finer reification reflection granularity than those used in previous
approaches, and for a simplified approach to the development of communication-oriented
software. mChaRM is specifically targeted for designing and developing complex com-
munication mechanism from the ground up, or for extending the behavior of a current
communication mechanism; it has been used to extend the standard Java RMI framework
to one supporting multicast RMI.

2.3.3.4 Open ORB

The Common Object Request Broker Architecture (CORBA) [25] is a popular choice for
research projects applying adaptive and reflective techniques. A number of projects have
incorporated these techniques into CORBA Object Request Brokers or ORBs.

The Open ORB 2 [10] is an adaptive and dynamically reconfigurable ORB supporting
applications with dynamic requirements. Open ORB has been designed from the ground up
to be consistent with the principles of reflection. Open ORB exposes an interface (frame-
work) that allows components to be plugable; these components control several aspects
of the ORBs behavior including thread and buffer management and protocols. Open ORB
is implemented as a collection of configurable components that can be selected at build-
time and reconfigured at runtime; this process of component selection and configurability
enables the ORB to be adaptive.

Open ORB is implemented with a clear separation between base-level and meta-level
operations. The ORBs meta-level is a causally connected self-representation of the ORBs
base-level (implementation) [10]. Each base-level component may have its own private
set of meta-level components that are collectively referred to as the components meta-
space. Open ORB has broken down its meta-space into several distinct models. The
benefit of this approach is to simplify the interface to the meta-space by separating con-
cerns between different system aspects, allowing each distinct meta-space model to give
a different view of the platform implementation that can be independently reified. As
shown in Figure 2.2, models cover the interfaces, architecture, interceptor, and resource

o s B e
w w ~ Resource
Architecture ’ Interface Interception (per address
L EP AR space)
/‘/\ N }/ N
T N
| DN 4 [' AN o ’
: R "~ _Meta-Level - (contains meta-objects)
| X s N
| /7 \,’\ N AN
|7 | > ,'\ -
\”Base-level ,'// “_ Base-level Base-level
component \ component component

Base-Level - (contains implementation objects)

Open ORB Address space

Figure 2.2 Open ORB architecture. Reproduced by permission of IEEE, in Blair, G. S., Coulson,
G., Andersen, A., ef al. (2001) The Design and Implementation of Open ORB 2, IEEE Distributed
Systems Online, 2(6)

40 Adaptive and Reflective Middleware

meta-spaces. These models provide access to the underlying platform and component
structure through reflection; every application-level component offers a meta-interface
that provides access to an underlying meta-space, which is the support environment for
the component.

Structural Reflection

Open ORB version 2 uses two meta-models to deal with structural reflection, one for
its external interfaces and one for its internal architecture. The interface meta-model acts
similar to the Java reflection API allowing for the dynamic discovery of a component’s
interfaces at runtime. The architecture meta-model details the implementation of a com-
ponent broken down into two lines, a component graph (a local-binding of components)
and an associated set of architectural constraints to prevent system instability [10]. Such
an approach makes it possible to place strict controls on access rights for the ORBs adap-
tation. This allows all users the right to access the interface meta-model while restricting
access rights to the architecture meta-model permitting only trusted third parties to modify
the system architecture.

Behavioral Reflection

Two further meta-models exist for behavioral reflection, the interception, and resource
models. The interception model enables the dynamic insertion of interceptors on a specific
interface allowing for the addition of prebehavior and postbehavior. This technique may
be used to introduce nonfunctional behavior into the ORB. Unique to Open ORB is its
use of a resource meta-model allowing for access to the underlying system resources,
including memory and threads, via resource abstraction, resource factories, and resource
managers [10].

2.3.3.5 DynamicTAO - Real-Time CORBA

Another CORBA-based reflective middleware project is DynamicTAO [26]. Dynamic-
TAO is designed to introduce dynamic reconfigurability into the TAO ORB [27] by adding
reflective and adaptive capabilities. DynamicTAO enables on-the-fly reconfiguration and
customization of the TAO ORBs internal engine, while ensuring it is maintained in a con-
sistent state. The architecture of DynamicTAO is illustrated in Figure 2.3; in this architec-
ture, reification is achieved through a collection of component configurators. Component
implementations are provided via libraries. DynamicTAO allows these components to be
dynamically loaded and unloaded from the ORBs process at runtime, enabling the ORB
to be inspected and for its configuration to be adapted. Component implementations are
organized into categories representing different aspects of the ORB’s internal engine such
as concurrency, security, monitoring, scheduling, and so on. Inspection in DynamicTAO
is achieved through the use of interceptors that may be used to add support for monitoring,
these interceptors may also be used to introduce behaviors for cryptography, compression,
access control, and so on. DynamicTAO is designed to add reflective features to the TAO
ORB, reusing the codebase of the existing TAO ORB results in a very flexible, dynamic,
and customizable system implementation.

Overview of Current Research 41

Servant 1 Configurator | | Servant 2 Configurator

Domain Controller

TAO ORB Configurator

Dynamic TAO

Figure 2.3 Architecture of dynamicTAO. Reproduced by permission of Springer, in Kon, F.,
Romadn, M., Liu, P., et al. (2002) Monitoring, Security, and Dynamic Configuration with the dynam-
icTAO Reflective ORB. Proceedings of the IFIP/ACM International Conference on Distributed
Systems Platforms and Open Distributed Processing (Middleware’2000), New York

2.3.3.6 Reflective Channel Hierarchies

This Chameleon messaging service [28] is a research prototype that provides a generic
framework in which reflective techniques can perform customizations and adoptions to
Message-Oriented Middleware (MOM). Chameleon focuses specifically on the application
of such techniques within message queues and channel/topic hierarchies used as part of
the publish/subscribe messaging model.

The publish/subscribe messaging model is a very powerful mechanism used to dis-
seminate information between anonymous message consumers and producers. In the pub-
lish/subscribe model, clients producing messages “publish” these to a specific topic or
channel. These channels are “subscribed” to by clients wishing to consume messages of
interest to them. Hierarchical channel structures allows channels to be defined in a hier-
archical fashion so that channels may be nested under other channels. Each subchannel
offers a more granular selection of the messages contained in its parent channel. Clients of
hierarchical channels subscribe to the most appropriate level of channel in order to receive
the most relevant messages. For further information on the publish/subscribe, model and
hierarchical channels, please refer to Chapter 1 (Message-Oriented Middleware).

Current MOM platforms do not define the structure of channel hierarchies. Applica-
tion developers must therefore manually define the structure of the hierarchy at design
time. This process can be tedious and error-prone. To solve this problem, the Chameleon
messaging architecture implements reflective channel hierarchies [28] with the ability to
autonomously self-adapt to their deployment environment. The Chameleon architecture
exposes a causally connected meta-model to express the set-up and configuration of the

42 Adaptive and Reflective Middleware

queues and the structure of the channel hierarchy, which enables the runtime inspection
and adoption of the hierarchy and queues within MOM systems.

Chameleon’s adaptive behavior originates from its reflection engine whose actions are
governed by plugable reflective policies; these intelligent policies contain the rules and
strategies used in the adaptation of the service. Potential policies could be designed to
optimize the distribution mechanism for group messaging using IP multicasts or to pro-
vide support for federated messaging services using techniques from Hermes [29] or
Herald [30]. Policies could also be designed to work with different levels of filtering
(subject, content, composite) or to support different formats of message payloads (XML,
JPEG, PDF, etc). Policies could also be used to introduce new behaviors into the ser-
vice; potential behaviors include collaborative filtering/recommender systems, message
transformations, monitoring and accounting functionality.

2.4 Future Research Directions

While it is difficult to forecast the future direction of any discipline, it is possible to high-
light a number of developments on the immediate horizon that could affect the direction
taken by reflective research over the coming years. This section will look at the impli-
cations of new software engineering techniques and highlight a number of open research
issues and potential drawbacks that effect adaptive and reflective middleware platforms.
The section will conclude with an introduction to autonomic computing and the potential
synergy between autonomic and reflective systems.

2.4.1 Advances in Programming Techniques

The emergence of multifaceted software paradigms such as Aspect-Oriented Programming
(AOP) and Multi-Dimensional Separation of Concerns (MDSOC) will have a profound
effect on software construction. These new paradigms have a number of benefits for the
application of adaptive and reflective techniques in middleware systems. This section
provides a brief overview of these new programming techniques.

2.4.1.1 Aspect-Oriented Programming (AOP)

We can view a complex software system as a combined implementation of multiple con-
cerns, including business-logic, performance, logging, data and state persistence, debug-
ging and unit tests, error checking, multithreaded safety, security, and various other
concerns. Most of these are system-wide concerns and are implemented throughout the
entire codebase of the system; these system-wide concerns are known as crosscutting
concerns.

The most popular practice for implementing adaptive and reflective systems is the
Object-Oriented (OO) paradigm. Excluding the many benefits and advantages object-
oriented programming has over other programming paradigms, object-oriented and reflec-
tive techniques have a natural fit. The OO paradigm is a major advancement in the way
we think of and build software, but it is not a silver bullet and has a number of limita-
tions. One of these limitations is the inadequate support for crosscutting concerns. The
Aspect-Oriented-Programming (AOP) [31] methodology helps overcome this limitation,

Future Research Directions 43

AOP complements OO by creating another form of separation that allows the imple-
mentation of a crosscutting concern as a single unit. With this new method of concern
separation, known as an aspect, crosscutting concerns are more straightforward to imple-
ment. Aspects can be changed, removed, or inserted into a systems codebase enabling the
reusability of crosscutting code.

A brief illustration would be useful to explain the concept. The most commonly used
example of a crosscutting concern is that of logging or execution tracking; this type of
functionality is implemented throughout the entire codebase of an application making it
difficult to change and maintain. AOP [31] allows this functionality to be implemented
in a single aspect; this aspect can now be applied/weaved throughout the entire codebase
to achieve the required functionality.

Dynamic AOP for Reflective Middleware
The Object-Oriented paradigm is widely used within reflective platforms. However, a
clearer separation of crosscutting concerns would be of benefit to meta-level architec-
tures. This provides the incentive to utilize AOP within reflective middleware projects.

A major impediment to the use of AOP techniques within reflective systems has
been the implementation techniques used by the initial implementations of AOP [32].
Traditionally, when an aspect is inserted into an object, the compiler weaves the aspect
into the objects code; this results in the absorption of the aspects into the object’s
runtime code. The lack of preservation of the aspects as an identifiable runtime entity
is a hindrance to the dynamic adaptive capabilities of systems created with aspects.
Workarounds to this problem exist in the form of dynamic system recompilation at
runtime; however, this is not an ideal solution and a number of issues, such as the
transference of the system state, pose problems.

Alternative implementations of AOP have emerged that do not have this limitation.
These approaches propose an AOP method of middleware construction using compo-
sition [33] to preserve aspect as runtime entities, this method of creation facilitates the
application of AOP for the construction of reflective middleware platforms. Another
approach involving Java bytecode manipulation libraries such as Javassist [34] pro-
vide a promising method of implementing AOP frameworks (JBossAOP) with dynamic
runtime aspect weaving.

One of the founding works on AOP highlighted the process of performance optimiza-
tion that bloated a 768-line program to 35,213 lines. Rewriting the program with the
use of AOP techniques reduced the code back to 1039 lines while retaining most of the
performance benefits. Grady Booch, while discussing the future of software engineering
techniques, predicts the rise of multifaceted software, that is, software that can be com-
posed in multiple ways at once, he cites AOP as one of the first techniques to facilitate
a multifaceted capability [35].

2.4.1.2 Multi-Dimensional Separation of Concerns

The key difference between AOP and Multi-Dimensional Separation of Concerns [36]
(MDSOC) is the scale of multifaceted capabilities. AOP will allow multiple crosscutting
aspects to be weaved into a program, thus changing its composition through the addition
of these aspects. Unlike AOP, MDSOC multifaceted capabilities are not limited to the

44 Adaptive and Reflective Middleware

use of aspects; MDSOC allows for the entire codebase to be multifaceted, enabling the
software to be constructed in multiple dimensions.

MDSOC also supports the separation of concerns for a single model [37], when using
AOP you start with base and use individually coded aspects to augment this base. Working
from a specific base makes the development of the aspects more straightforward but also
introduces limitations on the aspects, such as limitations on aspect composition [37]; you
cannot have an aspect of an aspect. In addition, aspects can be tightly coupled to the
codebase for which they are designed; this limits their reusability.

MDSOC enables software engineers to construct a collection of separate models, each
encapsulating a concern within a class hierarchy specifically designed for that con-
cern [37]. Each model can be understood in isolation, any model can be augmented
in isolation, and any model can be augmented with another model. These techniques
streamline the division of goals and tasks for developers. Even with these advances, the
primary benefit of MDSOC comes from its ability to handle multiple decompositions of
the same software simultaneously, some developers can work with classes, others with
features, others with business rules, other with services, and so on, even though they
model the system in substantially different ways [37].

To further illustrate these concepts, an example is needed, which by Ossher [37] is of
a software company developing personnel management systems for large international
organizations. For the sake of simplicity, assume that their software has two areas of
functionality, personal tracking that records employees’ personal details such as name,
address, age, phone number, and so on, and payroll management that handles salary and
tax information.

Different clients seeking similar software approach the fictitious company, they like the
software but have specific requirements, some clients want the full system while others
do not want the payroll functionality and refuse to put up with the extra overhead within
their system implementation.

On the basis of market demands, the software house needs to be able to mix and match
the payroll feature. It is extremely difficult to accomplish this sort of dynamic feature
selection using standard object-oriented technology. MDSOC allows this flexibility to be
achieved within the system with on-demand remodularization capabilities; it also allows
the personnel and payroll functionality to be developed almost entirely separate using
different class models that best suit the functionality they are implementing.

2.4.2 Open Research Issues

There are a number of open research issues with adaptive and reflective middleware
systems. The resolution of these open issues is critical to the wide-scale deployment of
adaptive and reflective techniques in production and mission critical environments. This
section highlights a number of the more common issues.

2.4.2.1 Open Standards

The most important issue currently faced by adaptive and reflective middleware researchers
is the development of an open standard for the interaction of their middleware platforms.
An international consensus is needed on the interfaces and protocols used to interact with
these platforms. The emergence of such standards is important to support the development

Future Research Directions 45

of next-generation middleware platforms that are configurable and reconfigurable and also
to offer applications portability and interoperability across proprietary implementation of
such platforms [10]. Service specification and standards are needed to provide a stable
base upon which to create services for adaptive and reflective middleware platforms.
Because of the large number of application domains that may use these techniques, one
generic standard may not be enough; a number of standards may be needed.

As adaptive and reflective platforms mature, the ability of such system to dynamically
discover components with corresponding configuration information at runtime would be
desirable. Challenges exist with this proposition, while it is currently possible to examine a
components interface at runtime; no clear method exists for documenting the functionality
of neither a component nor its performance or behavioral characteristics. A standard
specification is needed to specify what is offered by a component.

2.4.2.2 System Cooperation

One of the most interesting research challenges in future middleware platforms is the area
of cooperation and coordination between middleware services to achieve a mutual bene-
ficial outcome. Middleware platforms may provide different levels of services, depending
on environmental conditions and resource availability and costs. John Donne said ‘No
man is an island’; likewise, no adaptive or reflective middleware platform, service, or
component is an island, and each must be aware of both the individual consequences
and group consequences of its actions. Next-generation middleware systems must coordi-
nate/trade with each other in order to maximize the available resources to meet the system
requirements.

To achieve this objective, a number of topics need to be investigated. The concept of
negotiation-based adaptation will require mechanisms for the trading of resources and
resource usage. A method of defining a resource, its capabilities, and an assurance of the
QoS offered needs to be developed. Trading partners need to understand the commodities
they are trading in. Resources may be traded in a number of ways from simple barter
between two services to complex auctions with multiple participants, each with their own
tradable resource budget, competing for the available resource. Once a trade has been
finalized, enforceable contracts will be needed to ensure compliance with the trade agree-
ment. This concept of resource trading could be used across organizational boundaries
with the trading of unused or surplus resources in exchange for monetary reimbursement.

2.4.2.3 Resource Management

In order for next-generation middleware to maximize system resource usage and improve
quality-of-service, it must have a greater knowledge with regard to the available resources
and their current and projected status. Potentially, middleware platforms may wish to par-
ticipate in system resource management. A number of resource support services will need to
be developed including mechanisms to interact with a resource, obtain a resource’s status,
coordination techniques to allow a resource to be reserved for future usage at a specified time.
A method to allow middleware to provide resource management policies to the underlying
system-level resource managers or at the minimum to influence these policies by indicating
the resources it will need to meet its requirements will also be required.

46 Adaptive and Reflective Middleware

2.4.2.4 Performance

Adaptive and reflective systems may suffer in performance because of additional infras-
tructure required to facilitate adaptations and the extra self-inspection workload required
by self-adaptation; such systems contain an additional performance overhead when com-
pared to a traditional implementation of a similar system. However, under certain circum-
stances, the changes made to the platform through adaptations can improve performance
and reduce the overall workload placed on the system. This saving achieved by adaptations
may offset the performance overhead or even write it off completely.

System speed may not always be the most important measurement of performance for
a given system, for example, the Java programming language is one of the most popular
programming languages even though it is not the fastest language; other features such as
its cross-platform compatibility make it a desirable option. With an adaptive and reflective
platform, a performance decrease may be expected from the introduction of new features,
what limits in performance are acceptable to pay for a new feature? What metrics may be
used to measure such a trade-off? How can a real measurement of benefit be achieved?

Reflective systems will usually have a much larger codebase compared to a nonreflective
one, which is due to the extra code needed to allow for the system to be inspected and
adapted as well as the logic needed to evaluate and reason about the systems adaptation.
This larger codebase results in the platform having a larger memory footprint. What
techniques could be used to reduce this extra code? Could this code be made easily
reusable within application domains?

2.4.2.5 Safe Adaptation

Reflection focuses on increasing flexibility and the level of openness. The lack of safe-
bounds for preventing unconstrained system adaptation resulting in system malfunctions is
a major concern for reflective middleware developers. This has been seen as an ‘Achilles
heel” of reflective systems [38]. It is important for system engineers to consider the impact
that reflection may have on system integrity and to include relevant checks to ensure that
integrity is maintained. Techniques such as architectural constraints are a step in the right
direction to allowing safe adaptations. However, more research is needed in this area,
particularly where dynamically discovered components are introduced into a platform.
How do we ensure that such components will not corrupt the platform? How do we
discover the existence of such problems? Again, standards will be needed to document
component behavior with constant checking of its operations to ensure it does not stray
from its contracted behavior.

2.4.2.6 Clearer Separation of Concerns

The clearer separation of concerns within code is an important issue for middleware plat-
forms. A clear separation of concerns would reduce the work required to apply adaptive
and reflective techniques to a larger number of areas within middleware systems. The
use of dynamic AOP and MDSOC techniques to implement nonfunctional and crosscut-
ting concerns eases the burden of introducing adaptive and reflective techniques within
these areas.

Future Research Directions 47

The separation of concerns with respect to responsibility for adaptation is also an
important research area, multiple subsystems within a platform may be competing for
specific adaptations within the platform, and these adaptations may not be compatible with
one another. With self-configuring systems and specifically when these systems evolve to
become self-organizing groups, who is in charge of the group’s behavior? Who performs
the mediations between the conflicting systems? Who chooses what adaptations should
take place? These issues are very important to the acceptance of a self-configuration
system within production environments.

The Object Management Group (OMG) Model Driven Architecture (MDA) [39] defines
an approach for developing systems that separates the specification of system functionality
from the specification of the implementation of that functionality with a specific technol-
ogy. MDA can be seen as an advance on the concept of generative programming. The
MDA approach uses a Platform Independent Model (PIM) to express an abstract system
design that can be implemented by mapping or transforming to one or more Platform
Specific Models (PSMs). The major benefit of this approach is that you define a system
model over a constantly changing implementation technology allowing your system to be
easily updated to the latest technologies by simple switching to the PSMs for the new
technology. The use of MDA in conjunction with reflective components-based middleware
platforms could be a promising approach for developing future distributed systems.

2.4.2.7 Deployment into Production Environments

Deployment of adaptive and reflective systems into production mission critical environ-
ments will require these systems to reach a level of maturity where system administrators
feel comfortable with such a platform in their environment. Of utmost importance to
reaching this goal is the safe adaptation of the system with predictable results in the
systems behavior. The current practices used to test systems are inadequate for adaptive
and reflective systems. In order to be accepted as a deployable technology, it is important
for the research community to develop the necessary practices and procedures to test
adaptive and reflective systems to ensure they perform predictably, and such mechanisms
will promote confidence in the technology. Adaptive and reflective techniques must also
mature enough to require only the minimum amount of system adoption necessary to
achieve the desired goal. Once these procedures are in place, an incremental approach
to the deployment of these systems is needed; the safe coexistence of both technologies
will be critical to acceptance, and it will be the responsibility of adaptive and reflective
systems to ensure that their adaptations do not interfere with other systems that rely on
them or systems they interact with.

2.4.3 Autonomic Computing

As system workloads and environments become more unpredictable and complex, they
will require skilled administration personnel to install, configure, maintain, and provide
24/7 support. In order to solve this problem, IBM has announced an autonomic computing
initiative. IBM’s vision of autonomic computing [40] is an analogy with the human auto-
nomic nervous system; this biological system relieves the conscious brain of the burden of
having to deal with low-level routine bodily functions such as muscle use, cardiac muscle
use (respiration), and glands. An autonomic computing system would relieve the burden

e Q5

48 Adaptive and Reflective Middleware

Table 2.1 Fundamental characteristics of autonomic systems

Characteristic Description

Self-Configuring The system must adapt automatically to its operating environment, hardware
and software platforms must possess a self-representation of their abilities and
to self-configure to the environment

Self-Healing Systems must be able to diagnose and solve service interruptions. For a system
to be self-healing, it must be able to recognize a failure and isolate it, thus
shielding the rest of the system from its erroneous activity. It then must be
capable of recovering transparently from failure by fixing or replacing the
section of the system that is responsible for the error

Self-Optimizing ~ On a constant basis, the system must be evaluating potential optimizations.
Through self-monitoring and resource tuning, and through self-configuration,
the system should self-optimize to efficiently maximize resources to best meet
the needs of its environment and end-user needs

Self-Protecting Perhaps the most interesting of all the characteristics needed by an autonomic
system is that self-protecting systems need to protect themselves from attacke.
These systems must anticipate a potential attack, detect when an attack is
under way, identify the type of attack, and use appropriate countermeasures to
defeat or at least nullify the attack. Attacks on a system can be classified as
Denial-of-Service (DoS) or the infiltration of an unauthorized user to sensitive
information or system functionality

of low-level functions such as installation, configuration, dependency management, per-
formance optimization management, and routine maintenance from the conscious brain,
the system administrators.

The basic goal of autonomic computing is to simplify and automate the management
of computing systems, both hardware and software, allowing them to self-manage, with-
out the need for human intervention. Four fundamental characteristics are needed by an
autonomic system to be self-managing; these are described in Table 2.1. The common
theme shared by all of these characteristics is that each of them requires the system
to handle functionality that has been traditionally the responsibility of a human system
administrator.

Within the software domain, adaptive and reflective techniques will play a key role in
the construction of autonomic systems. Adaptive and reflective techniques already exhibit
a number of the fundamental characteristics that are needed by autonomic systems. Thus,
reflective and adaptive middleware provide the ideal foundations for the construction
of autonomic middleware platforms. The merger of these two strands of research is a
realistic prospect. The goals of autonomic computing highlight areas for the application
of reflective and adaptive techniques, these areas include self-protection and self-healing,
with some work already initiated in the area of fault-tolerance [20].

2.5 Summary

Middleware platforms are exposed to environments demanding the interoperability of
heterogeneous systems, 24/7 reliability, high performance, scalability and security while

® Q6

e Q7

Bibliography 49

maintaining a high QoS. Traditional monolithic middleware platforms are capable of cop-
ing with such demands as they have been designed and fine-tuned in advance to meet these
specific requirements. However, next-generation computing environments such as large-
scale distribution, mobile, ubiquitous, and pervasive computing will present middleware
with dynamic environments with constantly changing operating conditions, requirements,
and underlying deployment infrastructures. Traditionally, static middleware platforms will
struggle when exposed to these environments, thus providing the motivation to develop
next-generation middleware systems to adequately service such environments.

To prepare next-generation middleware to cope with these scenarios, middleware resear-
chers are developing techniques to allow middleware platforms to examine and reason
about their environment. Middleware platforms can then self-adapt to suit the current
operating conditions based on this analysis; such capability will be a prerequisite for
next-generation middleware.

Two techniques have emerged that enable middleware to meet these challenges. Adap-
tive and reflective techniques allow applications to examine their environment and self-
alter in response to dynamically changing environmental conditions, altering their behavior
to service the current requirements. Adaptive and reflective middleware is a key emerging
paradigm that will help simplify the development of dynamic next-generation middleware
platforms [1, 2].

There is a growing interest in developing reflective middleware with a large number
of researchers and research group’s active in this area. Numerous architectures have been
developed that employ adaptive and reflective techniques to allow for adaptive and self-
adaptive capabilities; these techniques have been applied in a number of areas within
middleware platforms including distribution, responsiveness, availability, reliability, con-
currency, scalability, transactions, fault-tolerance, and security.

IBM’s autonomic computing envisions a world of self-managing computer systems,
and such autonomic systems will be capable of self-configuration, self-healing, self-
optimization, and self-protection against attack, all without the need for human inter-
vention. Adaptive and reflective enabled middleware platforms will play a key role in the
construction of autonomic middleware as they share a number of common characteristics
with autonomic systems.

Bibliography

[1] Schantz, R. E. and Schmidt, D. C. (2001) Middleware for Distributed Systems:
Evolving the Common Structure for Network-centric Applications, Encyclopedia of
Software Engineering, Wiley & Sons.e

[2] Geihs, K. (2001) Middleware Challenges Ahead. IEEE Computer, 34(6).

[3] Blair, G. S., Costa, F. M., Coulson, G., et al.e (1998) The Design of a Resource-
Aware Reflective Middleware Architecture, Proceedings of the Second International
Conference on Meta-Level Architectures and Reflection (Reflection’99), Springer, St.
Malo, France.

[4] Loyall, J., Schantz, R., Zinky, J., et al. (2001) Comparing and Contrasting Adaptive
Middleware Support in Wide-Area and Embedded Distributed Object Applications.
Proceedings of the 21st International Conference on Distributed Computing Systems,
Mesa, AZ.

50 Adaptive and Reflective Middleware

[5] Smith, B. C. (1982) Procedural Reflection in Programming Languages, PhD Thesis,
MIT Laboratory of Computer Science.
[6] Coulson, G. (2002) What is Reflective Middleware? IEEE Distributed Systems
08 Online.e
[7]1 Geihs, K. (2001) Middleware Challenges Ahead. IEEE Computer, 34(6).
[8] Kon, F., Costa, F., Blair, G., ef al. (2002) The Case for Reflective Middleware.
Communications of the ACM, 45(6).
[9] Kiczales, G., Rivieres, J. d., and Bobrow, D. G. (1992) The Art of the Metaobject
® QY Protocol, MIT Press.e

[10] Blair, G. S., Coulson, G., Andersen, A., et al. (2001) The Design and Implementation
of Open ORB 2. IEEE Distributed Systems Online, 2(6).

[11] DeMichiel, L. G. and Sun Microsystems, Inc. Enterprise JavaBeansTM Specification,

® Q10 Version 2.1.e
eqi1 [12] Microsoft.e Overview of the .NET Framework White Paper,
http://msdn.microsoft.com

[13] Object Management Group (2002) CORBA Components OMG Document formal/
02-06-65.

[14] Szyperski, C. (1997) Component Software: Beyond Object-Oriented Programming,
Addison-Wesley.

[15] Czarnecki, K. and Eisenecker, U. (2000) Generative Programming: Methods, Tools,
and Applications, Addison-Wesley.

[16] Cleaveland, C. (2001) Program Generators with XML and Java, Prentice Hall.

[17] Kon, F., Blair, G. S., and Campbell, R. H. (2000) Workshop on Reflective Middle-
ware. Proceedings of the IFIP/ACM Middleware 2000, New York, USA.

[18] Corsaro, A., Wang, N., Venkatasubramanian, N., e al. (2003) The 2nd Workshop
on Reflective and Adaptive Middleware. Proceedings of the Middleware 2003, Rio
de Janeiro, Brazil.

[19] Andersen, A., Blair, G. S., Stabell-Kulo, T., er al. (2003) Reflective Middleware and
Security: OOPP meets Obol. Proceedings of the Workshop on Reflective Middleware,
Middleware 2003, Rio de Janeiro, Brazil; Springer-Verlag, Heidelberg, Germany.

[20] Favarim, F., Siqueira, F., and Fraga, J. (2003) Adaptive Fault-Tolerant CORBA Com-
ponents. Proceedings of the 2nd Workshop on Reflective and Adaptive Middleware,
Middleware 2003, Rio de Janeiro, Brazil.

[21] Garbinato, B., Guerraoui, R., and Mazouni, K.R. (1993) Distributed Programming
in GARF, Proceedings of the ECOOP Workshop on Object-Based Distributed Pro-
gramming, Springer-Verlag.

[22] McAffer, J. (1995) Meta-level Programming with CodA. Proceedings of the Euro-

0 QI2 pean Conference on Object-Oriented Programming (ECOOP)e.

[23] Portillo, A. R., Walker, S., Kirby, G., et al. (2003) A Reflective Approach to Pro-
viding Flexibility in Application Distribution. Proceedings of the 2nd Workshop
on Reflective and Adaptive Middleware, Middleware 2003, Rio de Janeiro, Brazil;
Springer-Verlag, Heidelberg, Germany.

[24] Cazzola, W. and Ancona, M. (2002) mChaRM: a Reflective Middleware for
Communication-Based Reflection. IEEE Distributed System On-Line, 3(2).

Bibliography 51

[25] Object Management Group (1998) The Common Object Request Broker: Architecture
and Specification.

[26] Kon, F., Romén, M., Liu, P., et al. (2002) Monitoring, Security, and Dynamic Con-
figuration with the dynamicTAO Reflective ORB. Proceedings of the IFIP/ACM
International Conference on Distributed Systems Platforms and Open Distributed
Processing (Middleware’2000), New York.

[27] Schmidt, D. C. and Cleeland, C. (1999) Applying Patterns to Develop Extensible
ORB Middleware. IEEE Communications Special Issue on Design Patterns, 37(4),
54-63.

[28] Curry, E., Chambers, D., and Lyons, G. (2003) Reflective Channel Hierarchies. Pro-
ceedings of the 2nd Workshop on Reflective and Adaptive Middleware, Middleware
2003, Rio de Janeiro, Brazil; Springer-Verlag, Heidelberg, Germany.

[29] Pietzuch, P. R. and Bacon, J. M. (2002) Hermes: A Distributed Event-Based Mid-
dleware Architecture.

[30] Cabrera, L. F., Jones, M. B., and Theimer, M. (2001) Herald: Achieving a Global
Event Notification Service. Proceedings of the 8th Workshop on Hot Topics in OS.

[31] Kiczales, G., Lamping, J., Mendhekar, A., et al. (1997) Aspect-Oriented Program-
ming. Proceedings of the European Conference on Object-Oriented Programming.

[32] Kiczales, G., Hilsdale, E., Hugunin, J., et al. (2001) An Overview of Aspect]. Pro-
ceedings of the European Conference on Object-Oriented Programming (ECOOP),
Budapest, Hungary.

[33] Bergmans, L. and Aksit, M. (2000) Aspects and Crosscutting in Layered Middleware
Systems. Proceedings of the IFIP/ACM (Middleware2000) Workshop on Reflective
Middleware, Palisades, New York.

[34] Chiba., S. (1998) Javassist — A Reflection-based Programming Wizard for Java.
Proceedings of the Workshop on Reflective Programming in C++ and Java at OOP-
SLA’98.

[35] Booch, G. (2001) Through the Looking Glass, Software Development.

[36] Tarr, P., Ossher, H., Harrison, W., ef al. (1999) N Degrees of Separation: Multi-
Dimensional Separation of Concerns. Proceedings of the International Conference
on Software Engineering ICSE’99.

[37] Ossher, H. and Tarr, P. (2001) Using Multidimensional Separation of Concerns to
(re)shape Evolving Software. Communications of the ACM, 44(10), 43-50.

[38] Moreira, R. S., Blair, G. S., and Garrapatoso, E. (2003) Constraining Architec-
tural Reflection for Safely Managing Adaptation. Proceedings of the 2nd Workshop
on Reflective and Adaptive Middleware, Middleware 2003, Rio de Janeiro, Brazil;
Springer-Verlag, Heidelberg, Germany.

[39] OMG (2001) Model Driven Architecture - A Technical Perspective. OMG Document:
ormsc/01-07-01.

[40] Ganek, A. and Corbi, T. (2003) The Dawning of the Autonomic Computing Era.
IBM Systems Journal, 42(1).

