
1
Message-Oriented Middleware

Edward Curry

National University of Ireland, Galway, Ireland

1.1 Introduction

As software systems continue to be distributed deployments over ever-increasing scales,
transcending geographical, organizational, and traditional commercial boundaries, the
demands placed upon their communication infrastructures will increase exponentially.
Modern systems operate in complex environments with multiple programming languages,
hardware platforms, operating systems and the requirement for dynamic flexible deploy-
ments with 24/7 reliability, high throughput performance and security while maintaining
a high Quality-of-Service (QoS). In these environments, the traditional direct Remote
Procedure Call (RPC) mechanisms quickly fail to meet the challenges present.

In order to cope with the demands of such systems, an alternative to the RPC distribution
mechanism has emerged. This mechanism called Message-Oriented Middleware or MOM
provides a clean method of communication between disparate software entities. MOM is
one of the cornerstone foundations that distributed enterprise systems are built upon. MOM
can be defined as any middleware infrastructure that provides messaging capabilities.

A client of a MOM system can send messages to, and receive messages from, other
clients of the messaging system. Each client connects to one or more servers that act as
an intermediary in the sending and receiving of messages. MOM uses a model with a
peer-to-peer relationship between individual clients; in this model, each peer can send and
receive messages to and from other client peers. MOM platforms allow flexible cohesive
systems to be created; a cohesive system is one that allows changes in one part of a
system to occur without the need for changes in other parts of the system.

1.1.1 Interaction Models

Two interaction models dominate distributed computing environments, synchronous and
asynchronous communication. This section introduces both interaction models; a solid

Middleware for Communications. Edited by Qusay H. Mahmoud
 2004 John Wiley & Sons, Ltd ISBN 0-470-86206-8

2 Message-Oriented Middleware

Caller

Call Remote Procedure

Remote Procedure Returns

Caller is blocking and must
wait for control to return

Called

Figure 1.1 Synchronous interaction model

knowledge of these models and the differences between them is key to understanding the
benefits and differences between MOM and the forms of distribution available.

1.1.2 Synchronous Communication

When a procedure/function/method is called using the synchronous interaction model, the
caller code must block and wait (suspend processing) until the called code completes
execution and returns control to it; the caller code can now continue processing. When
using the synchronous interaction model, as illustrated in Figure 1.1, systems do not
have processing control independence; they rely on the return of control from the called
systems.

1.1.3 Asynchronous Communication

The asynchronous interaction model, illustrated in Figure 1.2, allows the caller to retain
processing control. The caller code does not need to block and wait for the called code to
return. This model allows the caller to continue processing regardless of the processing
state of the called procedure/function/method. With asynchronous interaction, the called
code may not execute straight away. This interaction model requires an intermediary to
handle the exchange of requests; normally this intermediary is a message queue.

While more complex than the synchronous model, the asynchronous model allows
all participants to retain processing independence. Participants can continue processing,
regardless of the state of the other participants.

1.1.4 Introduction to the Remote Procedure Call (RPC)

The traditional RPC model is a fundamental concept of distributed computing. It is uti-
lized in middleware platforms including CORBA, Java RMI, Microsoft DCOM, and
XML-RPC. The objective of RPC is to allow two processes to interact. RPC creates the
façade of making both processes believe they are in the same process space (i.e., are

Introduction 3

Producer does not need to
block, retaining control allowing
it to continue processing

Producer

Send Message

Pull or Push Reply

Pull or Push Message

Send Reply

ConsumerMOM/Queue

Figure 1.2 Asynchronous interaction model

= Application

A

D

BF

CE

= Connection

Figure 1.3 An example remote procedure call deployment

the one process). On the basis of the synchronous interaction model, RPC is similar to
a local procedure call whereby control is passed to the called procedure in a sequential
synchronous manner while the calling procedure blocks waiting for a reply to its call. RPC
can be seen as a direct conversation between two parties (similar to a person-to-person
telephone conversation). An example of an RPC-based distributed system deployment is
detailed in Figure 1.3.

S

4 Message-Oriented Middleware

1.1.4.1 Coupling

RPC is designed to work on object or function interfaces, resulting in the model producing
tightly coupled systems as any changes to the interfaces will need to be propagated thought
the code base of both systems. This makes RPC a very invasive mechanism of distribution.
As the number of changes to source or target systems increase, the cost will increase too.
RPC provides an inflexible method of integrating multiple systems.

1.1.4.2 Reliability

Reliable communications can be the most important concern for distributed applications.
Any failure outside of the application – code, network, hardware, service, other software
or service outages of various kinds (network provider, power, etc) – can affect the reli-
able transport of data between systems. Most RPC implementations provide little or no
guaranteed reliable communication capability; they are very vulnerable to service outages.

1.1.4.3 Scalability

In a distributed system constructed with RPC, the blocking nature of RPC can adversely
affect performance in systems where the participating subsystems do not scale equally.
This effectively slows the whole system down to the maximum speed of its slowest
participant. In such conditions, synchronous-based communication techniques such as
RPC may have trouble coping when elements of the system are subjected to a high-volume
burst in traffic. Synchronous RPC interactions use more bandwidth because several calls
must be made across the network in order to support a synchronous function call. The
implication of this supports the use of the asynchronous model as a scalable method of
interaction.

1.1.4.4 Availability

Systems built using the RPC model are interdependent, requiring the simultaneous avail-
ability of all subsystems; a failure in a subsystem could cause the entire system to fail. In
an RPC deployment, the unavailability of a subsystem, even temporally, due to service
outage or system upgrading can cause errors to ripple throughout the entire system.

1.1.5 Introduction to Message-Oriented Middleware (MOM)

MOM systems provide distributed communication on the basis of the asynchronous inter-
action model; this nonblocking model allows MOM to solve many of the limitations
found in RPC. Participants in a MOM-based system are not required to block and wait
on a message send, they are allowed to continue processing once a message has been
sent. This allows the delivery of messages when the sender or receiver is not active or
available to respond at the time of execution.

MOM supports message delivery for messages that may take minutes to deliver, as
opposed to mechanisms such as RPC (RMI) that deliver in milliseconds or seconds.
When using MOM, a sending application has no guarantee that its message will be read

Introduction 5

= Application

MOM

A

B

C

F

E

D

= Connection

Figure 1.4 An example message-oriented middleware deployment

by another application nor is it given a guarantee about the time it will take the message
to be delivered. These aspects are mainly determined by the receiving application.

MOM-based distributed system deployments, as shown in Figure 1.4, offer a service-
based approach to interprocess communication. MOM messaging is similar to the postal
service. Messages are delivered to the post office; the postal service then takes responsi-
bility for safe delivery of the message [1].

1.1.5.1 Coupling

MOM injects a layer between senders and receivers, which allows message senders and
receivers to use this independent layer as an intermediary to exchange messages, see
Figure 2.2 for an illustration of this concept. A primary benefit of MOM is the loose
coupling between participants in a system – the ability to link applications without having
to adapt the source and target systems to each other, resulting in a highly cohesive,
decoupled system deployment [2].

1.1.5.2 Reliability

With MOM, message loss through network or system failure is prevented by using a store
and forward mechanism for message persistence. This capability of MOM introduces a
high level of reliability into the distribution mechanism, store and forward prevents loss
of messages when parts of the system are unavailable or busy. The specific level-of-
reliability is typically configurable, but MOM messaging systems are able to guarantee

6 Message-Oriented Middleware

that a message will be delivered, and that it will be delivered to each intended recipient
exactly once.

1.1.5.3 Scalability

In addition to decoupling the interaction of subsystems, MOM also decouples the per-
formance characteristics of the subsystems from each other. Subsystems can be scaled
independently, with little or no disruption to other subsystems. MOM also allows the
system to cope with unpredictable spikes in activity in one subsystem without affecting
other areas of the system. MOM messaging models contain a number of natural traits
that allow for simple and effective load balancing, by allowing a subsystem to choose to
accept a message when it is ready to do so rather than being forced to accept it. This
load-balancing technique will be covered in more detail later in the chapter. State-of-the-
art enterprise-level MOM platforms have been used as the backbone to create massively
scalable systems with support for handling 16.2 million concurrent queries per hour and
over 270,000 new order requests per hour [3].

1.1.5.4 Availability

MOM introduces high availability capabilities into systems allowing for continuous oper-
ation and smoother handling of system outages. MOM does not require simultaneous or
“same-time” availability of all subsystems. Failure in one of the subsystems will not cause
failures to ripple throughout the entire system. MOM can also improve the response time
of the system because of the loose coupling between MOM participants. This can reduce
the process completion time and improve overall system responsiveness and availability.

1.1.6 When to use MOM or RPC

Depending on the scenario they are deployed in, both MOM and RPC have their advan-
tages and disadvantages. RPC provides a more straightforward approach to messaging
using the familiar and straightforward synchronous interaction model. However, the RPC
mechanism suffers from inflexibility and tight coupling (potential geometric growth of
interfaces) between the communicating systems; it is also problematic to scale parts of the
system and deal with service outages. RPC assumes that all parts of the system will be
simultaneously available; if one part of the system was to fail or even become temporarily
unavailable (network outage, system upgrade), the entire system could stall as a result.

There is a large overhead associated with an RPC interaction; RPC calls require more
bandwidth than a similar MOM interaction. Bandwidth is an expensive performance over-
head and is the main obstacle to scalability of the RPC mechanism [4]. The RPC model
is designed on the notion of a single client talking to a single server; traditional RPC has
no built-in support for one-to-many communications. The advantage of an RPC system
is the simplicity of the mechanism and straightforward implementation. MOM simplifies
the process of building dynamic high-flexible enterprise-class distributed systems.

An advantage that RPC has over MOM is the guarantee of sequential processing. With
the synchronous RPC model, you can control the order in which processing occurs in
the system. For example, in an RPC system you can be sure that at any one time all the
new orders received by the system have been added to the database and that they have

Message Queues 7

been added in the order of which they were received. However, with an asynchronous
MOM approach this cannot be guaranteed, as new orders could exist in queues waiting
to be added to the database. This could result in a temporal inaccuracy of the data in the
database. We are not concerned that these updates will not be applied to the database,
but that a snapshot of the current database would not accurately reflect the actual state
of orders placed. RPC is slow but consistent; work is always carried out in the correct
order. These are important considerations for sections in a system that requires data to
have 100% temporal integrity. If this type of integrity is more important than performance,
you will need to use the RPC model or else design your system to check for these potential
temporal inaccuracies.

MOM allows a system to evolve its operational environment without dramatic changes
to the application assets. It provides an integration infrastructure that accommodates func-
tionality changes over time without disruption or compromising performance and scal-
ability. The decoupled approach of MOM allows for flexible integration of clients into
a system and support for large numbers of consumers/clients and producer/consumer
anonymity. Commercial MOM implementations provide high scalability with support
for tens of thousands of clients, advanced filtering, easy integration into heterogeneous
networks, and clustering reliability [3].

The RPC method is ideal if you want a strongly typed/Object-Oriented (OO) system
with tight coupling, compile-time semantic checking and an overall more straightforward
system implementation.

If the distributed systems will be geographically dispersed deployments with poor net-
work connectivity and stringent demands in reliability, flexibility, and scalability, then
MOM is the ideal solution.

1.2 Message Queues

The message queue is a fundamental concept within MOM. Queues provide the ability to
store messages on a MOM platform. MOM clients are able to send and receive messages
to and from a queue. Queues are central to the implementation of the asynchronous
interaction model within MOM. A queue, as shown in Figure 1.5, is a destination where
messages may be sent to and received from; usually the messages contained within a
queue are sorted in a particular order. The standard queue found in a messaging system
is the First-In First-Out (FIFO) queue; as the name suggests, the first message sent to the
queue is the first message to be retrieved from the queue.

Many attributes of a queue may be configured. These include the queue’s name, queue’s
size, the save threshold of the queue, message-sorting algorithm, and so on. Queuing is
of particular benefit to mobile clients without constant network connectivity, for example,
sales personnel on the road using mobile network (GSM, GRPS, etc) equipment to
remotely send orders to head office or remote sites with poor communication infras-
tructures. These clients can use a queue as a makeshift inbox, periodically checking the
queue for new messages. Potentially each application may have its own queue, or appli-
cations may share a queue, there is no restriction on the setup. Typically, MOM platforms
support multiple queue types, each with a different purpose. Table 1.1 provides a brief
description of the more common queues found in MOM implementations.

8 Message-Oriented Middleware

Message Producer 1

M M M M

First In First Out Queue

M M

M

M
M = Message

Message Producer ..

Message Producer N

Message Consumer 1

Message Consumer ..

Message Consumer N

Figure 1.5 Message queue

Table 1.1 Queue formats

Queue type Purpose

Public Queue Public open access queue
Private Queue Require clients to provide a valid username and password

for authentication and authorization
Temporary Queue Queue created for a finite period, this type of queue will

last only for the duration of a particular condition or a set
time period

Journal Queues Designed to keep a record of messages or events. These
queues maintain a copy of every message placed within
them, effectively creating a journal of messages

Connector/Bridge Queue Enables proprietary MOM implementation to interoperate
by mimicking the role of a proxy to an external MOM
provider. A bridge handles the translation of message for-
mats between different MOM providers, allowing a client
of one provider to access the queues/messages of another

Dead-Letter/Dead-Message Queue Messages that have expired or are undeliverable (i.e.,
invalid queue name or undeliverable addresses) are placed
in this queue

1.3 Messaging Models

A solid understanding of the available messaging models within MOM is key to appreciate
the unique capabilities it provides. Two main message models are commonly available,
the point-to-point and publish/subscribe models. Both of these models are based on the
exchange of messages through a channel (queue). A typical system will utilize a mix of
these models to achieve different messaging objectives.

1.3.1 Point-to-Point

The point-to-point messaging model provides a straightforward asynchronous exchange
of messages between software entities. In this model, shown in Figure 1.6, messages from
producing clients are routed to consuming clients via a queue. As discussed earlier, the
most common queue used is a FIFO queue, in which messages are sorted in the order

Messaging Models 9

Producer 1

Producer .. Point-to-Point Queue

Producer N

Consumer 1

Consumer ..

Consumer N

Only one consumer
receives the message

Figure 1.6 Point-to-point messaging model

in which they were received by the message system and as they are consumed, they are
removed from the head of the queue.

While there is no restriction on the number of clients who can publish to a queue,
there is usually only a single consuming client, although this is not a strict requirement.
Each message is delivered only once to only one receiver. The model allows multiple
receivers to connect to the queue, but only one of the receivers will consume the message.
The techniques of using multiple consuming clients to read from a queue can be used
to easily introduce smooth, efficient load balancing into a system. In the point-to-point
model, messages are always delivered and will be stored in the queue until a consumer
is ready to retrieve them.

Request-Reply Messaging Model
This model is designed around the concept of a request with a related response. This
model is used for the World Wide Web (WWW), a client requests a page from a
server, and the server replies with the requested web page. The model requires that
any producer who sends a message must be ready to receive a reply from consumers
at some stage in the future. The model is easily implemented with the use of the
point-to-point and publish/subscribe model and may be used in tandem to complement.

1.3.2 Publish/Subscribe

The publish/subscribe messaging model, Figure 1.7, is a very powerful mechanism used
to disseminate information between anonymous message consumers and producers. These
one-to-many and many-to-many distribution mechanisms allow a single producer to send
a message to one user or potentially hundreds of thousands of consumers.

In the publish/subscribe (pub/sub) model, the sending and receiving application is free
from the need to understand anything about the target application. It only needs to send
the information to a destination within the publish/subscribe engine. The engine will then
send it to the consumer. Clients producing messages “publish” to a specific topic or chan-
nel, these channels are then “subscribed” to by clients wishing to consume messages. The
service routes the messages to consumers on the basis of the topics to which they have sub-
scribed as being interested in. Within the publish/subscribe model, there is no restriction
on the role of a client; a client may be both a producer and consumer of a topic/channel.

10 Message-Oriented Middleware

Publisher 1

Publisher ..

Publisher N

Subscriber 1

Publish/Subscribe
Topic

Subscriber ..

Subscriber N

Figure 1.7 Publish/subscribe messaging model

A number of methods for publish/subscribe messaging have been developed, which sup-
port different features, techniques, and algorithms for message filtering [5], publication,
subscription, and subscription management distribution [6].

PUSH and PULL
When using these messaging models, a consuming client has two methods of receiving
messages from the MOM provider.

Pull
A consumer can poll the provider to check for any messages, effectively pulling them
from the provider.

Push
Alternatively, a consumer can request the provider to send on relevant messages as
soon as the provider receives them; they instruct the provider to push messages to
them.

1.3.2.1 Hierarchical Channel Namespaces

Hierarchical channels or topics are a destination grouping mechanism in pub/sub messag-
ing model. This type of structure allows channels to be defined in a hierarchical fashion,
so that they may be nested under other channels. Each subchannel offers a more gran-
ular selection of the messages contained in its parent. Clients of hierarchical channels
subscribe to the most appropriate level of channel in order to receive the most relevant
messages. In large-scale systems, the grouping of messages into related types (i.e., into
channels) helps to manage large volumes of different messages [7].

The relationship between a channel and subchannels allows for super-type subscriptions,
where subscriptions that operate on a parent channel/type will also match all subscrip-
tions of descendant channels/types. A channel hierarchy for an automotive trading service
may be structured by categorizing messaging into buys or sells, then further subcatego-
rization breaking down for commercial and private vehicle types. An example hierarchy
illustrating this categorizing structure is presented in Figure 1.8. A subscription to the
“Sell.Private Vehicles” channel would receive all messages classified as a pri-
vate vehicle sale, whereas subscribing to “Sell.Private Vehicles.Cars” would
result in only receiving messages classified as a car sale.

Messaging Models 11

Figure 1.8 An automotive hierarchical channel structure

Hierarchical channels require the channel namespace schema be both well defined and
universally understood by the participating parties. Responsibility for choosing a channel
in which to publish messages is left to the publishing client. Hierarchical channels are
used in routing situations that are more or less static; however, research is underway on
defining reflective hierarchies, with adaptive capabilities, for dynamic environments [8].

Consumers of the hierarchy are able to browse the hierarchy and subscribe to channels.
Frequently used in conjunction with the publish/subscribe messaging model, hierarchical
channels allow for the dissemination of information to a large number of unknown con-
sumers. Hierarchical channels can compliment filtering as a mechanism of routing relevant
messages to consumers; they provide a more granular approach to consumer subscription
that reduces the number of filters needed to exclude unwanted messages, while supporting
highly flexible easy access subject-based routing.

1.3.3 Comparison of Messaging Models

The two models have very similar capabilities and most messaging objectives can be
achieved using either model or a combination of both. The fundamental difference between
the models boils down to the fact that within the publish/subscribe model every consumer
to a topic/channel will receive a message published to it, whereas in point-to-point model
only one consumer will receive it. Publish/subscribe is normally used in a broadcast
scenario where a publisher wishes to send a message to 1-N clients. The publisher has
no real control over the number of clients who receive the message, nor have they a
guarantee any will receive it. Even in a one-to-one messaging scenario, topics can be
useful to categorize different types of messages. The publish/subscribe model is the more
powerful messaging model for flexibility; the disadvantage is its complexity.

12 Message-Oriented Middleware

In the point-to-point model, multiple consumers may listen to a queue; however, only
one consumer will receive each message. However, point-to-point will guarantee that a
consumer will receive the message, storing the messages in a queue until a consumer is
ready to receive the message; this is known as ‘Once and only once messaging’. While
the point-to-point model may not be as flexible as the publish/subscribe model, its power
is in its simplicity.

A common application of the point-to-point model is for load balancing. With multiple
consumers receiving from a queue, the workload for processing the messages is distributed
between the queue consumers. The exact order of how the messages are assigned to
consumers is specific to the MOM implementation, but if you utilize a pull model, a
consumer will receive a message only when they are ready to process it.

1.4 Common MOM Services

When constructing large-scale systems, it is vital to utilize a state-of-the-art enterprise-
level MOM implementation. Enterprise-level messaging platforms will usually come
with a number of built-in services for transactional messaging, reliable message deliv-
ery, load balancing, and clustering; this section will now give an overview of these
services.

1.4.1 Message Filtering

Message filtering allows a message consumer/receiver to be selective about the messages
it receives from a channel. Filtering can operate on a number of different levels. Filters use
Boolean logic expressions to declare messages of interest to the client, the exact format
of the expression depends on the implementation but the WHERE clauses of SQL-92 (or
a subset of) is commonly used as the syntax. Filtering models commonly operate on the
properties (name/value pairs) of a message; however, a number of projects have extended
filtering to message payloads [9]. Message filtering is covered further in the Java Message
Service section of this chapter.

Since •there are a number of filter capabilities found in messaging systems, it is useful•
to note that as the filtering techniques get more advanced, they are able replicate the
techniques that proceed them. For example, subject-based filtering is able to replicate
channel-based filtering, just like content-based filtering is able to replicate both subject
and channel-based filtering.

1.4.2 Transactions

Transactions provide the ability to group tasks together into a single unit of work. The
most basic straightforward definition of a transaction is as follows:

All tasks must be completed or all will fail together

In order for transactions to be effective, they must conform to the following properties
in Table 1.3, commonly referred to as the ACID transaction properties.

In the context of transactions, any asset that will be updated by a task within the
transaction is referred to as a resource. A resource is a persistent store of data that is

Common MOM Services 13

Table 1.2 Message filters

Filter type Description

Channel-based Channel-based systems categorize events into predefined groups.
Consumers subscribe to the groups of interest and receive all
messages sent to the groups

Subject-based Messages are enhanced with a tag describing their subject. Sub-
scribers can declare their interests in these subjects flexibly by
using a string pattern match on the subject, for example, all
messages with a subject starting of “Car for Sale”

Content-based As an attempt to overcome the limitations on subscription dec-
larations, content-based filtering allows subscribers to use flex-
ible querying languages in order to declare their interests with
respect to the contents of the messages. For example, such a
query could be giving the price of stock ‘SUN’ when the volume
is over 10,000. Such a query in SQL-92 would be “stock symbol
= ‘SUN’ AND stock volume >10,000”

Content-based with Patterns
(Composite Events)

Content-based filtering with patterns, also known as compos-
ite events [10], enhances content-based filtering with additional
functionality for expressing user interests across multiple mes-
sages. Such a query could be giving the price of stock ‘SUN’
when the price of stock ‘Microsoft’ is less than $50

Table 1.3 The properties of a transaction

Atomic All tasks must complete, or no tasks must complete

Consistent Given an initial consistent state, a final consistent state will be reached regardless
of the result of the transaction (success/fail)

Isolated Transactions must be executed in isolation and cannot interfere with other concur-
rent transactions

Durable The effect of a committed transaction will not be lost subsequent to a
provider/broker failure

participating in a transaction that will be updated; a message broker’s persistent message
store is a resource. A resource manager controls the resource(s); they are responsible for
managing the resource state.

MOM has the ability to include a message being sent or received within a transaction.
This section examines the main types of transaction commonly found in MOM. When
examining the transactional aspects of messaging systems, it is important to remem-
ber that MOM messages are autonomous self-contained entities. Within the messaging
domain, there are two common types of transactions, Local Transactions and Global
Transactions. Local transactions take place within a single resource manager such as
a single messaging broker. Global transactions involve multiple, potentially distributed
heterogeneous resource managers with an external transaction manager coordinating the
transaction.

14 Message-Oriented Middleware

1.4.2.1 Transactional Messaging

When a client wants to send or retrieve messages within a transaction, this is referred to
as Transactional Messaging. Transactional messaging is used when you want to perform
several messaging tasks (send 1-N messages) in a way that all tasks will succeed or all
will fail. When transactional messaging is used, the sending or receiving application has
the opportunity to commit the transaction (all the operations have succeeded), or to abort
the transaction (one of the operations failed) so all changes are rolled back. If a transaction
is aborted, all operations are rolled back to the state when the transaction was invoked.

Messages delivered to the server in a transaction are not forwarded on to the receiving
client until the sending client commits the transaction. Transactions may contain multiple
messages. Message transactions may also take place in transactional queues. This type of
queue is created for the specific purpose of receiving and processing messages that are
sent as part of a transaction. Nontransactional queues are unable to process messages that
have been included in a transaction.

1.4.2.2 Transaction Roles

The roles played by the message producer, message consumer, and message broker are
illustrated in Figure 1.9 and Figure 1.10.

Producer
The producer sends a message or set of messages to the broker.
On Commit, the broker stores then sends the message(s)
On Rollback, the broker disposes of the message(s).

Producer ConsumerMOM
Send 1 .. N

Commit

On commit the MOM server
persists the message to a

non-volatile store

Figure 1.9 Role of a producer in a transaction

Producer ConsumerMOM
Receive 1 .. N

Commit

On Commit the MOM server
removes the message(s)
from its persistent store

Figure 1.10 Role of a consumer in a transaction

Common MOM Services 15

Consumer
The consumer’s wish is to receive a message/set of messages from the broker.
On Commit, the broker disposes of the set of messages
On Rollback, the broker resends the set of messages.

To summarize the roles of each party in a message transaction, the message producer has
a contract with the message server; the message server has a contract with the message
consumer. Further information on integrating messaging with transactions is available
in [11, 12] and Chapter ?? (Transaction Middleware).

1.4.2.3 Reliable Message Delivery

A MOM service will typically allow the configuration of the Quality-of-Service (QoS)
delivery semantics for a message. Typically, it is possible to configure a message delivery
to be of at-most once, at-least-once, or once-and-once-only. Message acknowledgment can
be configured, in addition to the number of retry attempted on a delivery failure. With
persistent asynchronous communication, the message is sent to the messaging service that
stores it for as long as it takes to deliver the message, unless the Time-to-Live (TTL) of
the message expires.

1.4.3 Guaranteed Message Delivery

In order for MOM platforms to guarantee message delivery, the platform must save all
messages in a nonvolatile store such as a hard disk. The platform then sends the message
to the consumer and waits for the consumer to confirm the delivery. If the consumer
does not acknowledge the message within a reasonable amount of time, the server will
resend the message. This allows for the message sender to “fire and forget” messages,
trusting the MOM to handle the delivery. Certified message delivery is an extension of
the guaranteed message delivery method. Once a consumer has received the message, a
consumption report (receipt) is generated and sent to the message sender to confirm the
consumption of the message.

1.4.4 Message Formats

Depending on the MOM implementation, a number of message formats may be available
to the user. Some of the more common message types include Text (including XML),
Object, Stream, HashMaps, Streaming Multimedia [13], and so on. MOM providers can
provide mechanisms for transforming one message format into another and for transform-
ing/altering the format of the message payload; some MOM implementation allows XSL••
transformation to be carried out by an XML message payload. Such MOM providers are
often referred to as Message brokers and are used to “broker” the difference between
diverse systems [14].

1.4.5 Load Balancing

Load balancing is the process of spreading the workload of the system over a number
of servers (in this scenario, a server can be defined as a physical hardware machine or

16 Message-Oriented Middleware

software server instance or both). A correctly load balanced system should distribute work
between servers, dynamically allocating work to the server with the lightest load.

Two main approaches of load balancing exist, “push” and “pull”. In the push model,
an algorithm is used to balance the load over multiple servers. Numerous algorithms
exist, which attempt to guess the least-burdened and push the request to that server.
The algorithm, in conjunction with load forecasting, may base its decision on the
performance record of each of the participating servers or may guesstimate the least-
burdened server. The push approach is an imperfect, but acceptable, solution to load
balancing a system.

In the pull model, the load is balanced by placing incoming messages into a point-to-
point queue, and the consuming servers can then pull messages from this queue at their
own pace. This allows for true load balancing, as a server will only pull a message from
the queue once they are capable of processing it. This provides the ideal mechanism as
it more smoothly distributes the loads over the systems.

1.4.6 Clustering

In order to recover from a runtime server failure, the server’s state needs to be replicated
across multiple servers. This allows a client to be transparently migrated to an alternative
server, if the server it is interacting with fails. Clustering is the distribution of an appli-
cation over multiple servers to scale beyond the limits, both performance and reliability,
of a single server. When the limits of the server software or the physical limits of the
hardware have been reached, the load must be spread over multiple servers or machines
to scale the system further. Clustering allows us to seamlessly distribute over multiple
servers/machines and still maintain a single logical entity and a single virtual interface
to respond to the client requests. The grouping of clusters creates highly scalable and
reliable deployments while minimizing the number of servers needed to cope with large
workloads.

1.5 Java Message Service

A large number of MOM implementations exist, including WebSphere MQ (formerly
MQSeries) [15], TIBCO [16] SonicMQ [17], Herald [18], Hermes [19], SIENA [20],
Gryphon [21], JEDI [22], REBECCA [23] and OpenJMS [24]. In order to simplify the
development of systems utilizing MOMs, a standard was needed to provide a universal
interface to MOM interactions. To date, a number of MOM standardization have emerged
such as the CORBA Event Service [25], CORBA Notification Service [26] and most
notably the Java Message Service (JMS).

The Java Message Service (JMS) provides a common way for Java programs to cre-
ate, send, receive, and read an enterprise messaging system’s messages [27]. The JMS
provides a solid foundation for the construction of a messaging infrastructure that can be
applied to a wide range of applications. The JMS specification defines a general purpose
Application Programming Interface (API) to an enterprise messaging service and a set
of semantics that describe the interface and general behavior of a messaging service.
The goal of the JMS specification is to provide a universal way to interact with multiple
heterogeneous messaging systems in a consistent manner. The learning curve associated

Java Message Service 17

with many proprietary-messaging systems can be steep, thus the powerful yet simple API
defined in the JMS specification can save a substantial amount of time for developers in
a pure Java environment.

This API is designed to allow application programmers to write code to interact with
a MOM. The specification also defines a Service Provider Interface (SPI). The role of
the SPI is to allow MOM developers to hook up their proprietary MOM server to
the API. This allows you to write code once using the API and plug-in the desired
MOM provider, making client-messaging code portable between MOM providers that
implement the JMS specification, reducing vendor lock-in and offering you a choice.
It should be noted that JMS is an API specification and does not define the imple-
mentation of a messaging service. The semantics of message reliability, performance,
scalability, and so on, are not fully defined. JMS does not define an “on the wire”
format for messages. Effectively, two JMS compatible MOM implementations cannot
talk to each other directly and will need to use a tool such as a connector/bridge queue
to enable interoperability.

1.5.1 Programming using the JMS API

The format of a general message interface to a MOM would need to have the following
minimum functionality detailed in Table 1.4. The JMS API provides this basic functional-
ity through its programming model, illustrated in Figure 1.11, allowing it to be compatible
with most MOM implementations. This section gives a brief overview of the program-
ming model and presents an example of its usage. The code presented in the section is
pseudocode to illustrate the main points of the JMS API, in order to conserve space;
error/exception handling code has been omitted.

1.5.1.1 Connections and Sessions

When a client wants to interact with a JMS-compatible MOM platform, it must first
make a connection to the message broker. Using this connection, the client may create
one or more sessions; a JMS session is a single-threaded context used to send and receive
messages to and from queues and topics. Each session can be configured with individual
transactional and acknowledgment modes.

Table 1.4 General MOM API interface

Action Description

SEND Send a message to a specific queue
RECEIVE (BLOCKING) Read a message from a queue. If the queue is empty, the call will

block until it is nonempty
RECEIVE (NONBLOCK-
ING POLL)

Read a message from the queue. If the queue is empty, do not block

LISTENER (NOTIFY) Allows the message service to inform the client of the arrival of a
message using a callback function on the client. The callback function
is executed when a new message arrives in the queue

18 Message-Oriented Middleware

Connection
Factory

Message
Producer

Message
Consumer

Connection
createConnection()

createSession()

createProducer() createConsumer()

Asynchronous
-implement

setMessageListener()

Lookup Connection
Factory from JNDI

Synchronous
receive()send()

Session

Destination

Figure 1.11 The JMS API programming model

try {
// Create a connection
javax.jms.QueueConnectionFactory queueConnectionFactory

= (QueueConnectionFactory) ctx.lookup("QueueConnectionFactory");••
QueueConnection queueConnection

= queueConnectionFactory.createQueueConnection();••

// Create a Session
javax.jms.QueueSession queueSession

= queueConnection.createQueueSession(false,••
Session.AUTO_ACKNOWLEDGE);

// Create Queue Sender and Receiver
javax.jms.Queue myQueue = queueSession.createQueue("MyQueue");
javax.jms.QueueSender queueSender = queueSession.createSender(myQueue);
javax.jms.QueueReceiver queueReceiver

= queueSession.createReceiver(myQueue);••

// Start the Connection
queueConnection.start();

// Send Message
javax.jms.TextMessage message = queueSession.createTextMessage();
message.setText(" Hello World ! ");
queueSender.send(message);

// Synchronous Receive
javax.jms.Message msg = queueReceiver.receive();
if (msg instanceof TextMessage) {

javax.jms.TextMessage txtMsg = (TextMessage) msg;
System.out.println("Reading message: " + txtMsg.getText());

Java Message Service 19

} else {
// Handle other message formats

}

// Asynchronous Receive
MessageListener msgListener = new MessageListener() {
public void onMessage(javax.jms.Message msg) {
if (msg instanceof TextMessage) { // Only supports text messages
javax.jms.TextMessage txtMsg = (TextMessage) msg;
System.out.println("Reading message: " + txtMsg.getText());

}
}

};
queueReceiver.setMessageListener(msgListener);

} catch (javax.jms.JMSException jmse) {
// Handle error

}

1.5.1.2 Message Producers and Consumers

In order for a client to send a message to or receive a message from a JMS provider,
it must first create a message producer or message consumer from the JMS session.
For the publish/subscribe model, a javax.jms.TopicPublisher is needed to send
messages to a topic and a javax.jms.TopicSubscriber to receive. The above
pseudocode is an example of the process of connecting to a JMS provider, establishing a
session to a queue (point-to-point model) and using a javax.jms.QueueSender and
javax.jms.QueueReceiver to send and receive messages. The steps involved in
connecting to a topic are similar.

Receive Synchronously and Asynchronously
The JMS API supports both synchronous and asynchronous message delivery. To syn-
chronously receive a message, the receive() method of the message consumer is used.
The default behavior of this method is to block until a message has been received; how-
ever, this method may be passed a time-out value to limit the blocking period. To receive
a message asynchronously, an application must register a Message Listener with
the message consumer. Message listeners are registered with a message consumer object
by using the setMessageListener(javax.jms.MessageListener msgL)
method. A message listener must implement thejavax.jms.MessageListener inter-
face. Further detailed discussion and explanations of the JMS API are available in [29]
and [27].

1.5.1.3 Setting Message Properties

Message properties are optional fields contained in a message. These user-defined fields
can be used to contain information relevant to the application or to identity messages.
Message properties are commonly used as the data filtered by consuming clients using
message selectors.

20 Message-Oriented Middleware

1.5.1.4 Message Selectors

Message selectors are used to filter the messages received by a message consumer, and
they assign the task of filtering messages to the JMS provider rather than to the application.
The message consumer will only receive messages whose headers and properties match
the selector. A message selector cannot select messages on the basis of the content of the
message body. Message selectors consist of a string expression based on a subset of the
SQL-92 conditional expression syntax.

“Property Vehicle Type = ‘SUV’ and Property Mileage =< 60000”

1.5.1.5 Acknowledgments Modes

JMS supports the acknowledgment of the receipt of a message. Acknowledgment modes
are controlled at the sessions level with the modes in Table 1.5 supported.

1.5.1.6 Delivery Modes

The JMS API supports two delivery modes for message. The default PERSISTENT
delivery mode instructs the service to ensure that a message is not lost because of system
failure. A message sent with this delivery mode is placed in a nonvolatile memory store.
The second option available is the NON PERSISTENT delivery mode; this mode does
not require the service to store the message or guarantee that it will not be lost because
of system failure. This is a more efficient delivery mode because it does not require the
message to be saved to nonvolatile storage.

1.5.1.7 Priority

The priority setting of a message can be adjusted to indicate to the message service urgent
messages that should be delivered first. There are ten levels of priority ranging from 0
(lowest priority) to 9 (highest priority).

Table 1.5 JMS acknowledgement modes

Acknowledgment modes Purpose

AUTO ACKNOWLEDGE Automatically acknowledges receipt of a message. In asyn-
chronous mode, the handler acknowledges a successful return.
In synchronous mode, the client has successfully returned from
a call to receive()

CLIENT ACKNOWLEDGE Allow a client to acknowledge the successful delivery of a mes-
sage by calling its acknowledge() method

DUPS OK ACKNOWLEDGE A lazy acknowledgment mechanism that is likely to result in the
delivery of message duplicates. Only consumers that can tolerate
duplicate messages should use this mode. This option can reduce
overhead by minimizing the work to prevent duplicates

Java Message Service 21

1.5.1.8 Time-to-Live

JMS messages contain a use-by or expiry time known as the Time-to-Live (TTL). By
default, a message never expires; however, you may want to set an expiration time.
When the message is published, the specified TTL is added to the current time to give
the expiration time. Any messages not delivered before the specified expiration times are
destroyed.

1.5.1.9 Message Types

The JMS API defines five message types, listed in Table 1.6•, that allow you to send and•
receive data in multiple formats. The JMS API provides methods for creating messages
of each type and for filling in their contents.

1.5.1.10 Transactional Messaging

JMS clients can include message operations (sending and receiving) in a transaction. The
JMS API session object provides commit and rollback methods that are used to control
the transaction from a JMS client. A detailed discussion on transactions and transactional
messaging is available in Chapter ??.

1.5.1.11 Message Driven Enterprise Java Beans

The J2EE includes a Message Driven Bean (MDB) as a component that consumes mes-
sages from a JMS topic or queue, introduced in the Enterprise Java Beans (EJB) 2.0 speci-
fication they are designed to address the integration of JMS with EJBs. MDB is a stateless,
server-side, transaction-aware component that allows J2EE applications to process JMS
and other message such as HTTP, ebXML, SMTP, and so on, asynchronously. Tradition-
ally a proxy was needed to allow EJBs to process an asynchronous method invocation.
This approach used an external Java program that acted as the listener, and on receiving a
message, invoked a session bean or entity bean method synchronously using RMI/JRMP
or RMI/IIOP. With this approach, the message was received outside the application. MDB
solves this problem by allowing the message-processing code access to the infrastructure
services available from an EJB container such as transactions, fault-tolerance, security,
instances pooling, and so on. The EJB 2.0 specification also provides concurrent process-
ing for MDBs with pooling of bean instances. This allows for the simultaneous processing

Table 1.6 JMS message types

Message type Message contains

javax.jms.TextMessage A java.lang.String object
javax.jms.MapMessage A set of name/value pairs, with names as strings and values

as java primitive types. The entries can be accessed by name
javax.jms.BytesMessage A stream of uninterrupted bytes
javax.jms.StreamMessage A stream of Java primitive values, filled and read sequentially
javax.jms.ObjectMessage A Serializable Java object

22 Message-Oriented Middleware

of messages received, allowing MDBs a much higher throughput with superior scalability
than traditional JMS clients.

An MDB is a message listener that can reliably consume messages from a queue or
a durable subscription associated with a single JMS destination (queue or topic). Sim-
ilar to a message listener in a standalone JMS client, an MDB contains an onMes-
sage(javax.jms.Message msg). The EJB container invokes this method when
it intercepts an incoming JMS message, allowing the bean to process the message. A
detailed discussion on implementing MDBs is presented in [29].

1.6 Service-Oriented Architectures

The problems and obstacles encountered during system integration pose major challenges
for an organizations IT department:

“70% of the average IT department budget is devoted to data integration
projects”–IDC

“PowerPoint engineers make integration look easy with lovely cones and colorful
boxes”–Sean McGrath, CTO, Propylon

“A typical enterprise will devote 35%–40% of its programming budget to programs
whose purpose is solely to transfer information between different databases and
legacy systems.”–Gartner Group

Increasing pressure to cut the cost of software development is driving the emergence
of open nonproprietary architectures to utilize the benefits of reusable software compo-
nents. MOM has been used to create highly open and flexible systems that allow the
seamless integration of subsystems. MOM solves many of the transport issues with inte-
gration. However, major problems still exist with the representation of data, its format,
and structure. To develop a truly open system, MOM requires the assistance of addi-
tional technologies such as XML and Web Services. Both of these technologies provide
a vital component in building an open cohesive system. Each of these technologies will
be examined to highlight the capabilities they provide in the construction of open system
architectures.

1.6.1 XML

The eXtensible Mark-up Language (XML) provides a programming language and
platform-independent format for representing data. When used to express the payload
of a message, this format eliminates any networking, operating system, or platform bind-
ing that a binary proprietary protocol would use. XML provides a natural independent way
of representing data. Once data is expressed in XML, it is trivial to change the format of
the XML using techniques such as the eXtensible Stylesheet Language: Transformations

Service-Oriented Architectures 23

(XSLT). In order for XML to be used as a message exchange medium, standard formats
need to be defined to structure the XML messages. There are a number of bodies working
on creating these standards such as ebXML and the OASIS Universal Business Language
(UBL). These standards define a document layout format to provide a standard commu-
nicative medium for applications. With UBL, you convert your internal message formats
to the standard UBL format and export to the external environment. To import messages,
you mirror this process. An extensive examination of this process and relevant standards
is outside the scope of this chapter, for further information see [30, 31].

1.6.2 Web Services

Web Services are platform- and language-independent standards defining protocols for
heterogeneous system integration. In their most basic format, web services are interfaces
that allow programs to run over public or private networks using standard protocols
such as Simple Object Access Protocol (SOAP). They allow links to be created between
systems without the need for massive reengineering. They can interact with and/or invoke
one another, fulfilling tasks and requests that in turn carry out specific parts of complex
transactions or workflows. Web services can be seen in a number of ways, such as a
business-to-business/enterprise application integration tool or as a natural evolution of
basic RPC mechanism. The key benefit of a web services deployment is that they act as a
façade to the underlying language or platform, a web service written in C and running on
Microsoft’s Internet Information Server can access a web service written in Java running
on BEA’s Weblogic server.

1.6.2.1 SOAP

The Simple Object Access Protocol (SOAP) provides a simple and lightweight mecha-
nism for exchanging structured and typed information between peers in a decentralized,
distributed environment using XML [32]. SOAP messages contain an envelope, message
headers, and a message body. SOAP allows you to bind it to a transport mechanism
such as SMTP, HTTP, and JMS. SOAP can be used to implement both the synchronous
and asynchronous messaging models. SOAP has a number of uses; it can be used as a
document exchange protocol, a heterogeneous interoperability standard, a wire protocol
standard (something not defined in JMS), and an RPC mechanism. A detailed discus-
sion on SOAP is available in [32]. For the purposes of this section, SOAP is seen as a
document-exchange protocol between heterogeneous systems.

1.6.3 MOM

Message-Oriented Middleware provides an asynchronous, loosely coupled, flexible com-
munication backbone. The benefits of utilizing a MOM in distributed systems have been
examined in this chapter. When the benefits of a neutral, independent message format
and the ease of web service integration are combined with MOM, highly flexible open
systems may be constructed. Such an approach is more likely to be robust with respect
to change over a systems lifecycle.

24 Message-Oriented Middleware

1.6.4 Developing Service-Oriented Architectures

A service is a set of input messages sent to a single object or a composition of objects,
with the return of causally related output messages

Through the combination of these technologies, we are able to create Service-Oriented
Architectures (SOA). The fundamental design concept behind these architectures is to
reduce application processing to logic black boxes. Interaction with these black boxes
is achieved with the use of a standard XML message format; by defining the required
XML input and output formats, we are able to create black box services. The service
can now be accessed by transmitting the message over an asynchronous messaging
channel.

With traditional API-based integration, the need to create adaptors and data format
converters for each proprietary API is not a scalable solution. As the number of APIs
increases, the adaptors and data converters required will scale geometrically. The impor-
tant aspect of SOAs is their message-centric structure. Where message formats differ,
XML-based integration can convert the message to and from the format required using
an XML transformation pipeline, as is shown in Figure 1.12.

In this approach, data transformation can be seen as just another assembly line problem,
allowing services to be true black box components with the use of an XML-in and XML-
out contract. Users of the services simply need to transform their data to the services
contract XML format. Integration via SOA is significantly cheaper than integration via
APIs; with transformations taking place outside of the applications, it is a very noninvasive
method of integration. Service-Oriented Architecture with transforming XML is a new and
fresh way of looking at Enterprise Application Integration (EAI) and distributed systems
and a new way of looking at web services that are often touted as a replacement for
traditional RPC. Viewed in this light, they are an evolution of the RPC mechanism but
still suffer from many of its shortcomings.

With Service-Oriented Architectures, creating connections to trading partners and legacy
systems should be as easy as connecting to an interdepartmental system. Once the initial
infrastructure has been created for the architecture, the amount of effort to connect to
further systems is minimal. This allows systems created with this framework to be highly
dynamic, allowing new participants to easily join and leave the system.

Figure 1.13 illustrates an example SOA using the techniques advocated. In this deploy-
ment, the system has been created by interconnecting six subsystems and integrating

Service A

= Message in A’s
Format

Message is Transformed
from A’s to B’s format

= Message in B’s
Format

Service BA BXML Transformation
Pipeline

S
er

vi
ce

 A
 B

ou
nd

ar
y S

ervice B
 B

oundaryA B

Figure 1.12 XML transformation pipeline

Service-Oriented Architectures 25

Website Store (J2EE)

Web Service Interface

Remote Suppler (.Net)

MOM Provider with XML Transformation Pipeline

Web Service Interface

Financial Services
Provider

(AS400 - Assembler)

Web Service Interface

Web Service Interface

Legacy System
(Cobol)

Web Service Interface Web Service Interface

Outsourced Human
Resource Department

(J2SE)

System Monitor
(CORBA Notification

Service)

Figure 1.13 System deployed using web service, XML messages and MOM to create a SOA

them, each of the subsystems is built using a different technology for their primary
implementation.

The challenges faced in this deployment are common challenges faced daily by sys-
tem developers. When developing a new system it is rare for a development team not
to have some form of legacy system to interact with. Legacy systems may contain
irreplaceable business records, and losing this data could be catastrophic for an orga-
nization. It is also very common for legacy systems to contain invaluable business
logic that is vital for an organization’s day-to-day operation. It would be preferable
to reuse this production code, potentially millions of lines, in our new system. Trans-
forming a legacy system into an XML service provides an easy and flexible solution
for legacy interaction. The same principle applies to all the other subsystems in the
deployment, from the newly created J2EE Web Store, or the Financial Services provider
running on an AS400 to the Remote Suppliers running the latest Microsoft .NET sys-
tems. Each of these proprietary solutions can be transformed into a service and join
the SOA. Once a subsystem has been changed into a service, it can easily be added
and removed from the architecture. SOAs facilitate the construction of highly dynamic
systems, allowing functionality (services) such as payroll, accounting, sales, system mon-
itors, and so on, to be easily added and removed at run time without interruptions to
the overall system. The key to developing a first-rate SOA is to interconnect services
with a MOM-based communication; MOM utilization will promote loose coupling, flex-
ibility, reliability, scalability, and high-performance characteristics in the overall system
architecture.

XML + Web Services + MOM

Service Oriented Architecture
= Open Systems

26 Message-Oriented Middleware

1.7 Summary

Distribution middleware characterizes a high-level remote-programming mechanism
designed to automate and extend the native operating system’s network programming
facilities. This form of middleware streamlines the development of distributed systems by
simplifying the mechanics of the distribution process.

Traditionally, one of the predominate forms of distribution mechanisms used is Remote
Procedure Calls (RPC). This mechanism, while powerful in small- to medium-scale sys-
tems, has a number of shortcomings when used in large-scale multiparticipant systems.
An alternative mechanism to RPC has emerged to meet the challenges presented in the
mass distribution of large-scale enterprise-level systems.

Message-Oriented Middleware or MOM is a revolutionary concept in distribution allow-
ing for communications between disparate software entities to be encapsulated into mes-
sages. MOM solves a number of the inadequacies inherent in the RPC mechanism. MOM
can simplify the process of building dynamic, highly flexible enterprise-class distributed
systems.

MOM can be defined as any middleware infrastructure that provides messaging capabil-
ities. They provide the backbone infrastructure to create cohesive distributed applications.
MOM platforms are one of the cornerstone foundations that distributed enterprise sys-
tems are built upon. The process of building dynamic, highly flexible enterprise-class
distributed systems can be simplified by utilizing a state-of-the-art enterprise-level MOM
as the communications backbone.

The main benefits of MOM come from the asynchronous interaction model and the use
of message queues. These queues allow each participating system to proceed at its own
pace without interruption. MOM introduces transaction capability and a high Quality of
Service (QoS). It also provides a number of communication messaging models to solve
a variety of different messaging challenges.

MOM-based systems are proficient in coping with traffic bursts while offering a flexible
and robust solution for disperse deployments. Remote systems do not need to be available
for the calling program to send a message. Loose coupling exists between the consumers
and producers, allowing flexible systems to grow and change on demand. MOM also
provides an abstract interface for communications. When MOM is used in conjunction
with XML messages and web services, we are able to create highly flexible service-
oriented architectures. This form of architecture allows for the flexible integration of
multiple systems.

Bibliography

[1] Tanenbaum, A. S. and Steen, M. V. (2002) Distributed Systems: Principles and
Paradigms, 1st ed., Prentice Hall•.•

[2] Banavar, G., Chandra, T., Strom, R. E., et al.• (1999) A Case for Message Ori-•
ented Middleware. Proceedings of the 13th International Symposium on Distributed
Computing, Bratislava, Slovak Republic.

[3] Massive Scalability Focus Group (2003) Deployment Strategies Focusing on Massive
Scalability•.•

Bibliography 27

[4] Curry, E., Chambers, D., and Lyons, G. (2003) A JMS Message Transport Protocol
for the JADE Platform. Proceedings of the IEEE/WIC International Conference on
Intelligent Agent Technology, Halifax, Canada; IEEE Press.

[5] Hinze, A. and Bittner, S. (2002) Efficient Distribution-Based Event Filtering. Pro-
ceedings of the 1st International Workshop on Distributed Event-Based Systems
(DEBS’02), Vienna, Austria; IEEE Press.

[6] Carzaniga, A., Rosenblum, D.S., and Wolf, A. L. (2001) Design and Evaluation of
a Wide-Area Event Notification Service. ACM Transactions on Computer Systems,
19(3), 332–383.

[7] Pietzuch, P. R. and Bacon, J. M. (2002) Hermes: A Distributed Event-Based Mid-
dleware Architecture.

[8] Curry, E., Chambers, D., and Lyons, G. (2003) Reflective Channel Hierarchies. Pro-
ceedings of the 2nd Workshop on Reflective and Adaptive Middleware, Middleware
2003, Rio de Janeiro, Brazil; Springer-Verlag, Heidelberg, Germany.

[9] Mühl, G. and Fiege, L. (2001) Supporting Covering and Merging in Content-Based
Publish/Subscribe Systems: Beyond Name/Value Pairs. IEEE Distributed Systems
Online, 2(7•).•

[10] Pietzuch, P. R., Shand, B., and Bacon, J. (2003) A Framework for Event Compo-
sition in Distributed Systems. Proceedings of the ACM/IFIP/USENIX International
Middleware Conference (Middleware 2003), Rio de Janeiro, Brazil; Springer-Verlag,
Heidelberg, Germany.

[11] Tai, S. and Rouvellou, I. (2000) Strategies for Integrating Messaging and Dis-
tributed Object Transactions. Proceedings of the Middleware 2000, New York, USA;
Springer-Verlag.

[12] Tai, S., Totok, A., Mikalsen, T., et al. (2003) Message Queuing Patterns for
Middleware-Mediated Transactions. Proceedings of the SEM 2002, Orlando, FL;
Springer-Verlag.

[13] Chambers, D., Lyons, G., and Duggan, J. (2002) A Multimedia Enhanced Distributed
Object Event Service. IEEE Multimedia, 9(3), 56–71.

[14] Linthicum, D. (1999) Enterprise Application Integration, Addison-Wesley.
[15] Gilman, L. and Schreiber, R. (1996) Distributed Computing with IBM MQSeries,

John Wiley, New York.
[16] Skeen, D. (1992) An Information Bus Architecture for Large-Scale, Decision-

Support Environments. Proceedings of the USENIX Winter Conference•.•
[17] Sonic Software. Sonic MQ, http://www.sonicmq.com•.•
[18] Cabrera, L. F., Jones, M. B., and Theimer, M. (2001) Herald: Achieving a Global

Event Notification Service. Proceedings of the 8th Workshop on Hot Topics in OS.
[19] Pietzuch, P. R. (2002) Event-Based Middleware: A New Paradigm for Wide-Area

Distributed Systems?
[20] Carzaniga, A., Rosenblum, D. S., and Wolf, A. L. (2000) Achieving Expressiveness

and Scalability in an Internet-Scale Event Notification Service. Proceedings of the
Nineteenth ACM Symposium on Principles of Distributed Computing (PODC2000),
Portland, OR.

[21] Strom, R., Banavar, G., Chandra, T., et al. (1998) Gryphon: An Information Flow
Based Approach to Message Brokering. Proceedings of the International Symposium
on Software Reliability Engineering, Paderborn, Germany.

8 Message-Oriented Middleware

[22] Cugola, G., Nitto, E. D., and Fuggetta, A. (2001) The JEDI Event-Based Infrastruc-
ture and its Application to the Development of the OPSS WFMS. IEEE Transactions
on Software Engineering, 27(9), 827–850.

[23] Fiege, L. and Mühl, G. Rebeca, http://gkpc14.rbg.informatik.tu-darmstadt.de/rebeca/.
[24] ExoLab Group. OpenJMS, http://openjms.sourceforge.net/
[25] Object Management Group (2001) Event Service Specification.
[26] Object Management Group (2000) Notification Service Specification.
[27] Sun Microsystems (2001) Java Message Service: Specification.
[28] •Haase, K. and Sun Microsystems. The Java Message Service (JMS) Tutorial,•

http://java.sun.com/products/jms/tutorial/.
[29] Monson-Haefel, R. and Chappell, D. A. (2001) Java Message Service, O’Reilly &

Associates.
[30] Bosak, J. and Crawford, M. (in press•). Universal Business Language (UBL) Speci-•

fication.
[31] Lyons, T. and Molloy, O. (2003) Development of an e-Business Skillset Enhance-

ment Tool (eSET) for B2B Integration Scenarios. Proceedings of the IEEE Confer-
ence on Industrial Informatics (INDIN 2003), Banff, Canada.

[32] W3C (2001) SOAP Version 1.2.

