
feature

84	 I E E E S o f t w a r e P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y � 0 74 0 - 74 5 9 / 0 8 / $ 2 5 . 0 0 © 2 0 0 8 I E E E

s e l f -mana gem en t s y s t em s

Flexible Self-Management
Using the Model-View-
Controller Pattern

Edward Curry, National University of Ireland, Galway

Paul Grace, Lancaster University

A self-management
infrastructure
requires a self-
representation
to model system
functionality
concerns. The Model-
View-Controller
design pattern can
improve concern
separation in a
self-representation.

F uture computing initiatives such as ubiquitous and pervasive computing, large-scale

distribution, and on-demand computing will foster unpredictable and complex en-

vironments with challenging demands.1,2 Next-generation systems will require flex-

ible system infrastructures that can adapt to both dynamic changes in operational re-

quirements and environmental conditions, while providing predictable behavior in areas such as

throughput, scalability, dependability, and security. Successful projects, once deployed, will require

skilled administration personnel to install, configure, maintain, and provide 24/7 support.

To meet these challenges head-on, computing
systems will need to be more self-sufficient. IBM’s
vision of autonomic computing is an analogy with
the human nervous system that coordinates low-
level routine bodily functions such as respiration,
muscle activity, and perspiration.3 An autonomic,
or self-management, computing system would re-
lieve the burden of low-level functions such as in-
stallation, configuration, dependency management,
performance optimization management, and rou-
tine maintenance from their conscious brain: the
system administrators.

Self-management systems must be flexible
and customizable. An important part of a self-
management infrastructure is the self-representa-
tion used to model system functionality concerns,
allowing runtime inspection and adaptation. As the
range of self-management capabilities expands, the
task of creating appropriate self-representations be-
comes ever more complex. Current design practices
for self-representations are inflexible and therefore
costly to change. Appropriate concern separation

in a self-representation is vital. The Model-View-
Controller (MVC) pattern can improve concern sep-
aration by helping encapsulate state, analysis, and
realization operations. This in turn will improve
the self-representation’s flexibility and customiza-
tion, while simplifying portability between system
implementations. Here, we evaluate the merits of an
MVC-based self-representation design and demon-
strate its improvements in flexibility and customiza-
tion over a traditional design approach.

Autonomic computing
Autonomic computing aims to simplify and au-
tomate the management of computing systems,
both hardware and software, letting them self-
manage without human intervention. To be self-
managing, an autonomic system must have four
characteristics:

Self-configuring. The system must adapt auto-
matically to its operating environment. Hard-
ware and software platforms must possess

■

Authorized licensed use limited to: NATIONAL UNIVERSITY OF IRELAND GALWAY. Downloaded on June 22, 2009 at 10:04 from IEEE Xplore. Restrictions apply.

	 May/June 2008 I E E E S o f t w a r e � 85

self-representations of their abilities and self-
configure with regard to their environment.
Self-healing. The system must diagnose and
solve service interruptions. It must recognize a
failure and isolate it, thus shielding the rest of
the system from its erroneous activity. It then
must recover transparently from failure by fix-
ing or replacing the section of the system re-
sponsible for the error.
Self-optimizing. The system must constantly
evaluate potential optimizations. Through self-
monitoring and self-configuration, the system
should self-optimize to efficiently maximize
resources to best meet the needs of its environ-
ment and users.
Self-protecting. The system must anticipate a
potential attack, detect when an attack is un-
derway, identify the type of attack (for exam-
ple, denial of service or unauthorized access),
and use appropriate countermeasures to defeat
or at least nullify the attack.

All four characteristics (often collectively called
self-* capabilities) involve the ability to handle func-
tionality that has been traditionally a human sys-
tem administrator’s responsibility. The software do-
main has used adaptive and reflective techniques to
empower systems to automatically self-alter (adapt)
to meet their environmental and user needs. Such
techniques already enhance several software ser-
vices, including multimedia, security, transactions,
and fault tolerance, and they point to a key emerg-
ing paradigm for the development of dynamic next-
generation platforms.1,4

Initial implementations of self-managed systems
have targeted specific domains and deployment.5–8
So, their self-representations are specifically de-
signed to tackle the requirements in the domain.
These self-representations are thus tightly coupled
to the system’s implementation and the domain
they describe.

If self-managed systems are to become part of
standard industry practice, they’ll need to cope with
the everyday challenges of industrial environments.
Such environments present diverse deployments and
changing requirements. Systems frequently need
to scale in both large multiserver distributed en-
terprise systems and small embedded devices and
PDAs. Moreover, systems might be deployed across
a diverse range of application domains, from pay-
roll software to multimedia content delivery, with
varying requirements. Successful operation in such
environments will require flexible system imple-
mentations that are easily customizable to the tar-
get domain and associated requirements. The self-

■

■

■

managed system and its self-representation for these
environments must also be flexible and customiz-
able to support these requirements.

Current design practices for self-representations
focus on dividing system functionality into common
fixed concerns to enhance usability and simplify
implementation, with little consideration of flexibil-
ity.5–8 Increasing flexibility necessitates addressing
additional concerns specific to a self-representation
implementation. The MVC design pattern is ideally
suited to this task because it encapsulates the neces-
sary crosscutting concerns of a self-representation
in a straightforward, intuitive manner.

The role of a self-representation
Reflection is a well-known self-management tech-
nique for providing principled mechanisms to in-
spect a system’s structure and behavior. A reflective
system maintains a representation of itself (self-
representation), which is causally connected to the
implementation of the underlying system and de-
scribes what that system does.9 So, the underlying
system behavior reflects changes made to the self-
representation and vice versa. A self-representation
plays an important role in the development of self-
management capabilities. Inspecting and altering
the self-representation lets self-management code
or a system administrator examine system func-
tionality and alter and reconfigure the underlying
system’s behavior. This can improve the system’s
performance in different contexts and operational
environments.

To be effective, many current self-representations,
including Open ORB,6 dynamicTAO,7 and K-
Components,8 have three operational roles:

State. They can maintain information on the
system’s current state and the conditions experi-
enced in its environment.
Analysis. They can access state information
and perform relevant examinations on it.
Realization. They can alter the state informa-
tion and update the system’s functionality to
express those changes.

Two design approaches have emerged for sys-
tem self-representations. The first approach, which
many early self-managed systems employed, in-
corporates the definition of the self-representation
within the system functionality’s implementation.7
Although this approach is useful for leveraging ex-
isting code, mixing the self-representation with sys-
tem functionality can lead to a complex implemen-
tation as self-management capabilities increase.

The second, more popular, approach separates

■

■

■

Authorized licensed use limited to: NATIONAL UNIVERSITY OF IRELAND GALWAY. Downloaded on June 22, 2009 at 10:04 from IEEE Xplore. Restrictions apply.

86	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

the system into two parts: system functionality
and the self-representation. This approach is often
called a metaspace,10 meta-architecture, or meta-
level. The base level provides system functionality,
and the metalevel contains the self-representation
along with policies and strategies for the system’s
behavior. The Metaobject Protocol (MOP) serves
as the interface to the metalevel. To maintain clar-
ity, we’ll continue to use the terms managed system
functionality (base level) and self-representation
(metalevel) for the remainder of this article.

Figure 1 shows a typical design based on the
dual-level approach. The self-management manager
contains policies and strategies for the managed
system functionality’s self-configuring, self-healing,
self-optimizing, and self-protecting behavior. On
the basis of these policies and strategies, the man-
ager can analyze and alter the system functionality
by accessing the self-representation.

A well-designed self-representation tracks system
functionality (security, distribution, fault tolerance,
and so on) relevant to the system’s self-management
objectives. As the use of self-management capabili-
ties increases, self-representations must track greater
numbers of system concerns. To combat bloating
and complexity, self-management designers sepa-
rate system functionality concerns into multiple
models, thus improving the self-representation’s us-
ability.5 This technique has been successful at man-
aging complexity and simplifying interaction. Ini-
tial implementations of this approach encapsulated
system concerns within single objects. For example,
Open ORB separated its self-representation into
distinct objects for architecture, interface, intercep-
tion, and resource system concerns.6

Inevitably, the size of a self-representation for a

specific system concern will grow beyond a single
object’s practical size. Once this occurs, design-
ers will need to consider the purpose of objects
and interobject relationships and dependencies in
the self-representation. In addition, current design
practices provide minimal, if any, support to de-
velop general-purpose self-representations that are
customizable to a specific application domain or
system implementation.

Gismo: A self-representation
for MOM
Message-oriented middleware (MOM) is one of the
foundations of distributed systems. Its uses in such
systems range from providing small-scale commu-
nication infrastructure for embedded devices and
PDAs to serving as the messaging backbone of
massively scalable enterprise systems.11 The Gismo
(Generic Self-management for Message-Oriented
Middleware) framework aims to provide general-
purpose self-management capabilities for MOM
systems.12 The Gismo self-representation’s imple-
mentation poses several challenges for contempo-
rary design practices.

Challenges
Most MOM implementations share common be-
haviors and capabilities. However, they can also
contain some form of proprietary functionality
(message filtering, content-based routing, broker
networks with varying deployment topologies,
and so on). Additionally, MOM systems operate
in a diverse range of application environments,
from enterprise resource planning (ERP) systems
to on-demand mobile multimedia platforms. For
Gismo to be successful in each of these environ-
ments, its self-representation must track specific
information on the resources and demands in the
particular environment (data integration in ERP,
quality of service for mobile video streaming, and
so forth). A one-size-fits-all approach isn’t appro-
priate; Gismo must be able to easily extend its self-
representation in a controlled manner to include
such information.

The design must not only meet these require-
ments but also do so in a way that doesn’t nega-
tively affect usability and that minimizes the effort
required to port to new MOM implementations.
We present a design for Gismo using current design
practices, which illustrates their limitations.5,6,8

A contemporary Gismo design
Using current system concern separation practices
for the initial design identified three distinct MOM
system concerns, covering destinations, subscrip-

 Self-management manager

Self-* policies and strategies

Self-
configuration

Self-
healing

Self-
optimization

Self-
protection

Response to request State, analysis, and
realization requests

Self-representation

Managed-system functionality

State notifications Realizations

Notifications

Method
invocations

Figure 1. The
architecture of a
self-managed system.
The self-management
manager uses the
self-representation
to manipulate the
managed system.

Authorized licensed use limited to: NATIONAL UNIVERSITY OF IRELAND GALWAY. Downloaded on June 22, 2009 at 10:04 from IEEE Xplore. Restrictions apply.

	 May/June 2008 I E E E S o f t w a r e � 87

tions, and interception activities. Destination con-
cerns track the existence, basic configuration, and
relationships between destinations (queue or topic)
in the MOM. Subscription concerns monitor client
activity by tracking message consumers’ subscrip-
tion details, including subscription constraints. In-
terception concerns involve enabling the dynamic
insertion of interceptors. Interception is a vital tech-
nique for self-managed systems that offers a flexible
mechanism for monitoring, altering, and extending
the system’s behavior at runtime. For instance, in-
terception can inject functionality to execute every
time the system adds a new subscriber or when an
application sends a message to a client.

For brevity, we concentrate on the design
of the destination self-representation. This self-
representation has the three operational roles we
mentioned before:

state—data structure to track the type and ba-
sic configuration of destinations in the MOM;
analysis—operations to examine destinations
in the MOM (destination search, destination or
subscription analysis, destination traffic analy-
sis, and so on); and
realization—an administrative interface for des
tinations, facilitating the creation, updating,
and deletion of destinations and destination
hierarchies in the MOM.

We implemented these roles using a collection of
objects, as figure 2 shows.

This design decomposes the self-representation
into three objects encapsulating the state, analysis,
and realization roles. Many current designs encap-
sulate the state and analysis roles within a single
object.

To fulfill their objectives, self-* policies and stra-
tegies inspect the state and analysis objects to moni-
tor the system. For example, a self-optimizing strat-
egy might use the destination analysis object to ex-
amine common subscription constraints for a topic
destination. The strategy could then determine
whether sufficient common constraints exist to jus-
tify the creation, using the destination realization
object, of a new subtopic to optimize the MOM’s
performance.13

Design limitations
At first glance, the self-representation design might
appear reasonable; a self-representation’s three
roles are encapsulated in distinct objects. However,
closer inspection reveals several interdependencies
that will increase the effort required to customize
the self-representation. The Gismo self-manage-

■

■

■

ment manager directly interacts with all three ob-
jects in the self-representation, and the managed
MOM’s functionality interacts directly with desti-
nation state and realization objects. Any changes
to the destination state, analysis, or realization ob-
jects might require not only internal alterations of
the self-representation but also external changes in
both the Gismo self-management manager and the
managed MOM functionality. This limits design
flexibility.

Interaction with the MOM implementation
crosscuts the self-representation. This coupling
increases the effort required to change the self-
representation and to port it to alternative MOM
implementations. The self-representation design
supports specific MOM implementations by im-
plementing new state and realization objects. Al-
though it’s difficult to completely avoid the work
required to port the self-representation, a clearer
separation of concerns to improve encapsulation
can minimize this effort considerably.

This example illustrates how the implementa-
tion of a self-representation design’s operational
roles can affect flexibility. It also shows that depen-
dencies in the design don’t promote customization
or portability, and it illustrates the cost of change in
such designs. As figure 3 shows, concern separation
in a self-representation must consider operational
concerns in addition to system concerns. Appro-

GISMO self-management manager

Self-* policies and strategies

Self-
configuration

Self-
healing

Destination
analysis

Destination
state

Destination
realization

Self-
optimization

Self-
protection

Realization request
and response

Analysis request and
response

State request and
response

Destination
self-representation

Managed-MOM functionality

State notifications

Destination state
notifications

Destination
realizations

Notifications

Method
invocations

Figure 2. Contemporary
destination self-
representation design.
The self-management
manager directly
interacts with the
state, analysis, and
realization objects. The
self-representation’s
state and realization
objects interact with the
managed system.

Authorized licensed use limited to: NATIONAL UNIVERSITY OF IRELAND GALWAY. Downloaded on June 22, 2009 at 10:04 from IEEE Xplore. Restrictions apply.

88	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

priate separation of operational concerns can help
reduce dependencies and promote flexibility.

The issues highlighted in the destination self-
representation’s design aren’t unique in the software
domain. In fact, one of the most successful design
patterns—the Model-View-Controller (MVC)—
solves these issues in regard to user interaction. Us-
ing a slight variation of this design pattern can im-
prove concern separation in a self-representation in
a straightforward, intuitive way.

The MVC
This design pattern has been very successful at
concern separation for user interaction.14 First de-
scribed by Trygve Reenskaug in 1979 and imple-
mented by Jim Althoff for Smalltalk-80,15 the MVC
separates user interaction from data processing, let-
ting both change independently.

Pattern overview
The pattern achieves independence by decoupling
data access, data-processing logic, and data pre-
sentation and user interaction tasks into three dis-
tinct object classifications. The model contains the
data, views present the data, and the controller pro-
cesses events affecting the model or views. Figure
4 illustrates the relationship between each MVC
component.

The MVC offers a powerful mechanism for
viewing and altering data. It lets a model have multi-
ple views and controllers, which can be created and
altered independently of the model. It facilitates the

creation of highly flexible solutions and is prevalent
in systems that must provide multiple views of the
same data. Many of its benefits are equally appli-
cable to the design of flexible self-representations.

The MVC in a self-representation
The MVC can improve operational-concern sepa-
ration in a self-representation. The three main op-
erational concerns of a self-representation map to
the MVC pattern, letting it decompose operational
concerns. First, the model contains representational
state information in its most basic form, separating
it from the realization and analysis operations.

Second, views create analyses of the represen-
tational state contained in the model. Views ren-
der the self-representation’s state from a particular
snapshot. There’s no restriction on views’ composi-
tion, and they can be created using a mixture of
information from multiple model objects. Views
can also perform computations on the model and
augment it with additional external information
sources, supporting a highly customized analysis
of the self-representation. Views can also be tem-
poral, tracking the changes to the model over a pe-
riod of time.

Finally, in the design of a self-representation,
controllers encapsulate all interaction with the
underlying system functionality. The realization
process requires direct interaction with the sys-
tem functionality. So, controllers can be tightly
coupled to a specific system implementation. The
controller objects encapsulate this coupling and
decouple the rest of the self-representation (model
and views) from the system functionality’s imple-
mentation. Multiple controllers can serve to real-
ize the self-representation for alternative system
implementations.

Figure 5 illustrates the MVC’s role in a self-
representation.

The controller encapsulates interaction be-
tween the managed system functionality and the
self-management manager. Insulating the realiza-
tion process produces a more controlled, looser
coupling between the self-representation and the
underlying system implementation. Changes to
the model will no longer require reciprocal exter-
nal changes in the managed system functionality
and self-management manager. Instead, we use a
slight variation of the traditional MVC, in which
the controller updates the model only when the
self-management manager requests a realization
or when the controller receives a state notification
from the managed system.

The qualities that make the MVC successful for
user interaction also make it successful for design-

Sy
st

em
 c

on
ce

rn
s Destination

Subscription

Interception

Self-representation concern space

State Analysis Realization

Operational concerns

Figure 3. Operational-
concern separation.
The operational
concerns (state,
analysis, realization)
of a self-representation
crosscut system
concerns. The design
of a self-representation
must consider their
encapsulation.

Views

State query State change
notifications

User
interactions

Model Controller

View
selection

Notifications

Method
invocations

State changes

Figure 4. The Model-
View-Controller (MVC)
design pattern. The
model contains the
data, views present the
data, and the controller
processes events
affecting the model or
views.

Authorized licensed use limited to: NATIONAL UNIVERSITY OF IRELAND GALWAY. Downloaded on June 22, 2009 at 10:04 from IEEE Xplore. Restrictions apply.

	 May/June 2008 I E E E S o f t w a r e � 89

ing self-representations. The clear concern separa-
tion introduced by the pattern improves the design
by reducing dependencies and simplifying custom-
ization and portability.

MVC-based Gismo
self-representation
The MVC-based design of the Gismo self-repre-
sentation lets the latter meet its requirements in a
straightforward manner. Figure 6 shows the design
of an MVC-based destination self-representation.

This design decomposes the self-representation
into three distinct object categories using the MVC
pattern. The destination model tracks the managed
MOM’s destination state. Destination controllers
encapsulate interaction with specific managed-
MOM implementations and the self-management
manager, which in turn uses the destination views
to analyze the managed MOM’s status.

We now examine this self-representation’s mer-
its on the basis of Gismo’s requirements.

Customization
The first requirement is the ability to easily custom-
ize the self-representation to include proprietary
MOM functionality, or information specific to the
application environment, without affecting the self-
representation’s generality. Rather than a one-size-
fits-all approach, the self-representation design lets
designers tailor models, views, and controllers to
specific system requirements encountered within
their deployments. The MVC-based design allows
new higher-level views of the representation, thus
providing more user-friendly, application-specific
adaptation. For example, the sequence of con-
nect, delete, create, and disconnect required when
dynamically replacing destinations can be encap-
sulated into a replace operation in a high-level ap-
plication-specific controller. This ensures that the
basic interaction of the self-representation will be
customizable to improve usability.

Additionally, we can customize the representa-
tions to provide an appropriate set of operations,
depending on the available resources in the deploy-
ment environment. Because Gismo can be deployed
on resource-limited devices, we can tailor self-
representations to reduce system resource usage—
for example, to use only one representation at a
time. We can easily customize a self-representation
with domain-specific information to provide highly
tailored analytical capabilities.

Portability
The second requirement is to minimize the effort
required to add new MOM implementations. The

 Self-management manager

Self-* policies and strategies

Self-
configuration

Self-
healing

Views

Model Controller

Self-
optimization

Self-
protection

State, analysis, and
realization requestsResponse to request

MVC-based self-representation

Managed-system functionality

State
query

State change
notifications

View
selection

State
notifications

Realizations

Notifications

Method
invocations

State changes

Figure 5. The MVC’s role in a self-representation. The model contains
the state; views provide the analysis; and the controller processes
events affecting the model, views, or managed system.

GISMO self-management manager

Self-* policies and strategies

Self-
configuration

Self-
healing

Destination
views

Destination
model

Destination
controller

Self-
optimization

Self-
protection

State, analysis, and
realization requestsResponse to request

MVC-based destination
self-representation

Managed-MOM functionality

State
query

State change
notifications

State changes

View
selection

State
notifications

Realizations

Notifications

Method
invocations

Figure 6. An MVC-based destination self-representation design. This
design decomposes the self-representation into three distinct object
categories using the MVC pattern.

Authorized licensed use limited to: NATIONAL UNIVERSITY OF IRELAND GALWAY. Downloaded on June 22, 2009 at 10:04 from IEEE Xplore. Restrictions apply.

90	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

self-representation design encapsulates interaction
with the managed MOM within the realization
controllers. Porting Gismo to a new MOM requires
only a new realization controller. New models and
views are needed only when it’s necessary to track
state or functionality specific to the new MOM or
environmentally specific information. The clear role
separation for objects in the design also promotes
reusability. In addition to the controller and views
reusing the model, complex views can be created by
reusing simple views.

W e’ve also applied the MVC to the
refactoring of the OpenCOM self-
representation.16 OpenCOM is a light

weight component model for developing adaptive
systems software and has been implemented for
Windows in C++, Linux in C, and also in Java.
Each of these implementations tightly couples the
self-representation to the underlying component’s
runtime kernel. We have used the MVC to allow
customization of the self-representation and to
simplify adding component types, such as Java
Beans, COM (Component Object Model), and
POJOs (Plain Old Java Objects). Reusing the exist-
ing models and views lets us support a new com-
ponent type by simply implementing a new real-
ization controller for that type.

Performing middleware adaptations using com-
ponent-based self-representations can be difficult
for nonexpert users because they must understand
how the components implement the middleware.
This situation can lead to verbose self-management
code. So, we plan to investigate whether higher-
level MVC-based self-representations for individual
middleware types (such as a group communication
representation) would simplify dynamic adaptation.
Initial research in this area is producing promising

results by making the Gridkit reflective-middleware
framework customizable for different middleware
solutions.17 In addition, it’s possible to extend self-
representations in Gridkit to provide a richer set of
operations, depending on available resources.

Acknowledgments
We thank the reviewers for their constructive com-

ments, which have improved this article’s quality.

References
	 1.	 K. Geihs, “Middleware Challenges Ahead,” Computer,

June 2001, pp. 24–31.
	 2.	 M. Weiser, “Some Computer Science Issues in Ubiqui-

tous Computing,” Comm. ACM, July 1993, pp. 74–84.
	 3.	 A. Ganek and T. Corbi, “The Dawning of the Autonomic

Computing Era,” IBM Systems J., Jan. 2003, pp. 5–18.
	 4.	 R.E. Schantz and D.C. Schmidt, “Middleware for

Distributed Systems: Evolving the Common Structure
for Network-Centric Applications,” Encyclopedia of
Software Engineering, John Wiley & Sons, 2001, pp.
801–813.

	 5.	 H. Okamura, Y. Ishikawa, and M. Tokoro, “AL-1/D:
A Distributed Programming System with Multi-model
Reflection Framework,” Proc. Int’l Workshop New
Models for Software Architecture (IMSA): Reflection
and Metalevel Architecture, ACM Press, 1992, pp.
36–47.

	 6.	 G.S. Blair et al., “The Design and Implementation of
Open ORB 2,” IEEE Distributed Systems Online, vol.
2, no. 6, 2001, http://csdl2.computer.org/comp/mags/
ds/2001/06/o6001.pdf.

	 7.	 F. Kon et al., “Monitoring, Security, and Dynamic
Configuration with the DynamicTAO Reflective ORB,”
Proc. IFIP/ACM Int’l Conf. Distributed Systems Plat-
forms and Open Distributed Processing (Middleware
00), LNCS 1795, Springer, 2000, pp. 121–143.

	 8.	 J. Dowling, “The Decentralised Coordination of Self-
Adaptive Components for Autonomic Distributed Sys-
tems,” doctoral dissertation, Dept. of Computer Sci-
ence, Trinity College Dublin, 2004.

	 9.	 P. Maes, “Concepts and Experiments in Computational Re-
flection,” ACM Sigplan Notices, Dec. 1987, pp. 147–155.

	10.	 G. Kiczales, J.D. Rivieres, and D.G. Bobrow, The Art of
the Metaobject Protocol, MIT Press, 1992.

	11.	 E. Curry, “Message-Oriented Middleware,” Middle-
ware for Communications, Q.H. Mahmoud, ed., John
Wiley & Sons, 2004, pp. 1−28.

	12.	 E. Curry, “Increasing Flexibility within MOM Using
Portable Rule-Bases,” IEEE Internet Computing, Nov./
Dec. 2006, pp. 26–32.

	13.	 E. Curry, D. Chambers, and G. Lyons, “Reflective
Channel Hierarchies,” Proc. 2nd Workshop Reflec-
tive and Adaptive Middleware, 4th ACM/IFIP/Usenix
Int’l Middleware Conf. (Middleware 03), LNCS 2672,
Springer, 2003, pp. 105–109.

	14.	 G.E. Krasner and S.T. Pope, “A Description of the Model-
View-Controller User Interface Paradigm in the Small-
talk-80 System,” J. Object-Oriented Programming, vol.
1, no. 3, 1998, pp. 26–49.

	15.	 S. Burbeck, “Applications Programming in Smalltalk-
80: How to Use Model-View-Controller (MVC),” 1992,
http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html.

	16.	 M. Clarke et al., “An Efficient Component Model for the
Construction of Adaptive Middleware,” Proc. IFIP/
ACM Int’l Conf. Distributed Systems Platforms (Mid-
dleware 01), LNCS 2218, Springer, 2001, pp. 160–178.

	17.	 P. Grace et al., “Deep Middleware for the Divergent
Grid,” Proc. ACM/IFIP/Usenix 6th Int’l Middleware
Conf. (Middleware 05), LNCS 3790, Springer, 2005,
pp. 334–353.

About the Authors
Edward Curry is a researcher in the Digital Enterprise Research Institute at the
National University of Ireland, Galway. His research interests include semantic search and
self-* and nature-inspired middleware. He received his PhD in computer science from the
National University of Ireland, Galway. He’s a member of the IEEE and the ACM. Contact him
at Digital Enterprise Research Inst., Nat’l Univ. of Ireland, Galway, University Rd., Galway,
Ireland; edcurry@acm.org.

Paul Grace is a research associate in Lancaster University’s Computing Department. His
research interests include adaptive middleware, reflection, middleware for mobile and grid
computing, and component programming. He received his PhD in computing from Lancaster
University. Contact him at the Computing Dept., Lancaster Univ., Lancaster LA1 4WA, UK;
p.grace@lancaster.ac.uk.

Authorized licensed use limited to: NATIONAL UNIVERSITY OF IRELAND GALWAY. Downloaded on June 22, 2009 at 10:04 from IEEE Xplore. Restrictions apply.

