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ABSTRACT

The Internet of Things (IoT) envisions smart objects col-
lecting and sharing data at a global scale via the Internet.
One challenging issue is how to disseminate data to rele-
vant data consumers efficiently. In this paper, we lever-
age semantic technologies which can facilitate machine-to-
machine communications, such as Linked Data, to build
an efficient information dissemination system for semantic
IoT. The system integrates Linked Data streams generated
from various data collectors and disseminates matched data
to relevant data consumers based on Basic Graph Patterns
(BGPs) registered in the system by those consumers. To
efficiently match BGPs against Linked Data streams, we in-
troduce two types of matching, namely semantic matching

and pattern matching, by considering whether the matching
process supports semantic relatedness computation. Two
new data structures, namely MVR-tree and TP-automata,
are introduced to suit these types of matching respectively.
Experiments show that an MVR-tree designed for semantic
matching can achieve a twofold increase in throughput com-
pared with the naive R-tree based method. TP-automata, as
the first approach designed for pattern matching over Linked
Data streams, also provides two to three orders of magni-
tude improvements on throughput compared with semantic
matching approaches.

Categories and Subject Descriptors

H.3.4 [Information Storage and Retrieval]: Systems
and Software—Selective dissemination of information
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1. INTRODUCTION
In the era of the Internet of Things (IoT) [9], it is envi-

sioned that smart objects collect and share data at a global
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scale via the Internet. In this context, semantic technolo-
gies such as Linked Data, which aim to facilitate machine-
to-machine communications, play an increasingly important
role [2]. Due to the large amount of data produced by vari-
ous kinds of things, one challenging issue is how to efficiently
disseminate data to relevant data consumers.

In this paper, we propose an efficient information dissemi-
nation system for semantic IoT by leveraging semantic tech-
nologies, such as Linked Data. Our system integrates Linked
Data streams (in RDF format) generated from various data
collectors. Data consumers can register their interest in the
form of Basic Graph Patterns (BGPs) in the system. Based
on these BGPs, the system disseminates matched Linked
Data to relevant users. This work focuses on how to effi-
ciently match a large number of BGPs against Linked Data
streams.

Before introducing motivation, we identify three types of
matching between Linked Data and BGPs as follows:

• Match estimation is typically used in source selection
systems. It provides an estimation on how well a Linked
Data source would match a given BGP. Match esti-

mation may provide false negative and false positive
match results. Recent work on data summaries on
Linked Data [6] is an example of match estimation.

• Semantic matching aims to match semantically related
RDF triples against BGPs. It may provide false posi-
tive match results but not false negative. Approximate
event matching [7] applies semantic matching.

• Pattern matching means individual component match-
ing between RDF triples and BGPs. It does not con-
sider semantic relatedness between an RDF triple and
a BGP. Similar to semantic matching, it may return
false positive match results but not false negative. An
example of pattern matching is recent work on stream
reasoning [1].

In our Linked Data dissemination system, in order to
disseminate high-quality information to data consumers (or
subscribers), we only consider semantic matching and pat-

tern matching as they will not return false negative match
results. Or in other words, no matched triples will be missed.

Motivation. Recent work on data summaries on Linked
Data [6] transforms RDF triples into numerical space. Then
data summaries are built upon numerical data instead of
strings as summarizing numbers is more efficient than sum-
marizing strings. In order to transform triples into numbers,



hash functions are applied on the individual components (s,
p, o) of triples. Thus a derived triple of numbers can be
considered as a 3D point. In this way, a set of RDF triples
can be mapped into a set of points in 3D space. To facili-
tate query processing over data summaries, a spatial index
named QTree [6], which is evolved from standard R-tree [5],
is adopted as the basic index. Data summaries are designed
mainly for indexing various Linked Data sources and used
for identifying relevant sources for a given query.

However, data summaries are not suitable for our Linked
Data dissemination system. Firstly, data summaries tech-
niques, such as QTree, do not consider variables in the BGPs
but only RDF triples with concrete strings. QTree only in-
dexes points in a 3D space while our system is required to
index points, lines or even planes in a 3D space, depend-
ing on the number of variables in BGPs. Further, since
data summaries are concise and imprecise representations of
data sources [6], they just provide match estimation. Hence,
query evaluation on them would return false negative results,
which is not allowed in our system.

Moreover, existing work on pattern matching, such as stre-
am reasoning [1], does not support large scale query evalu-
ation but focuses on evaluation of a single query over the
streaming Linked Data. Therefore, the issue of support-
ing pattern matching over a large number of BGPs against
Linked Data streams remains open.

In this paper, we introduce two techniques, namely Multi-
Version R-tree (MVR-tree) and Triple Pattern automata
(TP-automata), to index a large collection of BGPs, which
can support semantic matching and pattern matching re-
spectively. Experiments show that MVR-tree can achieve a
twofold increase in throughput for semantic matching com-
pared with the naive R-tree based method. Moreover, TP-
automata, as the first approach designed for pattern match-

ing between a large number of queries and Linked Data
streams, can achieve up to three orders of magnitude im-
provements on throughput compared with semantic match-

ing approaches.

2. LINKED DATA DISSEMINATION

SYSTEM
System Overview. In our Linked Data dissemination

system, when the user queries (BGPs) are registered, all
queries will be transformed into spatial objects in a 3D
space. Then a suitable index will be constructed for efficient
evaluation between Linked Data streams and user queries.
Before matching starts, RDF triples in the data streams
will be mapped into data points in the same 3D space first.
Then, these data points will be matched with BGPs repre-
sented as spatial objects in the constructed indexes. Finally,
matched triples will be forwarded to their subscribers.

User Queries. Basic Graph Patterns (BGPs) [6] are
adopted as user queries in our system. The possible triple
patterns in a BGP are: 1) (#s, #p, #o), 2) (?s, #p, #o),
3) (#s, ?p, #o), 4) (#s, #p, ?o), 5) (?s, ?p, #o), 6)
(?s, #p, ?o), 7) (#s, ?p, ?o), and 8) (?s, ?p, ?o). Note
that, ? denotes a variable while # denotes a constant.

Similar to data summaries, we apply hash functions1 to
map these patterns into numerical values. These numer-
ical values can be regarded as coordinates in a 3D space.

1There are many different hash functions. For more details,
please refer to [6].
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Figure 1: Two-dimensional R-tree example

Specifically, given a hash function f , a triple pattern (#s,

#p, #o) can be mapped into a 3D point (f(#s), f(#p),

f(#o)). We call such a point mapped from a triple pat-
tern a data point in order to differ it from other points in
the 3D space. Using this approach, a set of triples or triple
patterns without variables can be mapped into a set of 3D
data points. To map triples with variables, the hash func-
tion f works in the following way: f will map a variable to
the whole range of a coordinate axis. For example, pattern
2 (?s, #p, #o) will be mapped into (x, f(#p), f(#o)),
which is a line in the 3D space. Triple patterns with more
variables can be mapped in a similar way.

Clearly, pattern 1 can be mapped into a 3D data point.
In order to match pattern 1 with a triple in the data stream,
three coordinates of pattern 1’s data point must match with
those of the triple’s data point altogether. Patterns 2 to
4 can be mapped into lines in the 3D space. To match a
triple with patterns 2 to 4, only two coordinates have to
be matched. Patterns 5 to 7 can be mapped into planes.
Similarly, to match a triple with patterns 5 to 7, only one
coordinate has to be matched. It should be noted that we
do not consider to index pattern 8 in our work, as it will
match all the triples in the Linked Data stream directly.

2.1 MVR-tree for Semantic Matching
Locality Sensitive Hashing (LSH) has been used to place

similar documents into the same bucket of a hash table [8].
Similar technique can be used to hash RDF triples in our
semantic matching.

Inspired by QTree [6], a naive solution to support seman-
tic matching is to use R-Tree [5]. R-tree is a hierarchical
structure and is used to index spatial objects. It consists of
nodes representing regions in the data space. The region of
a node always covers all the regions of its child nodes. The
region of a node is also a Minimum Bounding Box (MBB).
Leaf nodes store actual spatial objects. An 2D R-tree ex-
ample is depicted in Figure 1. There are seven points and
one line in Figure 1(a). These spatial objects are bounded
by three regions, namely R1, R2 and R3. These three re-
gions are further bounded by region R. Figure 1(b) shows
the R-tree structure for spatial objects in Figure 1(a). R-
tree can support Nearest Neighbor (NN) searches efficiently
[5] which in turn can support semantic matching efficiently
after mapping BGPs into spatial objects in a 3D space.

Figure 1(a) shows that the region which contains a line
usually occupies large space, such as region R3 in the fig-
ure. Since regions that contain lines will occupy large space,
if there are many lines in the space, the regions bounding
these lines would overlap each other with high probability.
If there are many overlapped regions in an R-tree, MBBs
would overlap with each other with high probability and



the R-tree performance would degrade greatly [5]. What is
worse, there may be planes to bound, which further magni-
fies this problem. As a result, if we use R-tree to directly
index spatial objects mapped from a set of BGPs with vari-
ables, the performance of R-tree would become an issue.

Based on this observation, we introduce Multi-Version R-
tree (MVR-tree) to alleviate performance deterioration on
R-tree. MVR-tree is an R-tree variant. As mentioned, BGPs
can be mapped as points, lines, or planes in a 3D space,
depending on the number variables they have. In MVR-
tree, for BGPs mapped as points, we still use a 3D R-tree
to index them because all three coordinates of them require
to be matched. For BGPs mapped as lines, we use 2D R-
trees to index them because only two coordinates require to
be matched. Since there are three types of lines (in parallel
with x coordinate, with y coordinate, or with z coordinate in
the 3D space), we need to use three 2D-trees to index these
three types of lines. For BGPs mapped as planes, we use
one-dimensional R-trees to index them, which are B-trees,
by definition [3]. Similar to indexing lines, we also need to
use three B-trees to index the three types of planes.

To be more specific, in a MVR-tree, a 3D R-tree is used
to index BGPs without variables (pattern (#s, #p, #o)),
three 2D R-trees are used to index BGPs with only one
variable (pattern (?s, #p, #o), (#s, ?p, #o), and (#s,

#p, ?o)), and three B-trees are used to index BGPs with
two variables (pattern (?s, ?p, #o), (?s, #p, ?o), and
(#s, ?p, ?o)). We call describe these trees as versioned
trees, which together form an MVR-tree index.

To evaluate an RDF triple with an MVR-tree, the system
will need to check whether the data point mapped from the
triple matches any points in at least one versioned tree of the
MVR-tree. Since there only points in each versioned tree of
the MVR-tree, the match process should be quite efficient.

Since R-tree can support NN queries efficiently, we can
adapt its variant MVR-tree to support semantic matching
where the most similar triples should be returned. Taking
advantage of the LSH techniques, we can return NN query
results as the most similar triples for a BGP query.

2.2 TP-automata for Pattern Matching
Automata techniques have been adopted to process XML

data streams [4] They are mainly based on languages with
SQL-like syntaxes, and relational database execution mod-
els adapted to process streaming data. In our system, to
support pattern matching, we also apply automata to match
each individual component of a triple with its counterparts
of a BGP efficiently, which we call Triple Pattern automata
(TP-automata).

Firstly, as mentioned, operating on numbers is more ef-
ficient than operating on strings. Similar to MVR-tree, we
also map BGPs into spatial objects in 3D space. However,
the difference is that we treat variables in a BGP as a uni-
versal match indicator, e.g. represented by “?”. This indica-
tor will be mapped into a fixed and unique numerical value
but not the whole range of a specific coordinate axis. Such
unique numerical values will be treated differently as well
later in the triple evaluation process.

Figure 2 depicts the construction process of TP-automata.
Firstly, user queries will be transformed into triple pattern
state machines as shown in the middle of Figure 2. As can
be seen from the figure, each triple state machine contains
an initial state, two internal states, one final state and three

q1: (a, b, c)

q2: (?, b, c)

q3: (a, b, d)

q4: (a, b, c)

a b c
{q1}

? b c
{q2}

a b d
{q3}

a b c
{q4}

Figure 2: TP-automata

transitions. In the figure, the first circle of a state machine
represents the initial state, the next two circles represent
the two internal states and the doubled circle represents the
final state. The three arrows associated with conditions are
three transitions between different states. Similar to [4],
these state machines can be combined into one machine by
exploiting shared common states with same transitions. The
combined machine, TP-automata, is shown on the right of
Figure 2. The shaded circles represent combined states.

To perform pattern matching over TP-automata, triples
in the Linked Data stream will be firstly mapped into 3D
points. For example, suppose a triple (s, p, o) is mapped
into a 3D point (a, b, c). The system will match it against
TP-automata in the following process. It firstly checks the
initial state of TP-automata and looks for state transitions
with condition a or condition ?. Following the state transi-
tions, state 1 and state 2 become the current active states
at the same time. It then looks for state transitions with
condition b or ? from state 1 and state 2. Following the
transitions, state 3 and state 4 become active states. Finally,
following transitions with condition c or ? from state 3 and
state 4, two final states, state 5 and state 7, are reached.
By checking both final states, the system returns {q1, q2,
q4} as the matching results. The match process stops if and
only all current active states are final states or states with
no satisfied transition.

3. EXPERIMENTS

3.1 Experimental Setup
The data set used in our experiment is a subset of the cur-

rent version of the English DBpedia2. It contains resources
of type dbpedia-owl:Event. Each event is a triple in the
form <eventURI, rdf:type, dbpedia-owl:Event>. An ex-
ample of an event URI is <http://dbpedia.org/resource/

Battle_of_Brentford_(1642)>. There are approximately
400,100 triples in the dataset.

As an initial work, we used simple BGPs as queries in the
experiment and we leave extending our system to support
complex BGPs or join queries as our future work. We ran-
domly generated BGPs using the seven patterns mentioned
in Section 2 based on our dataset.

We evaluated the performance of our methods in terms
of Average Construction Time (in milliseconds) of the in-
dexes and Average Throughput (in number of triples per
second). We performed experiments in two scenarios. One
was for semantic matching by comparing MVR-tree and R-
tree methods, and the other was for pattern matching by
comparing TP-automata and MVR-tree methods because
TP-automata is the first method to evaluate Linked Data
streams over a large number of user queries simultaneously.

2http://downloads.dbpedia.org/3.8/en/
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Figure 3: Performance on Semantic Matching

3.2 Experimental Results

3.2.1 Semantic Matching

Figure 3 presents performance on semantic matching by
comparing R-tree and MVR-tree. Average construction time
is depicted in Figure 3(a). We can see that construction time
of both indexes increases linearly as the number of queries
grows. Constructing MVR-tree indexes takes less time than
R-tree. The reason for this is that there are multiple ver-
sioned trees in an MVR-tree index and each versioned tree
is smaller than R-tree. When a new BGP is inserted into
MVR-tree, only one versioned tree will be updated. Since
versioned trees are smaller compared with R-tree, the up-
date process in MVR-tree is more efficient.

Figure 3(b) shows the throughput results of R-tree and
MVR-tree. It is evident that MVR-tree at least three times
of R-tree’s throughput under all query number settings. The
root cause is that BGPs with variables are large spatial ob-
jects in R-tree leading to deteriorative throughput perfor-
mance on R-tree. On the other hand, as described in Sec-
tion 2, MVR-tree only has points as spatial objects in all its
versioned trees. Hence NN searches on each versioned tree
are quite efficient.

3.2.2 Pattern Matching

The performance of pattern matching on MVR-tree and
TP-automata is presented in Figure 4. Firstly, average con-
struction time is compared in Figure 4(a). TP-automata can
be constructed faster than MVR-tree because TP-automata
does not need to split nodes while MVR-tree would need to
split some big nodes and adjust node levels and relationships
during the construction process.

Throughput performance of pattern matching is presented
in Figure 4(b). It shows very large differences between
MVR-tree and TP-automata. TP-automata shows two to
three orders of magnitude better throughput performance
compared with MVR-tree. The root cause is that MVR-
tree is designed for semantic matching in a hashing space
(e.g., handling NN queries) while TP-automata is designed
for pattern matching. To perform a pattern matching on
MVR-tree is actually equivalent to processing an NN query
while TP-automata just performs O(1) lookups at each state
transition. Hence, the TP-automata approach shows supe-
rior performance over the MVR-tree approach.

4. CONCLUSIONS
In this paper, we have leveraged semantic technologies,

such as Linked Data, to build an efficient information dis-
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semination system for semantic IoT. We have identified three
types of match, which arematch estimation, semantic match-

ing, and pattern matching, to establish the basic require-
ments for building a Linked Data dissemination system. In
order to efficiently match a large number of BGPs against
Linked Data streams, we have proposed two index schemes,
namely MVR-tree and TP-automata. MVR-tree is a Multi-
Version R-tree designed for efficiently processing semantic

matching while TP-automata is an automata based method
designed for efficient pattern matching. Experiments show
that our methods outperform existing indexing methods that
are derived from R-tree. Specifically, in semantic match-

ing, MVR-tree achieves a twofold increase in throughput
compared with the traditional R-tree. In pattern match-

ing the TP-automata approach outperforms the MVR-tree
approach by up to three orders of magnitude in terms of
throughput.
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