
A Coordination Approach for

Self-Managed Middleware

Edward Curry (B.Sc.)

Department of Information Technology

Faculty of Science

National University of Ireland, Galway

A thesis submitted for the degree of

Doctor of Philosophy

March 2006

Supervisor: Dr. Desmond Chambers
Head of Department: Professor Gerard J. Lyons

Dedication

To my Parents.

i

Come, my friends. ’Tis not too late to seek a newer world.
- Alfred Tennyson , Ulysses (1842)

Middleware. Reinventing the wheel, so you don’t have too!
- John ’Young’ Coleman (2005)

ii

Acknowledgements

I am grateful to my supervisor, Dr. Desmond Chambers, for his guidance and advice. It is
difficult to overstate my gratitude to the coffee crowd. In particular, I am grateful to Tom Lyons
and Enda Ridge. Even though I enjoyed working on this thesis, I could not have coped without
some time off. Both Tom and Enda often persuaded me to turn off the computer and have a coffee
and chat, or a night out.

My work has benefited from conversations with colleagues, former teachers, and new acquain-
tances. I am indebted to my student colleagues and friends for providing a stimulating and fun
environment in which to learn and grow. I am especially grateful to Ann, Brian, Claire, Mourad,
Alan, Dav, Jason, John H., John C., Páraic, Albert, Ted, Catherine, Owen, Noel, Seamus, Niall,
Declan, Anto, Seamus, Enda, Mike, Ronan, Weston, and Yan. In particular, I would like to thank
Enda, Tom, and Alan for their assistance in formatting, proofreading, and suggesting improve-
ments to my work. I enjoyed the company and support of many others whom I fail to mention
here, and I’m thankful for your help and friendship.

I would also like to thank Prof. Roger Needham for his inspirational approach to computer
science research. Roger believed that systems should be designed to do useful things for real
people. ”If there wasn’t an industry concerned with making and using computers the subject
wouldn’t exist. It’s not like physics — physics was made by God, but computer science was made
by man. It’s there because the industry’s there”. His pragmatic approach to research has been a
guiding light for this work.

Thanks are due to three esteemed colleagues who grilled a young PhD student over dinner while
watching game 7 of the 2004 Championship Series (Red Sox defeated Yankees, 4-3) in Toronto.
For their generous help, I am grateful to Werner Wogels, Steve Vinoski, and Rick Schantz not only
did they help me focus on the true contribution of my work, they also created a Red Sox fan.

Lastly, and most importantly, I would like to thank my family. To my sisters Tara, Alison, and
my brother Joe, in spite of their mutual incomprehension about what I do, they always believed in
me. Finally, I am forever indebted to my father and mother for their inspiration, endless patience,
and unconditional love. To them I dedicate this thesis.

Edward Curry

National University of Ireland, Galway.
March 2006

iii

Abstract

A Coordination Approach for

Self-Managed Middleware

Edward Curry

Department of Information Technology
National University of Ireland, Galway

A thesis submitted for the degree of
Doctor of Philosophy

March 2006

This dissertation investigates the evolution of coordination techniques between self-managed
systems within the problem domain of Message-Oriented Middleware (MOM).

The basic goal of autonomic computing is to simplify and automate the management of com-
puting systems, both hardware and software, allowing them to self-manage, without the need for
human intervention. Within the software domain, self-management techniques have been utilised
to empower a system to automatically self-alter (adapt) to meet their environmental and user
needs.

Current self-managed middleware platforms service their environment in an isolated and in-
troverted manner. As they progress towards autonomic middleware, one of the most interesting
research challenges facing self-managed middleware platforms is their lack of cooperation and co-
ordination to achieve mutually beneficial outcomes.

The primary hypothesis of this work is that within dynamic operating environments, coor-
dinated interaction between self-managed systems can improve the ability of the individual and
collective systems to fulfil performance and autonomy requirements of the environment.

Coordination between next-generation middleware systems will be a vital mechanism needed
to meet the challenges within future computing environments. As a step toward this goal, this
thesis investigates the benefits of coordination between self-manages middleware platforms. This
work explores coordination within the realm of Message-Oriented Middleware (MOM). MOM is
an ideal candidate for the study of cooperation as it is an interaction-oriented middleware. In
addition, self-management techniques have yet to be applied within the MOM domain, providing
an opportunity to investigate their application within this domain.

The main findings of this research are as follows. The coordination of self-managed systems
can improve the ability of the individual and collective systems to fulfil performance and autonomy
requirements of the environment. Secondly, the introduction of self-management techniques within
MOM systems increases their performance within dynamic operating environments.

iv

List of Publications

The following publications resulted from this thesis.

1. E. Curry, “Introducing Reflective Techniques to Message Hierarchies”, presented at Doctoral
Symposium at 17th European Conference on Object-Oriented Programming (ECOOP 2003),
Darmstadt, Germany, 2003.

2. E. Curry, D. Chambers, and G. Lyons, “Reflective Channel Hierarchies”, presented at 2nd
Workshop on Reflective and Adaptive Middleware, Middleware 2003, Rio de Janeiro, Brazil,
2003.

3. E. Curry, D. Chambers, and G. Lyons, “Could Message Hierarchies Contemplate?”, presented
at 17th European Conference on Object-Oriented Programming (ECOOP 2003), Darmstadt,
Germany, 2003. (poster)

4. E. Curry, D. Chambers, and G. Lyons, “Extending Message-Oriented Middleware using In-
terception”, presented at Third International Workshop on Distributed Event-Based Systems
(DEBS ’04), ICSE ’04, Edinburgh, Scotland, UK, 2004.

5. E. Curry, D. Chambers, and G. Lyons, “ARMAdA: Creating a Reflective Fellowship (Options
for Interoperability)”, presented at 3rd Workshop on Adaptive and Reflective Middleware,
Middleware 2004, Toronto, Canada, 2004.

v

Contents

Dedication i

Acknowledgements iii

Abstract iv

List of Publications v

List of Illustrations xiii

List of Tables xvii

I Background 1

1 Introduction 2

1.1 Motivation and Problem Domain . 2
1.2 Motivational Scenario . 4
1.3 Research Hypothesis . 6
1.4 Research Methodology . 6
1.5 Principal Contributions . 6
1.6 Thesis Organisation . 7
1.7 Summary of Conclusions . 9

2 Adaptive and Reflective Middleware Essentials 11

2.1 Introduction . 11
2.2 Adaptive Middleware . 12
2.3 Reflective Middleware . 12
2.4 Are Adaptive and Reflective Techniques the Same? 13
2.5 Triggers of Adaptive and Reflective Behaviour . 14
2.6 Adaptive and Reflective Techniques . 14

2.6.1 Structural Reflection (Programmatic) . 14
2.6.2 Behavioural Reflection . 15
2.6.3 Architectural Reflection . 15
2.6.4 Synchronous Reflection . 15
2.6.5 Asynchronous Reflection . 16

2.7 Meta-levels . 16

vi

CONTENTS

2.7.1 Operation Overview . 17
2.7.2 In-Line and Out-of-Line Execution . 18
2.7.3 Concern Separation . 18
2.7.4 Performance . 18
2.7.5 Openness to Coordination . 19

2.8 Current Reflective Research . 20
2.8.1 mChaRM . 20
2.8.2 QuO . 21
2.8.3 OpenCOM & Open ORB . 23
2.8.4 dynamicTAO (UIC/2K) . 25
2.8.5 K-Components . 28
2.8.6 Other Reviewed Systems . 31

2.9 Comparison of Reviewed Systems . 33
2.9.1 Coordination Capability . 33
2.9.2 Interaction Protocol . 34
2.9.3 Meta-Level Access Capabilities . 35
2.9.4 Review Summary . 37

2.10 Summary . 37

3 Rudimentary Message-Oriented Middleware 38

3.1 Introduction . 38
3.2 Interaction Models . 39

3.2.1 Synchronous Communication . 39
3.2.2 Asynchronous Communication . 39

3.3 Introduction to the Remote Procedure Call (RPC) 40
3.3.1 Coupling . 40
3.3.2 Reliability . 41
3.3.3 Scalability . 41
3.3.4 Availability . 41

3.4 Introduction to Message-Oriented Middleware (MOM) 42
3.4.1 Coupling . 42
3.4.2 Reliability . 43
3.4.3 Scalability . 43
3.4.4 Availability . 43

3.5 When to use MOM or RPC . 43
3.6 Message Queues . 44
3.7 Messaging Models . 46

3.7.1 Point-to-Point . 46
3.7.2 Publish/Subscribe . 47
3.7.3 Comparison of Messaging Models . 49

3.8 Message Filtering . 49
3.8.1 Covering & Merging . 50

3.9 Java Message Service . 51
3.9.1 Programming using the JMS API . 52

vii

CONTENTS

3.10 Current MOM Platforms . 55
3.10.1 CORBA Event Service & Notification Service 55
3.10.2 TIBCO Rendezvous . 56
3.10.3 OpenJMS . 57
3.10.4 ActiveMQ . 58
3.10.5 SonicMQ . 59
3.10.6 SIENA . 61
3.10.7 REBECA . 62
3.10.8 Hermes . 63
3.10.9 WebSphere MQ (formerly MQSeries) . 64
3.10.10Other Reviewed Systems . 65

3.11 Comparison of Reviewed Systems . 67
3.11.1 Message Capabilities . 68
3.11.2 Administration Capabilities . 69

3.12 Summary . 70

II Contribution 72

4 Meta-level Coordination 73

4.1 Introduction . 73
4.2 Motivational Scenario . 74
4.3 Opening the Meta-Level . 76
4.4 A Vision of Coordination and Cooperation . 77
4.5 Protocol Prerequisites . 78
4.6 Open Meta-level Interaction Protocol (OMIP) . 78

4.6.1 Interaction Commands . 79
4.6.2 OMIP Walkthrough . 80
4.6.3 Domain Specific Languages . 81
4.6.4 OMIP Message Definition Format . 83
4.6.5 ARMAdA – A Sample Participant Architecture 85

4.7 Summary . 85

5 Definition of GenerIc Self-management for Message-Oriented middleware 87

5.1 Introduction . 87
5.2 Identification of Generic MOM Elements . 87

5.2.1 MOM Participants . 88
5.2.2 MOM Behaviour Identification . 88
5.2.3 MOM State Identification . 91

5.3 Designing a Portable Meta-Level . 93
5.3.1 The Role of a Meta-Level . 93
5.3.2 Monolithic Meta-Level Design . 94
5.3.3 The Model-View-Controller Design Pattern 95
5.3.4 Meta-State Analysis Realisation (M-SAR) Design Pattern 96
5.3.5 Benefits of a Separated Meta-Model Design 97

viii

CONTENTS

5.4 GISMO: GenerIc Self-management for Message-Oriented middleware 98
5.4.1 Client and Provider Roles . 98
5.4.2 Destination Meta-Model . 99
5.4.3 Subscription Meta-Model . 102
5.4.4 Interception Meta-Model . 104
5.4.5 Meta-Level Event-Model . 107
5.4.6 Reflective Engine . 108
5.4.7 Extending the Meta-Level . 110

5.5 MOM-DSL: Opening GISMO . 111
5.5.1 Message Exchange Infrastructure . 111
5.5.2 State Structure . 112
5.5.3 Available Actions . 113
5.5.4 Capabilities Request . 114

5.6 Example Interactions . 114
5.6.1 Request Capabilities . 115
5.6.2 Request Destination State . 115
5.6.3 Update Destination . 116
5.6.4 Request Filter Analysis . 117

5.7 Summary . 118

6 Implementation of a GISMO 119

6.1 Introduction . 119
6.2 Challenges in System Extension . 119
6.3 Options for Extension . 119

6.3.1 Interceptor Design Pattern . 120
6.3.2 Aspect-Oriented Programming (AOP) . 121
6.3.3 Dynamic AOP for Reflective Middleware 122
6.3.4 Multi-Dimensional Separation of Concerns 122
6.3.5 Programmatic Reflection . 123
6.3.6 Generative Programming . 124
6.3.7 Evaluation . 124

6.4 Chameleon . 126
6.4.1 Call Capture Proxy . 126
6.4.2 Interception . 128
6.4.3 Non-Invasive Extension of Functionality . 130

6.5 Realisation of a GISMO . 132
6.5.1 Destination Realisation . 132
6.5.2 Interception Provision . 133
6.5.3 Subscription . 134
6.5.4 Reflective Engine . 134
6.5.5 Event System . 135
6.5.6 OMIP Infrastructure . 135

6.6 Summary . 136

ix

CONTENTS

III Evaluation 137

7 Case Study – Coordination-Based Integration 138

7.1 Introduction . 138
7.2 Message Infrastructure Coupling . 139
7.3 Motivational Scenario . 139
7.4 Integration 101 . 141
7.5 Integration solutions . 142

7.5.1 Centralised Content-Based Routing Integration Pattern 142
7.5.2 Decentralised Content-Based Routing Integration Pattern 144

7.6 Achieving Decentralised-CBR . 145
7.6.1 MOM-DSL Messages for Decentralised-CBR 146

7.7 Evaluation . 146
7.7.1 One-to-One Evaluation . 149
7.7.2 Few-to-Many Evaluation . 150
7.7.3 Many-to-Few Evaluation . 152
7.7.4 Evaluation Summary and Discussion . 153

7.8 Summary . 153

8 Case Study – Coordinated Self-Managed MOM 155

8.1 Motivational Scenario . 155
8.2 Routing Scenarios . 156

8.2.1 Single Destination . 158
8.2.2 Static Destination Hierarchy . 158
8.2.3 Reflective Destination Hierarchy . 159

8.3 Creating Reflective Destination Hierarchies . 160
8.3.1 Subscription Monitoring Policy - Overview 161
8.3.2 Policy Triggers . 161
8.3.3 Analysis Process . 161
8.3.4 Adaptation Algorithm . 162
8.3.5 Realisation . 163
8.3.6 Coordination . 163

8.4 Benchmarking Dynamic Environments . 163
8.4.1 Dynamic MOM Test Case Walkthrough . 164

8.5 Evaluation . 165
8.5.1 One-to-One Evaluation . 165
8.5.2 Few-to-Many Evaluation . 169
8.5.3 Many-to-Few Evaluation . 172
8.5.4 Evaluation Summary and Discussion . 174

8.6 Summary . 176

9 Conclusions 177

9.1 Thesis Summary . 177
9.2 Contributions . 178

9.2.1 A Self-Managed MOM . 178

x

CONTENTS

9.2.2 Coordination between Self-Managed Systems 179
9.2.3 Additional Contributions . 179

9.3 Future Research Directions . 180
9.3.1 Technology Transfer . 180
9.3.2 Research Opportunities . 181

IV Appendices 184

A An Extensible MOM Test Suite 185

A.1 Introduction . 185
A.2 Test Case Design . 185

A.2.1 Messaging Models . 186
A.2.2 Producer/Consumer Ratio . 186
A.2.3 Configuration . 186
A.2.4 Reporting Metrics . 187
A.2.5 Timeline . 188

A.3 Testbed Configuration . 189
A.3.1 Hardware . 190
A.3.2 Network . 190

A.4 Default Test Cases Setup . 190
A.4.1 Test Conditions . 190
A.4.2 Desired Metrics . 191

A.5 Software – Extensible Mom Test Suite (EMiTS) . 191
A.5.1 Architecture . 192
A.5.2 Test Drivers . 193
A.5.3 Test Case Sequence . 194

A.6 Dynamic Environment Simulation . 194
A.6.1 Dynamic MOM Test Case Walkthrough . 196
A.6.2 Dynamic Report Metric . 197

A.7 Summary . 197

B XML Schemas 199

B.1 Multimedia-DSL . 200
B.1.1 Capability Request Schema . 200
B.1.2 Capability Request Example . 200
B.1.3 Capability Reply Schema . 200
B.1.4 Capability Reply Example . 201
B.1.5 Service Request Schema . 201
B.1.6 Service Request Example . 202
B.1.7 Service Reply Schema . 202
B.1.8 Service Reply Example . 203
B.1.9 Common Type Schema . 203

B.2 MOM-DSL . 204
B.2.1 Destination Type Schema . 204

xi

CONTENTS

B.2.2 Subscription Type Schema . 207
B.2.3 Interception Type Schema . 208
B.2.4 Reflective Type Schema . 209
B.2.5 Event Type Schema . 210
B.2.6 Capability Type Schema . 211
B.2.7 Common Type Schema . 212
B.2.8 Generic MOM-DSL Request/Reply Schema 213

C Additional Results from Chapter 8 218

C.1 One-to-One Results . 219
C.1.1 3 Producers / 3 Consumers . 219
C.1.2 30 Producers / 30 Consumers . 220
C.1.3 90 Producers / 90 Consumers . 221
C.1.4 150 Producers / 150 Consumers . 222
C.1.5 300 Producers / 300 Consumers . 223

C.2 Few-to-Many Results . 224
C.2.1 3 Producers / 15 Consumers . 224
C.2.2 30 Producers / 150 Consumers . 225
C.2.3 60 Producers / 300 Consumers . 226
C.2.4 90 Producers / 450 Consumers . 227

C.3 Many-to-Few Results . 228
C.3.1 15 Producers / 3 Consumers . 228
C.3.2 150 Producers / 30 Consumers . 229
C.3.3 300 Producers / 60 Consumers . 230
C.3.4 450 Producers / 90 Consumers . 231

References 232

xii

Illustrations

1.1 A centralised message routing solution . 4
1.2 A decentralised message routing solution . 5
1.3 The relationships between research contributions 8

2.1 The inter-relationships between reflective techniques 15
2.2 The mChaRM Loci model (from [32]) . 21
2.3 A QuO method invocation (from [31]) . 22
2.4 The Open ORB meta-architecture (from [21]) . 23
2.5 Component framework in Open ORB (from [47]) 24
2.6 dynamicTAO component architecture (from [49]) 26
2.7 Reifying the dynamicTAO structure (adapted from [8]) 27
2.8 A K-Component runtime (from [27]) . 29
2.9 Abstract model of interaction between component binding and AMM transfer be-

tween K-Component runtimes (from [27]) . 30
2.10 An example RAFDA re-distribution transformation (adapted from [52]) 32

3.1 The synchronous interaction model . 39
3.2 The asynchronous interaction model . 40
3.3 An example remote procedure call deployment . 41
3.4 An example Message-Oriented Middleware deployment 42
3.5 The role of a message queue . 45
3.6 The point-to-point messaging model . 46
3.7 The publish/subscribe messaging model . 47
3.8 An automotive destination hierarchy structure . 48
3.9 The JMS API programming model (adapted from [79]) 52
3.10 The TIBCO Rendezvous operating environment (from [88]) 57
3.11 The SIENA hierarchical client/server architecture (from [62]) 61
3.12 Acyclic peer-to-peer server architecture in SIENA (from [62]) 62
3.13 Layered networks in Hermes (from [83]) . 64

4.1 A non-reflective media broadcast service . 74
4.2 A proprietary reflective broadcast service . 75
4.3 A coordinated reflective broadcast service . 76
4.4 OMIP interaction command hierarchy . 79
4.5 OMIP participant interaction sequence . 81

xiii

List of Figures

4.6 Sample ARMAdA compliant architecture . 85

5.1 Participants within a MOM interaction . 88
5.2 A monolithic meta-level design . 94
5.3 The Model-View-Controller (MVC) design pattern 95
5.4 The Meta-State Analysis Realisation (M-SAR) design pattern 97
5.5 An M-SAR based meta-level design . 98
5.6 The GISMO abstract meta-level design . 99
5.7 A destination hierarchy example . 100
5.8 Reflective policy interface . 109
5.9 Policy call sequence within the reflective engine . 110
5.10 SonicMQ proprietary state model . 111
5.11 MOM-DSL message exchange infrastructure . 112
5.12 MOM-DSL command structure . 113
5.13 MOM-DSL capability reply structure . 114
5.14 Sample destinations used in state request . 116

6.1 The POSA interceptor design pattern . 120
6.2 MOM call sequence . 126
6.3 Notification call sequence . 126
6.4 Interception call sequence . 127
6.5 JMS API client/provider interaction sequence . 127
6.6 JMS API client/provider captured interaction sequence 128
6.7 Chameleon interception architecture . 129
6.8 Centralised message transformation . 131
6.9 Decentralised message transformation . 131
6.10 The GISMO implementation model . 132
6.11 Multiple base-level realisations . 133
6.12 Subscription meta-model architecture . 134
6.13 GISMO reflective engine architecture . 134
6.14 Event system architecture . 135

7.1 A sample deployment scenario . 140
7.2 Hard-coded integration . 141
7.3 Centralised content-based routing integration pattern 143
7.4 Decentralised content-based routing integration pattern 144
7.5 D-CBR implemented within a closed self-managed MOM 145
7.6 D-CBR implemented within an open self-managed MOM 146
7.7 Benchmark results integration patterns within the one-to-one test cases 149

(a) 1 Sender / 1 Queue / 1 Receiver . 149
(b) 50 Senders / 50 Queues / 50 Receivers . 149
(c) 250 Senders / 250 Queues / 250 Receivers . 149
(d) 400 Senders / 400 Queues / 400 Receivers . 149

7.8 Benchmark results for integration patterns within the few-to-many test cases . . . 151
(a) 1 Sender / 1 Queue / 5 Receivers . 151

xiv

List of Figures

(b) 50 Senders / 50 Queues / 250 Receivers . 151
(c) 100 Senders / 100 Queues / 500 Receivers . 151

7.9 Benchmark results for integration patterns within the many-to-few test cases . . . 152
(a) 5 Sender / 1 Queue / 1 Receivers . 152
(b) 250 Senders / 50 Queues / 50 Receivers . 152
(c) 500 Senders / 100 Queues / 100 Receivers . 152

8.1 Venn diagram of relationships between interest groups 157
8.2 Single destination routing scenario . 158
8.3 Static destination hierarchy routing scenario . 159
8.4 Reflective destination hierarchy routing scenario 160
8.5 Reflective destination hierarchy adaptation algorithm 162
8.6 Dynamic test case timeline . 165
8.7 Result of test case OtO-1 (3 publishers and 3 subscribers) 165
8.8 Result of test case OtO-2 (30 publishers and 30 subscribers) 167
8.9 Result of test case OtO-3 (90 publishers and 90 subscribers) 167
8.10 Result of test case OtO-4 (150 publishers and 150 subscribers) 168
8.11 Result of test case OtO-5 (300 publishers and 300 subscribers) 168
8.12 Result of test case FtM-1 (3 publishers and 15 subscribers) 169
8.13 Result of test case FtM-2 (30 publishers and 150 subscribers) 170
8.14 Result of test case FtM-3 (60 publishers and 300 subscribers) 170
8.15 Result of test case FtM-4 (90 publishers and 450 subscribers) 171
8.16 Result of test case MtF-1 (15 publishers and 3 subscribers) 172
8.17 Result of test case MtF-2 (150 publishers and 30 subscribers) 172
8.18 Result of test case MtF-3 (300 publishers and 60 subscribers) 173
8.19 Result of test case MtF-4 (450 publishers and 90 subscribers) 173

A.1 Test case timeline . 188
A.2 The testbed deployment . 189
A.3 EMiTS architecture . 192
A.4 EMiTS test driver interfaces . 194

(a) Producer interface . 194
(b) Consumer interface . 194

A.5 EMiTS test case execution sequence . 195
A.6 Dynamic test case timeline . 197
A.7 Sample trend result for dynamic test case . 197

C.1 One-to-one 3 / 3 . 219
(a) Static hierarchy . 219
(b) Reflective hierarchy . 219
(c) Static hierarchy vs. reflective hierarchy . 219

C.2 One-to-one 30 / 30 . 220
(a) Static hierarchy . 220
(b) Reflective hierarchy . 220
(c) Static hierarchy vs. reflective hierarchy . 220

xv

List of Figures

C.3 One-to-one 90 / 90 . 221
(a) Static hierarchy . 221
(b) Reflective hierarchy . 221
(c) Static hierarchy vs. reflective hierarchy . 221

C.4 One-to-one 150 / 150 . 222
(a) Static hierarchy . 222
(b) Reflective hierarchy . 222
(c) Static hierarchy vs. reflective hierarchy . 222

C.5 One-to-one 300 / 300 . 223
(a) Static hierarchy . 223
(b) Reflective hierarchy . 223
(c) Static hierarchy vs. reflective hierarchy . 223

C.6 Few-to-many 3 / 15 . 224
(a) Static hierarchy . 224
(b) Reflective hierarchy . 224
(c) Static hierarchy vs. reflective hierarchy . 224

C.7 Few-to-many 30 / 150 . 225
(a) Static hierarchy . 225
(b) Reflective hierarchy . 225
(c) Static hierarchy vs. reflective hierarchy . 225

C.8 Few-to-many 60 / 300 . 226
(a) Static hierarchy . 226
(b) Reflective hierarchy . 226
(c) Static hierarchy vs. reflective hierarchy . 226

C.9 Few-to-many 90 / 450 . 227
(a) Static hierarchy . 227
(b) Reflective hierarchy . 227
(c) Static hierarchy vs. reflective hierarchy . 227

C.10 Many-to-few 15 / 3 . 228
(a) Static hierarchy . 228
(b) Reflective hierarchy . 228
(c) Static hierarchy vs. reflective hierarchy . 228

C.11 Many-to-few 150 / 30 . 229
(a) Static hierarchy . 229
(b) Reflective hierarchy . 229
(c) Static hierarchy vs. reflective hierarchy . 229

C.12 Many-to-few 300 / 60 . 230
(a) Static hierarchy . 230
(b) Reflective hierarchy . 230
(c) Static hierarchy vs. reflective hierarchy . 230

C.13 Many-to-few 450 / 90 . 231
(a) Static hierarchy . 231
(b) Reflective hierarchy . 231
(c) Static hierarchy vs. reflective hierarchy . 231

xvi

Tables

2.1 Comparison of coordinated behaviour within reviewed systems 34
2.2 Comparison of interaction protocols within reviewed systems 35
2.3 Comparison of meta-level access capabilities within reviewed systems 36

3.1 Message queue formats . 45
3.2 Message filtering types . 50
3.3 JMS acknowledgement modes . 54
3.4 JMS message types . 55
3.5 Comparison of MOM messaging capabilities within reviewed systems 68
3.6 Comparison of MOM administration capabilities within reviewed systems 70

4.1 OMIP interaction commands . 80
4.2 Sample multimedia domain specific language . 82
4.3 Sample multimedia service definition in Multimedia-DSL 82
4.4 Sample security domain specific language . 83
4.5 Sample security service definition in Security-DSL 83
4.6 Multimedia DSL sample interaction command definitions 84

5.1 General MOM API interface . 89
5.2 Survey of MOM messaging capabilities . 89
5.3 Survey of MOM administration capabilities . 91
5.4 Survey of MOM messaging state . 92
5.5 Survey of MOM administration state . 93
5.6 Interception points within a MOM base-level . 105
5.7 Event types within the GISMO event model . 107
5.8 Reflective locations within GISMO . 109
5.9 GISMO interceptor state expressed in MOM-DSL 113
5.10 Example MOM-DSL capability request . 115
5.11 Example MOM-DSL capability reply . 115
5.12 Example MOM-DSL destination state request . 115
5.13 Example MOM-DSL destination state reply . 116
5.14 Example MOM-DSL destination update request . 117
5.15 Example MOM-DSL destination update reply . 117
5.16 Example MOM-DSL filter analysis request . 117
5.17 Example MOM-DSL filter analysis reply . 118

xvii

List of Tables

6.1 Summary of extension techniques . 124

7.1 Sample destination state model for deployment scenario 147
7.2 Coordination-based integration case study benchmark results 148

8.1 A sample movie service message structure . 155
8.2 Summary of message delivery relationships between interest groups 157
8.3 Coordinated self-management case study benchmark test cases 166
8.4 Message receive throughput comparisons for the one-to-one set of test cases 169
8.5 Message receive throughput comparisons for the few-to-many set of test cases . . . 171
8.6 Message receive throughput comparisons for the many-to-few set of test cases . . . 174
8.7 Summary of case study throughput analysis . 175

A.1 The effects of message producer/consumer ratios within benchmarks 187
A.2 Possible benchmark reporting metrics . 187
A.3 Testbed hardware and software specifications . 190
A.4 Client connection configuration settings . 193
A.5 General test case . 193
A.6 Mandatory test driver settings . 194
A.7 Default test driver settings . 195

xviii

Part I

Background

1

Chapter 1

Introduction

This thesis is concerned with the evolution of coordination between self-managed systems.

1.1 Motivation and Problem Domain

The vision of future computing initiatives such as ubiquitous and pervasive computing, large-scale
distribution, and on-demand computing will foster unpredictable and complex environments with
challenging demands [1, 2, 3]. Next-generation systems will require flexible system infrastructures
that can adapt to both dynamic changes in operational requirements and environmental conditions,
while providing predictable behaviour in areas such as throughput, scalability, dependability, and
security. This increase in complexity of an already complex software development process will only
add to the high rates of project failure [4, 5]. Successful projects once deployed will require skilled
administration personnel to install, configure, maintain, and provide 24/7 support.

In order to meet these challenges head-on, computing systems will need to be more self-
sufficient. IBM’s vision of autonomic computing [6] is an analogy with the human autonomic
nervous system; this biological system relieves the conscious brain of the burden of having to deal
with low-level routine bodily functions such as muscle use, cardiac muscle use (respiration) and
gland activity. An autonomic computing system would relieve the burden of low-level functions
such as installation, configuration, dependency management, performance optimisation manage-
ment, and routine maintenance from their conscious brain: the system administrators.

The basic goal of autonomic computing is to simplify and automate the management of com-
puting systems, both hardware and software, allowing them to self-manage, without the need for
human intervention. Four fundamental characteristics are needed by an autonomic system to be
self-managing:

• Self-Configuring - The system must adapt automatically to its operating environment. Hard-
ware and software platforms must posses a self-representation of their abilities and self-
configure with regard to their environment.

• Self-Healing - Systems must be able to diagnose and solve service interruptions. For a system
to be self-healing, it must be able to recognise a failure and isolate it, thus shielding the rest
of the system from its erroneous activity. It then must be capable of recovering transparently
from failure by fixing or replacing the section of the system that is responsible for the error.

2

1.1 Motivation and Problem Domain

• Self-Optimising - The system must constantly evaluate potential optimisations. Through
self-monitoring and self-configuration, the system should self-optimise to efficiently maximise
resources to best meet the needs of its environment and end-users.

• Self-Protecting - These systems must anticipate a potential attack, detect when an attack is
underway, identify the type of attack (for example, denial-of-service or unauthorised access),
and use appropriate countermeasures to defeat or at least nullify the attack.

The common theme shared by all of these characteristics is the ability to handle functionality
that has been traditionally the responsibility of a human system administrator.

Middleware facilitates the development of large software systems by relieving the burden on
the applications developer of writing a number of complex infrastructure services needed by the
system; such services include persistence, distribution, transactions, load balancing, and clustering.
Within the software domain, adaptive and reflective techniques have been utilised to empower
systems to automatically self-alter (adapt) to meet their environmental and user needs. Adaptive
and reflective techniques are currently used to enhance a number of middleware services including
multimedia [7], security [8, 9], transactions [10], and fault-tolerance [11] and have been noted as
a key emerging paradigm for the development of dynamic next-generation middleware platforms
[12].

One of the key mechanisms used in the construction of an reflective self-managed system is
a meta-level, sometimes referred to as a meta-space, or meta-model. Systems built using this
technique are separated into two levels, a base- and meta-level. The base-level provides system
functionality, and the meta-level contains the policies and strategies for the behaviour of the system.
The inspection and alteration of the meta-level allows for changes in the system’s behaviour.
Middleware platforms built using a meta-level with reflective techniques exhibit a number of the
fundamental characteristics needed by autonomic systems and provide an ideal foundation for the
construction of autonomic middleware platforms.

Current adaptive and reflective middleware platforms service their environment in an isolated
and introverted manner. As they progress towards autonomic middleware, one of the most in-
teresting research challenges facing adaptive and reflective middleware platforms is their lack of
cooperation and coordination to achieve mutually beneficial outcomes. John Donne, perhaps the
greatest of the metaphysical poets, said ‘No man is an island’ [13]; likewise no adaptive or reflective
middleware platform, service or component is an island. Each must be aware of both the individual
consequences and group consequences of its actions.

Given the challenges that await middleware platforms in future computing environments, coor-
dination self-management between next-generation middleware systems will be a vital mechanism
needed to meet these challenges head-on. As a step toward this goal, this thesis investigates the
benefits of coordination between adaptive and reflective middleware platforms. This work ex-
plores coordination within the realm of Message-Oriented Middleware (MOM). MOM is an ideal
candidate for the study of coordination as it is an interaction-oriented middleware. In addition,
self-management techniques have yet to be applied within the MOM domain, providing an oppor-
tunity to investigate their application within this domain.

3

1.2 Motivational Scenario

1.2 Motivational Scenario

As a means to direct debate, a motivational scenario is provided to act as a reference point for
discussion. The chosen scenario replicates a common messaging requirement within the MOM
domain. In the scenario, illustrated in Figure 1.1, the application on the left produces messages
for the consumers on the right; messages are delivered using the MOM. Messages are sent to
destinations based on a number of dynamic routing rules, which may be subject to frequent changes.
The typical messaging solution used to meet these messaging requirements utilises a centralised
message router.

Application

Company Bar
Consumers

Company Foo
Consumers

Company Foo MOM

Company Bar MOM

Router

Rule Base

Router

Rule Base

1

2

2
3

3

1

4

4

North America

Europe

Asia

Rest of World

Europe

Rest of World

Figure 1.1 A centralised message routing solution

This solution, illustrated in Figure 1.1, is comprised of the four steps:

1. Application produces the message and sends it to the router

2. Router evaluates the message against its rule-base to match it to relevant destination(s)
based on its content

3. Router forwards the message to the relevant destination(s)

4. Message consumer receives the message

This messaging process is a fundamental [14] design pattern within the messaging domain
and is commonly used to compose an overall messaging solution; a number of variations on the

4

1.2 Motivational Scenario

pattern are available such as the Dynamic Router [15] and Content-Based Router [16]. Within
these design patterns, the router contains key information needed to direct message distribution.
The main benefit of such patterns is the centralisation of routing rules. However, centralisation
is also a weakness when it comes to scalability and robustness; a single routing location is both a
bottleneck and central point of failure.

A more robust routing solution would maintain the benefits of a centralised rule-base and in-
crease robustness using decentralised message distribution. Such an approach would be possible
by sharing the rule-base with message producers, enabling them to distribute their messages di-
rectly to relevant destinations. This coordinated approach to messaging, illustrated in Figure 1.2,
provides the best of both worlds. It maintains the benefits of a centralised rule base, increases
scalability with decentralised message delivery, and removes the single point of failure from the
messaging solution.

Router

Company Bar
Consumers

Company Foo
Consumers

Company Foo MOM

Company Bar MOM

Application

Rule Base

Rule Base

1

1

2

2

4

4

North America

Europe

Asia

Rest of World

Europe

Rest of World

Figure 1.2 A decentralised message routing solution

The motivational scenario utilising this decentralised approach operates as follows:

1. Message producer receives routing rules from the centralised rule-base of each company

2. Message producer creates a message and matches it to the relevant destination(s) based on
the rule-base

3. Producer sends message directly to destination(s) within each messaging infrastructure

5

1.3 Research Hypothesis

4. Message consumer receives the message

This scenario demonstrates only a single instance where coordination between messaging par-
ticipants may improve their ability to service their deployment environment. With a generic
coordination mechanism in place, the benefits of coordinated interactions may be harnessed within
a wide range of messaging scenarios.

1.3 Research Hypothesis

The research hypothesis explored within this work investigates coordination between self-managed
systems. The hypothesis is that:

Within dynamic operating environments, coordinated interaction between self-managed
systems can improve the ability of the individual and collective systems to fulfil per-
formance and autonomy requirements of the environment.

1.4 Research Methodology

The research methodology used to test the research hypothesis is broken down into a number of
steps. These steps provide an effective roadmap for the research and are summarised as follows:

• Perform a comprehensive literature and technology analysis to evaluate current state of the
art practices within the adaptive and reflective middleware and message-oriented middleware
domains.

• Define the requirements to facilitate meta-level interaction. Identify a minimal set of com-
munication capabilities to define an appropriate meta-level interaction protocol to achieve
coordination.

• Define a generic meta-level relevant to a wide range of message-oriented middleware plat-
forms. This is achieved by the identification of common MOM participants, behaviours, and
states.

• Provide a concrete implementation of this generic meta-level to realise a reflective MOM
platform. The meta-level must be portable to multiple MOM implementations.

• With a coordinated reflective MOM in place, a substantive evaluation process must be un-
dertaken to assess any benefits. This necessitates the development of a suitable test suite to
perform empirical benchmarking with relevant test cases designed and executed to validate
the research hypothesis.

• Based on the empirical analysis of the coordinated meta-levels, conclusions are drawn to
substantiate the research hypothesis.

1.5 Principal Contributions

The principal contributions of this work are as follows:

6

1.6 Thesis Organisation

1. Investigation into the benefits of coordination between self-managed/reflective systems.

2. Identification of a minimal set of generic prerequisites to facilitate meta-level coordination
(See Chapter 4).

3. Definition of an implementation agnostic interaction protocol, the Open Meta-space Inter-
action Protocol (OMIP), to fulfil the requirements for meta-level coordination (See Chapter
4).

4. Introduction of adaptive and reflective techniques within MOM (see Chapter 4 and 5).

5. Definition of a GenerIc Self-management for Message-Oriented middleware (GISMO), includ-
ing the identification of common MOM behaviour and state (See Chapter 4).

6. Identification of a design pattern for the development of portable meta-levels. The pattern
also promotes a clearer separation of concerns within a meta-level (See Chapter 4).

7. Development of a lightweight framework for non-invasive augmentation of a meta-level on a
base-level. Using said design pattern, the framework implements the meta-level and preserves
its portability, allowing its attachment to multiple base-levels (MOM implementations) (See
Chapter 5).

8. Development of a novel routing solution utilising the capabilities of coordinated meta-level
interaction (see Chapter 6).

9. Development of an enhanced destination hierarchy to illustrate the benefits of coordinated
meta-levels and reflective capabilities within the MOM domain (see Chapter 7).

10. Identification of requirements to benchmark reflective systems (see Chapter 7).

11. Development of a MOM benchmarking suite, providing a unique simulator to benchmark
MOM within dynamic environments (see Chapter 6, Chapter 7, and Appendix A).

12. Design of dynamic test cases to benchmark reflective MOM systems (see Chapter 7).

13. Extensive benchmarking to verify and validate the benefits of these new messaging solutions
when compared to their traditional alternative. All benchmarks are performed under condi-
tions comparable to, or better than, standard industrial practices (see Chapter 6, Chapter 7,
and Appendix A).

14. Related background knowledge is introduced and future research directions are discussed.

15. International peer-reviewed publications (see Appendix B).

The relationship between research contributions within this work are illustrated in Figure 1.3.

1.6 Thesis Organisation

In brief, the organisation of this thesis is as follows:
Chapter 2 introduces the concepts of reflective middleware and covers the fundamentals of

this particular approach to self-management. The distinctions between adaptive middleware and

7

1.6 Thesis Organisation

Meta-level
Coordination

Open Meta-level
Interaction Protocol

Coordinated
Self-Managed

MOM

Self-Managed
Reflective MOM

Self-Managed
Construction
Techniques

Coordinated
Self-Managed

Messaging Services

Benchmarking
Techniques

Figure 1.3 The relationships between research contributions

reflective middleware are discussed, including different forms of reflective behaviour. Current
reflective systems are examined to highlight their capabilities, limitations, and design.

Chapter 3 presents Message-Oriented Middleware (MOM). Rudimentary theories of the MOM
domain are summarised to highlight its differences from traditional distribution mechanisms. A
number of MOM implementations are examined to highlight both the diversity of MOM application
domains and to reveal their reflective ability (self-management capabilities).

Chapter 4 depicts the motivation and pre-requisites for coordinated self-managed systems.
A conceptual view of how meta-levels can interact with one another using the Open Meta-level
Interaction Protocol (OMIP). The protocol is described and sample uses are discussed.

Chapter 5 brings together the discussion of reflective capabilities, MOM, and coordination,
into a definition for a GenerIc Self-management for Message-Oriented middleware (GISMO) for
the study of meta-level coordination within self-managed systems. The problems, challenges, and
solutions in the design and development of a generic meta-level are highlighted. The identification
of common MOM characteristics (participants, behaviour, and state) for defining the meta-level
are summarised.

Chapter 6 details an implementation of the GISMO within the Chameleon MOM extension
framework. Chameleon illustrates how a meta-level may be augmented to a base-level in a non-
invasive manner. Challenges with base-level interaction, the frameworks architecture, and the
implementation of the meta-level are all examined. Additional benefits of the framework within
the messaging domain are also identified.

Chapter 7 describes the first case study used to evaluate the benefit of coordinated self-managed

8

1.7 Summary of Conclusions

systems. The case study examines the benefits of information exchange between interacting partic-
ipants. The scenario used in this case study expands on the motivational scenario from Section 1.2.
With the coordination of participants, a centralised routing solution is altered to a decentralised
routing solution. This change maximises maintainability and scalability by combining the advan-
tages of a centralised rule-base with distributed message delivery. Benchmarks are performed on
both messaging solutions to assess their benefits.

Chapter 8 contains the second case study used to evaluate this research. The objective of
this case study is to examine the benefits of a reflective MOM within dynamic environments.
Benchmarks of both reflective and non-reflective MOMs are run within a simulator that recreates
dynamic messaging demands.

Chapter 9 concludes with an overview of the experiences and evaluations of the research in-
cluding lessons learned, possibilities for technology transfer, architectural limitations, future work,
and open issues.

Appendix A covers the design of the MOM benchmark suite used within the case studies.
Fundamental concepts related to benchmarking MOM solutions are covered, including criteria for
metric identification, issues with test case design, and testbed configuration/setup (both hardware
and software). The design of dynamic test cases is also discussed.

Appendix B provides XML Schema for the Multimedia and MOM Domain Specific Languages
(DSL) described in Chapter 4 and Chapter 5 respectively.

Appendix C contains additional results from the case study carried out in Chapter 8.

1.7 Summary of Conclusions

If the vision of autonomic computing [6] is to be reached, the need for increased coordination
between interacting systems is a fundamental prerequisite. The focus of this research was to in-
vestigate the utility of coordinated behaviour within the domain of self-managed middleware. As
a means to test this hypothesis, Message-Oriented Middleware (MOM) was chosen as the investi-
gational problem domain; MOM is interaction-centric making it an ideal test scenario. Reflection
is a key self-management technique that has not previously been utilised within the MOM do-
main. This creates an additional research theme, the investigation of reflective self-management
techniques within MOM. Both of these research tracks were investigated with the definition and de-
velopment of a coordinated reflective MOM platform. Once the development of the infrastructure
was complete, an extensive evaluation was required to assess its benefits.

A comprehensive evaluation process is vital to assess the empirical benefits of research. The
benchmarking process for coordinated reflective MOM was extensive. Benchmarks were run on
a private network of 12 machines with the execution of 88 benchmark tests taking a combined
total of more that 85 hours of benchmarking time. The evaluation process was broken down into
two case studies with goals to evaluate coordination between self-managed systems, and evaluate
reflective techniques within MOM. All benchmarks were executed under conditions comparable to,
or better than, standard industrial practices.

The first case study examines the benefits of coordination between self-managed middleware
systems by evaluating the benefits of information interchanges between two meta-levels. With such
an ability in place, the benchmarks clearly show the advantages of coordination between reflective
self-managed systems and exemplify its potential to foster the development of innovative message

9

1.7 Summary of Conclusions

solutions within the MOM domain.
The second case study further assesses meta-level coordination and the benefits of reflective

self-management techniques within the MOM domain. The execution of these benchmarks revealed
that self-management techniques have a considerable effect on the performance of a MOM provider.
Reflective techniques enable the MOM to alter its runtime configuration to match the current
demands of its environment thus increasing the level of service it can provide.

The evaluation process is a clear validation of the research hypothesis presented within this
thesis. Coordination between reflective self-managed systems can greatly improve their, and the
collectives, ability to fulfil the needs of the current operating environment.

10

Chapter 2

Adaptive and Reflective

Middleware Essentials

Adaptive and reflective techniques are a key paradigm for the development of dynamic next-
generation middleware platforms. These techniques empower a system to automatically self-
manage to meet current operating requirements. This chapter introduces adaptive and reflective
techniques and presents a review of current state-of-the-art practice within middleware platforms.

2.1 Introduction

Middleware platforms and services form a vital cog in the construction of robust distributed sys-
tems. Middleware facilitates the development of large software systems by relieving the burden on
the applications developer of writing a number of complex infrastructure services needed by the
system; such services include persistence, distribution, transactions, load balancing, and clustering.

Middleware platforms have traditionally been designed as monolithic static systems. The vig-
orous dynamic demands of future environments such as large-scale distribution or ubiquitous and
pervasive computing [2] will require extreme scaling into large, small, and mobile environments. In
order to meet the challenges present in these environments, next-generation middleware researchers
are developing techniques to enable middleware platforms to obtain information concerning envi-
ronmental conditions and adapt their behaviour to better serve their current deployment. Such
capability will be a prerequisite for any next-generation middleware; research to date has exposed a
number of promising techniques that give middleware the ability to meet these challenges head-on.

Adaptive and reflective techniques have been noted as a key emerging paradigm for the de-
velopment of dynamic next-generation middleware platforms [12]. These techniques empower a
system to automatically self-alter (adapt) to meet its environmental and user needs. Adaptation
can take place autonomously or semi-autonomously, based on the systems deployment environ-
ment, or within the defined policies of users or administrators [17]. A reflective system is one that
can examine and reason about its capabilities and operating environment allowing it to self-adapt
at runtime. Reflective middleware is the next logical step once an adaptive middleware has been
achieved.

The objective of this chapter is to explore adaptive and reflective techniques, their motivation

11

2.2 Adaptive Middleware

for use, and introduce their fundamental concepts. The tools and techniques that enable a system
to alter its behaviour are examined. A review and comparison of the application of these techniques
within a selection of state-of-the-art middleware platforms is undertaken to reveal their design and
coordination capabilities. The first technique explored is adaptive middleware.

2.2 Adaptive Middleware

Traditionally, the design of a middleware platform targets a particular application domain or de-
ployment scenario. In reality, multiple domains overlap and deployment environments are dynamic
not static; current middleware technology does not provide support for coping with such condi-
tions. Current research has focused on investigating the possibility of enabling middleware to serve
multiple domains and deployment environments. In recent years, platforms have emerged which
support reconfigurability, allowing the customisation of platforms for a specific task. This work
has led to the development of adaptive multi-purpose middleware platforms. The Oxford English
Dictionary defines adapt as:

Adapt - a. To alter or modify so as to fit for a new use.1

An adaptive system has the ability to change its behaviour and functionality. Adaptive middle-
ware is software whose functional behaviour can be modified dynamically to optimise for a change
in environmental conditions or requirements [18]. Triggers of adaptations include changes made
to a configuration file by an administrator, by instructions from another program or by requests
from its users.

2.3 Reflective Middleware

The Oxford English Dictionary defines reflect as:

Reflect – v. To turn (back), cast (the eye or thought) on or upon something.1

The ground-breaking work on reflective programming was carried out by Brian Smith at MIT
[19]. A reflective system is one that can examine and reason about its capabilities and operating
environment allowing it to self-adapt at runtime. Reflective middleware is the next logical step
following the development of adaptive middleware. Reflective middleware builds on adaptive mid-
dleware by providing the means to manipulate the internals of a system to adapt it at runtime.
This approach allows for the automated self-examination of system capabilities, and the automated
adjustment and optimisation of those capabilities. The process of self-adaptation allows a system
to provide an improved service for its environment or user’s needs. Reflective platforms support
advanced adaptive behaviour, adaptation can take place autonomously based on the status of the
system’s environment, or in the defined policies of its users or administrators [17].

Reflection is currently a hot research topic within software engineering and development. A
common definition of reflection is a system that provides a representation of its own behaviour
which is amenable to inspection and adaptation, and is causally-connected to the underlying

1 Oxford English Dictionary, Second Edition, Oxford University Press, 1989.

12

2.4 Are Adaptive and Reflective Techniques the Same?

behaviour it describes [20]. The casual-connection requires that alterations made to the self-
representation are mirrored in the system’s actual state and behaviour.

Reflective research is also gaining speed within the middleware research community. The use
of reflection within middleware for advanced adaptive behaviour gives middleware developers the
tools to meet the challenges of next-generation middleware. Its use in this capacity has been
advocated by a number of leading middleware researchers [1, 12]. Reflective middleware is self-
aware middleware [21].

The reflective middleware model is a principled and efficient way of dealing with
highly dynamic environments yet supports the development of flexible and adaptive
systems and applications [21]. This reflective flexibility diminishes the importance of
many initial design decisions by offering late-binding and runtime-binding options to
accommodate actual operating environments at the time of deployment, instead of only
anticipated operating environments at design time [12].

Few aspects of a middleware platform would fail to benefit from the use of reflective techniques.
Research is ongoing into the application of these techniques in a number of areas within middleware
platforms. While still relatively new, reflective techniques have already been applied to a number
of non-functional areas of middleware: system behaviour that is not obvious or visible from in-
teraction with the system. One of the main reasons non-functional system properties are popular
candidates for reflection is the ease and flexibility of their configuration and reconfiguration during
runtime; changes to a non-functional system property will not directly interfere with a systems
user interaction protocols. Non-functional system properties enhanced with adaptive and reflective
techniques include distribution, responsiveness, availability, reliability, fault-tolerance, scalability,
transactions, and security.

2.4 Are Adaptive and Reflective Techniques the Same?

Adaptive and reflective techniques are intimately related, but have distinct differences and indi-
vidual characteristics:

• An adaptive system is capable of changing its behaviour

• A reflective system can inspect/examine its internal state and environment

Systems can be developed with adaptive capabilities, reflective capabilities, or with both adap-
tive and reflective capabilities. On their own, both of these techniques are useful, but when used
collectively they provide a very powerful paradigm that allows for system inspection with an appro-
priate adaptation. When discussing reflective systems the common assumption is that the system
has adaptive capabilities. Common terms used in the discussion of adaptive and reflective systems
include:

• Reification - The process of providing an external representation of the internals of a system.
This representation allows for the manipulation of the systems internals at runtime.

• Absorption / Realisation - This is the process of enacting the changes made to the external
representation of the system back into the internal system. Absorbing these changes into the
system realises the casual connection between the model and system.

13

2.5 Triggers of Adaptive and Reflective Behaviour

• Non-Functional Properties - The non-functional properties of a system are the behaviours of
the system that are not obvious or visible from interaction with the system. Non-functional
properties include distribution, responsiveness, availability, reliability, scalability, transac-
tions, and security.

• Reflective Computation - Reflective computation is the process of reasoning about and adapt-
ing the system.

2.5 Triggers of Adaptive and Reflective Behaviour

The reflective capabilities of a system should trigger the adaptive capabilities of a system. However,
what exactly can be inspected to trigger an appropriate adaptive behaviour? Typically, a number
of areas within a middleware platform including its functionality and environment are amenable
to inspection, measurement, and reasoning as to the optimum or desired performance and func-
tionality. Software components known as interceptors can be inserted into the execution path of
a system to monitor its actions. Using interceptors and similar techniques, reflective systems can
extract useful information from the current execution environment and perform an analysis on this
information.

Usually, a reflective system will have a number of interceptors and system monitors that can
examine the state of a system, reporting system information such as its performance, workload,
or current resource usage. Based on an analysis of this information, appropriate alterations may
be made to the system behaviour. Potential monitoring tools and feedback mechanisms include
performance graphs, benchmarking, user usage patterns, and changes to the physical deployment
infrastructure of a platform (network bandwidth, hardware systems, etc).

2.6 Adaptive and Reflective Techniques

As a means of implementing adaptive and reflective middleware, a number of techniques have been
developed to introduce these capabilities into middleware platforms. These techniques focus on a
variety of crosscutting concerns at various levels of the system ranging from low-level structural
reflection found within reflective programming languages to high-level architectural reflection. A
general outline of the inter-relationship between reflective techniques is illustrated in Figure 2.1.
The remainder of this section provides a brief description of these techniques.

2.6.1 Structural Reflection (Programmatic)

Structural reflection [19] provides the ability to alter the statically fixed internal data/functional
structures and architecture used in a program. A structurally reflective system would provide a
complete reification of its internal methods and state, allowing their inspection and change. Low-
level structural reflection is most commonly found in programming languages, such as Smalltalk
and java.lang.reflect, offering the ability to change the definition of a class, a function or a data
structure on demand.

14

2.6 Adaptive and Reflective Techniques

Figure 2.1 The inter-relationships between reflective techniques

2.6.2 Behavioural Reflection

Behavioural reflection is the ability to intercept an operation such as a method invocation and alter
the behaviour of that operation. This allows a program, or another program, to change the way it
functions and behaves. Behavioural reflection alters the actions of a program at runtime with the
use of a number of techniques including polymorphism, reflective programming languages, design
patterns, and structural reflection.

2.6.3 Architectural Reflection

Architectural reflection is similar in nature to structural reflection but operates at the higher
architecture-level of a system. With architectural reflection “there exists a clean self-representation
of the system architecture, which can be explicitly observed and manipulated” [22]. Architec-
tural reflection involves the inspection and adaptation of software architecture. This objective
is achieved by expressing the composition of the software architecture in an Architectural Meta
Model (AMM) [7, 23]. The architecture is typically described within a AMM using a configuration
or component graph to express the current structure and composition of the architecture; what
components/modules are in use and how they are binded together (connected).

The AMM can then be inspected and manipulated to adapted the architecture by replacing
a component, reconfiguring a binding, etc; these changes are then reified in the systems base-
level. An unconstrained AMM could lead to invalid adaptations resulting in an unstable system,
unpredictable system behaviour, or system failure. To prevent such an outcome the AMM can
often be associated with a set of architectural constraints to ensure the safe adaptation of the
architecture [7], preserving system integrity.

2.6.4 Synchronous Reflection

The origins of reflection originate from reflective programming languages like OpenC++ [24],
OpenJava [25], and CodA [26]. Within these languages, reflective computation is performed in-
line or synchronously with program execution.

Synchronous reflective programming languages generally realise the causal connec-
tion between the base-level and meta-level as an implementation link. Reflective code

15

2.7 Meta-levels

can only be inserted/removed at the reification points and is generally executed by an
application thread, i.e., it is executed synchronously with program execution. [27]

Language-level reflective capability is useful for creating dynamic flexible applications. How-
ever, within a large-scale distributed system a more global approach to reflection is desirable. This
form of reflection is referred to as system-level reflection and its goal is to monitor system state
and perform configurations based on adaptive policies or logic.

The synchronous approach used within language-level reflection is not always desirable for
system-level reflection, as it must take a more global view of the system when it considers possible
adaptations. A number of system-wide (global) factors need to be included within the decision
making process, these include current system make-up, possible replacement components, new or
altering requirements or temporal usage and performance metrics; how the system performed in the
past and identification of any usage patterns. Additional factors within the reflective process could
include endless domain specific criteria such as QoS within the multimedia domain, or transaction
integrity and security within the financial domain.

Given the diverse nature of the reflective criteria and the manner in which they may be collected
and analysed it is not always desirable to link system-level reflection with the execution of the
system, such reflection should be asynchronous.

2.6.5 Asynchronous Reflection

Asynchronous reflection is a goal-directed process that is not separable from the
system on which it is operating. Its essential characteristics are observation and outputs
(new knowledge, system adaptation, plans of action, etc). Ideally, it should be able to
acquire new knowledge, store that new knowledge and in turn reflect on that new
knowledge, leading to towers of reflection. [27]

Asynchronous reflection decouples system-level reflection from system execution allowing both
to execute independently. Such capability is very beneficial within high-demand environments as it
allows resources to be directed as needs demand. During peak hours, reflective computation can be
minimised to maximise the output of the system. During off-peak hours more intensive reflective
computations, such as pattern analysis, can be performed. This maximises system utilisation and
minimises any negative effects caused by reflective computation during peak usage periods.

The techniques discussed in this section can be implemented with the use of a number of
approaches such as dynamic/smart proxies, dynamic design patterns (such as the Interception and
Chain of Responsibility patterns), and dynamic aspect-oriented programming. These techniques
are discussed in more detail in Chapter 5. One technique central to the design of a reflective system
is the use of a meta-level; a basic understanding of this technique is required to place this research
within the current state-of-the-art.

2.7 Meta-levels

In 1991, Gregor Kiczales’s work on combining the concept of computational reflection and object-
oriented programming techniques lead to the definition of a meta-object protocol [28]. One of the
key aspects of this groundbreaking work was the separation of a system into two levels, base and

16

2.7 Meta-levels

meta. The base-level provides system functionality, and the meta-level contains the policies and
strategies for the behaviour of the system. The inspection and alteration of this meta-level allows
for changes in the system’s behaviour. The remainder of this section discusses meta-levels from
the perspectives of operation, execution synchronicity, concern separation, performance issues, and
coordination capabilities.

2.7.1 Operation Overview

Within a system designed using a meta-object protocol, the base-level provides the implementation
of the system and exposes a meta-interface accessible at the meta-level. This meta-interface exposes
the internals of the base-level components/objects, allowing it to be examined and its behaviour to
be altered and reconfigured. The base-level can now be reconfigured to maximise and fine-tune the
systems characteristics and behaviour to improve performance in different contexts and operational
environments. This interface is often referred to as the Meta-Object Protocol or MOP. The design
of a meta-interface/MOP is central to studies of reflection. The interface should be sufficiently
general to permit unanticipated changes to the platform but should also be restricted to prevent
the integrity of the system from being destroyed [7]. Common terms used in the discussion of
meta-level include:

• Meta - Prefixed to technical terms to denote software, data, etc., which operate at a higher
level of abstraction.1

• Base-Level - The level of software that provides the functional operations of a system.

• Meta-Level - The level of software that abstracts the functional and structural level of a
system.

• Meta-Level Architectures - Systems designed with a base-level (implementation level) that
handles the execution of services and operations, and a meta-level that provides an abstrac-
tion of the base-level.

• Meta-Object - The participants in an object-oriented meta-level are know as meta-objects.

• Meta-Object Protocol - The protocol used to communicate with the meta-object is known as
the Meta-Object Protocol (MOP).

In addition to providing access to the system’s internal structure such as its dependencies,
interfaces, endpoints, architecture and configuration, the meta-level can also be used to store
additional information, or meta-information, on the base-level such as usage statistics. Essentially,
the meta-level is the “management” level of a system. Reflective techniques enhance this layer
with the ability to self-analyse and self-adapt, creating a self-managed system.

When creating a meta-level for a system, a number of factors must be considered in its design.
These include its synchronisation, concern separation, and performance. An additional factor that
should also be considered is the openness of the meta-level. This is an important design decision
and can dictate how coordinated a meta-level can be with the other meta-levels with which it
interacts.

1 Oxford English Dictionary, Second Edition, Oxford University Press, 1989.

17

2.7 Meta-levels

2.7.2 In-Line and Out-of-Line Execution

Meta-levels can be executed in-line with system execution or independently, out-of-line with system
execution. In-line execution provides for synchronous reflection and out-of-line execution achieves
asynchronous reflection. As covered in Section 2.6.4, the choice of whether a meta-level model is
in- or out-of-line with program execution is an important consideration as both synchronous and
asynchronous reflection can be used to achieve different goals.

When examined from the perspective of meta-level execution, this decision comes down to a
simple choice. Do you wish to make decisions in-line with the execution of the base-level, or do
you wish to make decisions out-of-line asynchronously with the execution of the base-level? When
designing a meta-level, this is not a mutually exclusive choice as meta-levels can support a mix
of both forms of reflective computations to meet the needs of the systems they describe. Such an
approach allows the construction of powerful reflective systems that can use both forms of reflective
computation to complement one another. For example, synchronous reflection may be used to
gather information from the base-level which can then be forwarded to an asynchronous decision
making process to perform reflective computations asynchronously at off-peak usage periods.

2.7.3 Concern Separation

Meta-levels may be used to describe a number of aspects of the base-level of a reflective platform.
In order to create an effective meta-level, it is important to provide a clear separation of concerns
[29] within its design. Meta-levels can describe a number of different concerns within a base-level.
These concerns can be split into multiple models [30] within the meta-level to provide clearer
concern separation.

A useful illustration of concern separation within a reflective platform is provided by Open
ORB [7]. Within the Open ORB meta-level, four distinct meta-models describe the interface,
architecture, interception, and resource management concerns of the Open ORB base-level. These
divisions simplify the meta-level and reduce the complexity of the meta-object protocol used to
interact with the Open ORB base-level. A clear separation of concerns within a meta-level can
help to produce a meta-level that is both intuitive to use and easy to understand.

2.7.4 Performance

Traditionally, one of the major arguments against the use of meta-levels is the fear of severe per-
formance loss. Given the fact that interception is a popular method for the implementation of
meta-levels [7, 8, 9, 10, 31, 32, 33] such concern is well founded. As with any interception-based
mechanism, an interception meta-level will include a layer of indirection to allow the placement
of interceptors within the system. Initial reports on the level of performance loss experienced
within reflective systems show a substantial decrease in performance; in Iguana, a reified method
invocation costs about 12-times a C++ virtual function invocation.[34]. The main case for intro-
ducing reflective abilities into a system centres on the expectation that such capability will improve
the performance of the system. To benefit from reflection, any performance improvements must
negate the effects of performance loss due to the reflective process, returning a net performance
contribution to the system.

...using reflection to select alternative underlying mechanisms (e.g. alternative load-

18

2.7 Meta-levels

ers, binders, protocols, thread schedulers, etc.) can actually enhance performance by
helping to ensure that the underlying system is always configured optimally for the
current application mix and environmental circumstances. [35]

However, recent research from Coulson (2004) adds further weight to the case for reflective
systems. In [35] he argues that different types of meta-models may be present in a reflective
meta-level. These models may deal with aspects of the system, for example OpenCOM [7] has
meta-models which deal with architecture, resource management, interfaces, and interception.
Based on this assumption Coulson argues that

...in many instances, the overhead of reflection need only be incurred ‘occasionally’
in such a way that critical ‘in-band’ performance is not impacted. We use the term ‘in-
band’ to refer to segments of essential code that are repeatedly executed in the normal
course of events and are therefore particularly performance critical. Conversely, ‘out-
of-band’ code is executed only occasionally and its impact on overall performance is
negligible. [35]

The concepts of in-band and out-of-band execution are similar to the in-line and out-of-line
execution concepts covered in Section 2.7.2. In an examination of the OpenCOM meta-model
structure this work found that “two of the three ‘core’ meta-models ... (i.e. the architecture and
interface metamodels) hardly incur any ‘in-band’ overhead. This is also true for the resources
meta-model”[35], further information on OpenCOM is available in Section 2.8.3. This work con-
firmed the previous efforts of Dowling [34] on the performance costs suffered from the use of
‘in-band’ interception-based meta-models. These efforts support the case for the use of “out-of-
band” reflective techniques, such as asynchronous reflection covered in Section 2.6.4 and out-of-line
meta-models discussed in Section 2.7.2, in the development of effective meta-levels that minimise
their associated overheads.

2.7.5 Openness to Coordination

Current meta-levels take a closed approach to their implementation, limiting the possibility of
coordination with other meta-levels. The objective of this research is to examine the benefits
of coordination between meta-levels. Given this basis, the level of openness within a meta-level
will be a key factor in the design of a coordinated meta-level. The definition of openness within
a coordinated context refers to the level of access available from the meta-level, including the
quantity and type of meta-information and adaptations exposed to third parties.

Depending on the meta-level’s application domain, the level of openness will vary. Interaction-
oriented environments, such as distributed computing, could benefit from a very open meta-level as
apposed to a more isolated environment such as a disconnected embedded system. The meta-level
designer will have to choose the level of openness to suit the target domain. Additional factors
that could affect this decision include system security, system self-interest, environmental hostility,
or system ownership.

19

2.8 Current Reflective Research

2.8 Current Reflective Research

The objective of this review is to provide a state-of-the-art overview of adaptive and reflective
research and the use of meta-level techniques within current middleware platforms. In particular,
the review examines the state-of-art with respect to coordination capabilities and limitations. The
review covers a number of research projects from the groundbreaking GARF [36, 37] and CodA
[26] to the more recent K-Components [23, 27, 38]. Well-known reflective projects such as QuO
[31, 39, 40] and Open ORB [7] are also included.

2.8.1 mChaRM

The Multi-Channel Reification Model (mChaRM) [32] is a reflective approach that reifies and
reflects directly on communications. The mChaRM model does not operate on base-objects but
on the communications between base-objects, resulting in a communication-oriented model of
reflection. This approach abstracts and encapsulates inter-object communications and enables the
meta-programmer to enrich and/or replace the pre-defined communication semantics. mChaRM
handles a method call as a message sent through a logical channel between a set of senders and
a set of receivers. The model supports the reification of these channels into logical objects called
multi-channels. A multi-channel can enrich the messages (method calls) with new functionality
such as security, fault tolerance, multi-point delivery, and check pointing. This technique allows
for finer reification reflection granularity and a simplified global approach to the development of
communication-oriented software. Multiple channel types exchange messages between the same
participants, with each channel providing a different communicative capability.

mChaRM operates as an addition to the Java programming language using the placement of
keywords within Java code to specific mChaRM behaviour, these keywords are then replaced with
generated code using the language extension capabilities of OpenJava [25]. In a simplistic sense,
mChaRM operates in a similar fashion to an interception mechanism and provides a global and
structured view of the communication process. mChaRM is specifically targeted for designing and
developing complex communication mechanisms from the ground up, or for extending the behaviour
of current communication mechanisms. mChaRM has been used to extend the standard point-
to-point Java RMI mechanism into one that supports multi-point communication with reliable
multicast.

Within mChaRM, the communicative act is broken down into entities known as loci. Three
distinct loci exist: source loci (sender), abstract loci (message delivery), and target loci (receiver)
as illustrated in Figure 2.2.

Each of these loci possess their own meta-level with an associated API to access their base-
level. “All messages exchanged among multi-channel components are encapsulated in the API
supplied to the meta-programmer” [32]. This architectural approach ensures the encapsulation
of each loci. While no direct meta-level interaction is possible between the meta-levels of loci,
limited interaction is used to access the base-level of a loci. However, one small exception exists. A
restricted coordinated capability is possible between the source loci and the abstract loci with the
exchange of a recipient list between them. This illustrates a simplistic meta-information transfer
via a RMI method invocation. Increased coordination could be achieved within the mChaRM
framework via the implementation of multi-channels, however this would break the encapsulation
of each loci.

20

2.8 Current Reflective Research

Figure 2.2 The mChaRM Loci model (from [32])

2.8.2 QuO

One of the main design goals of traditional middleware platforms was to hide the complexity asso-
ciated with infrastructure tasks such as distribution, fault-tolerance, and load balancing. Within
many application domains, this hiding was welcome. However, for a number of application do-
mains, the middleware hides too much information. Applications dealing with multimedia and
real-time demands (i.e. stock markets) have stringent Quality of service (QoS) demands and need
access to information concealed within the middleware infrastructure to meet their requirements.

Researchers at Bolt, Beranek, and Newman (BBN) Technologies tackled this problem with the
development of the Quality Objects (QuO) framework [31, 39, 41]. The design of QuO aims to
assist in the development of QoS stringent distributed systems.

QuO opens up the implementation of a distributed object application, enabling the
specification, measurement, and control of the QoS aspects of an application and the
specification and implementation of adaptive behaviour in response to changing system
conditions. [40]

QuO supports the construction of client/server-based self-adaptive applications and provides
a Quality Description Language (QDL) for describing the QoS aspects of QuO applications. The
Contract Description Language (CDL) allows the definition of a QoS contract between a client
and servant, the contract specifies the level of service expected and advises on the adaptive actions
taken if the QoS moves outside of these limits. The use of the QDL allows the separation of QoS
concerns from functionality concerns. The QoS contract expressed in CDL allows the specification
of the “level of service desired by a client, the level of service an object expects to provide, operating
regions indicating possible measured QoS, and actions to take when the level of QoS changes” [40].

21

2.8 Current Reflective Research

Figure 2.3 A QuO method invocation (from [31])

Within the method invocation, as shown in Figure 2.3, System Condition Objects or “SysCond”
monitor QoS information and allow its analysis at runtime.

System condition objects (sysconds) provide interfaces to monitor and control low-
level details of the system. The contract uses sysconds as variables in predicates to
determine its current state or region. Sysconds can be selectively monitored by the
contract so that changes in syscond values will trigger a re-evaluation of the contract,
which results in a re-evaluation of the predicates and the execution of any defined
transition actions if the resulting state is different from the previous state. [42]

SysCond objects can expose the QoS state in a number of ways from simple value probes to
periodical polls and sliding window counters. Once a QuO application is running, its runtime
kernel is responsible for the coordination and evaluation of contracts and monitoring of SysCond
objects.

QuO delegates are integrated into application code using a similar technique to weaving within
Aspect-Orientated Programming (AOP) [43]: “QuO delegates are similar to Composition Filters
[44] in that they both weave code into the application by wrapping the target object and intercept-
ing messages to it” [42]. QuO also uses code generators to expand and merge QDL descriptions,
QuO kernel code, and application code to produce a single executable program.

When examined from a coordination perspective, QuO does not provide any support for meta-
level interaction. While clients and servants possess independent adaptive capabilities and QDL
definitions, they cannot interact directly with one another. However, SysCond objects are shared
between both the client and servant, providing a shared model of the system state. This allows
the possibility of cooperative adaptive behaviour by coordinating both client and servant QDL
definitions to perform complementary coordinated actions based on the shared state with the
SysConds objects [27]. This approach could even be extended to provide a primitive client-servant
communication link by hacking a SysCond to act as a link to exchange information between the
client/servant and vice versa.

22

2.8 Current Reflective Research

While this approach might sound promising at first, it is not an ideal foundation to build a
coordinated self-managed system. The task of coordinating three adaptive artefacts, client QDL,
servant QDL and shared sysconds can quickly become complex when modelling an intricate large-
scale system; QuO provides no support to normalise these artefacts. Furthermore, the design of
QuO only supports the construction of client/server based self-adaptive applications and does not
support other topologies such as peer-to-peer decentralised systems.

2.8.3 OpenCOM & Open ORB

The Common Object Request Broker Architecture (CORBA) based Open ORB 2 [7] is an adap-
tive and dynamically reconfigurable Object Request Broker (ORB) supporting applications with
dynamic requirements. Open ORB is designed from the ground up to be consistent with the prin-
ciples of reflection and is built upon OpenCOM, a lightweight adaptable component object model
inspired by Microsoft’s COM [45]. Open ORB exposes an interface (framework) that allows com-
ponents to be plugable; these components control several aspects of the ORBs behaviour including
thread, buffer, and protocol management. The ORB implementation consists of a collection of
configurable components that are selectable at build-time and reconfigurable at runtime. This
process of component selection and configurability enables the ORB to be adaptive.

Figure 2.4 The Open ORB meta-architecture (from [21])

The design of Open ORB uses a clear separation between base-level and meta-level opera-
tions. The ORB’s meta-level is a causally connected self-representation of the ORBs base-level
(implementation) [7]. Each base-level component may have its own private set of meta-level com-
ponents that are collectively referred to as the components’ meta-level. The meta-level is broken
down using the multi-model approach [30] into several distinct models, simplifying the interface to
the meta-level by separating concerns between different system aspects. This allows each distinct

23

2.8 Current Reflective Research

meta-level model to give a different, independently reified, view of the platform implementation. As
shown in Figure 2.4, meta-models cover the interface (IMetaInterface), architecture (IMetaArchi-
tecture), interception, (IMetaInterception) and resource management concerns of the ORB. These
models provide access to the underlying platform and component structure through reflection;
every application-level component offers a meta-interface that provides access to an underlying
meta-level, which is the support environment for the component.

Open ORB uses two meta-models to deal with structural reflection, one for its external inter-
faces, and one for its internal architecture. The interface meta-model acts similarly to the Java
reflection API allowing for the dynamic discovery of a component’s interfaces at runtime. The ar-
chitecture meta-model details the implementation of a component broken down into two parts: a
component graph (a local-binding of components) and an associated set of architectural constraints
to prevent system instability [7]. Such an approach makes it possible to place strict controls on
access rights for the ORB’s adaptation. This allows all users the right to access the interface
meta-model while restricting access rights to the architecture meta-model, permitting only trusted
third parties to modify the system architecture.

Two further meta-models exist for behavioural reflection, the interception and resource mod-
els. The interception model enables the dynamic insertion of interceptors on a specific interface
allowing for the addition of pre-behaviour and post-behaviour. This technique can introduce non-
functional behaviour into the ORB’s execution. Unique to Open ORB is its use of a resource
meta-model allowing for access to underlying system resources, including memory and threads,
resource factories, and resource managers via resource abstraction [7]. This model provides control
and accounting facilities for resources to simplify QoS management [46].

Figure 2.5 Component framework in Open ORB (from [47])

24

2.8 Current Reflective Research

An examination from a coordination perspective reveals that Open ORB is designed to run
within a single address space, its design is heavily influenced by the client/server distribution
model and contains with limited support for other deployment topologies. However, minimal
coordinated behaviour is visible within its binding framework. This framework, shown in Figure
2.5, supports dynamic bindings between clients and servers and has the responsibility of ensuring
that bindings of interacting clients and servers are consistent across ORB instances. “The [binding]
model encompasses both local bindings which are primitively realised within a single address space,
and distributed bindings, which can span address spaces and machines” [47].

Participants that are remote with respect to a binder’s location are represented by
reps (‘remote participant representatives’). The process of creating a rep falls into two
stages as follows. First, a generator is used at the participant’s (remote) site to generate
both an iref and an associated communication infrastructure. An iref is a value that
represents a participant and can be passed around the distributed system. Second, the
iref is transferred to the binder’s site (by some means or other) at which it is passed
to a resolver that is responsible for creating a responding rep. This whole process is
referred to as participant remoting. [47]

Remote participants within a binding are initialised and controlled at runtime with the Binder
API. The API provides generic interfaces for entities within the binding model. Configuration of
the remote participant is possible by passing information such as settings and QoS specifications
within the bindContext parameter of the IGenericBinder interface. When the binding established,
runtime control is possible with the use of the BindingCtl to alter its operation.

One should note that this is not an example of first-class meta-level interaction, although meta-
level information such as the QoS specification might be used within the binding interaction; rather,
it is a small and limited interaction within the binding framework. Its examination reveals the use
of coordination interactions within the lower layers of current self-managed systems to coordinate
their reflective behaviours.

2.8.4 dynamicTAO (UIC/2K)

Another CORBA based reflective middleware project is dynamicTAO [8]. dynamicTAO is designed
to introduce dynamic reconfigurability into the TAO ORB [48] by adding reflective and adaptive
capabilities.

TAO is a portable, flexible, extensible, and configurable ORB based on object-
oriented design patterns. It is written in C++ and uses the Strategy design pattern
to separate different aspects of the ORB internal engine. A configuration file is used
to specify the strategies the ORB uses to implement aspects like concurrency, request
demultiplexing, scheduling, and connection management. At ORB startup time, the
configuration file is parsed and the selected strategies are loaded. [8]

Unlike the segregated meta- and base-level approach taken within Open ORB, dyanmicTAO
“concentrates on a simpler reflective model, focusing on high performance” [8]. This results in
meta-capabilities weaved within the ORBs implementation with an associated meta-interface. dy-
namicTAO enables on-the-fly reconfiguration and customisation of the TAO ORBs internal engine,
while ensuring it is maintained in a consistent state.

25

2.8 Current Reflective Research

Figure 2.6 dynamicTAO component architecture (from [49])

The architecture of dynamicTAO is illustrated in Figure 2.6 and Figure 2.7. Within this ar-
chitecture, reification is achieved through a collection of component Configurators. dynamicTAO
allows components to be dynamically loaded and unloaded from the ORBs process at runtime en-
abling the ORB to be inspected and its configuration to be adapted. Component implementations
are organised into categories representing different aspects of the ORB’s internal engine such as
concurrency, security, monitoring, and scheduling. Inspection in dynamicTAO is achieved with
interceptors that may be used to add support for monitoring. Interceptors may also introduce
additional behaviours such as cryptography, compression, and access control.

dynamicTAO “exports a meta-interface for the loading and unloading of components into the
ORB at runtime, and the inspection of the ORB’s configuration state”[21]. The meta-interface can
be accessed remotely through a Network Broker and the Dynamic Service Configurator. Remote
administration interactions are possible using the Distributed Configuration Protocol (DCP). DCP
allows the following remote operations:

• Retrieve information of a remote ORB’s persistent information repository (what components
are available in the ORB’s repository)

• Retrieve runtime configuration information (what components are running)

• Load implementations and reconfigure (load or reconfigure components)

26

2.8 Current Reflective Research

DynamicTAO

Concurrency Strategy
Domain Controller

TAO ORB Configurator

Servant 2 ConfiguratorServant 1 Configurator

Scheduling Strategy

Security Strategy

Monitoring Strategy

N Strategy

Servant N Configurator

Figure 2.7 Reifying the dynamicTAO structure (adapted from [8])

• Access the persistent repository (upload, delete or download a component’s code)

The DCP is a straightforward protocol that allows administrative access to a remote ORB
instance and illustrates the benefits and potential for meta-level interaction and coordination within
reflective systems. One utilisation of the protocol is the development of a Mobile Reconfiguration
Agent (MRA) for ORB networks.

As a means of coping with the demands within large-scale deployments, it is common practice to
utilise inter-connected networks of ORBs and collections of ORB replicates spread across multiple
physical locations. As the size of the ORB network increases the effort required to configure and
administrate the network also increases. “In order to configure a particular ORB, a point-to-point
connection between the administration node (e.g. running Doctor [a configuration tool]) and the
ORB process” [8] is required. Within a large network, this process can be labour and bandwidth
intensive. Kon provides a rational and approach for the development of MRAs:

As a first solution to the problem we considered implementing a management front-
end that would allow administrators to type sequences of DCP commands that would
be sent to a list of ORBs. Although this approach would simplify the work of the
administrator, it would not solve the problem of bandwidth waste, i.e., sending large
amounts of duplicated information across long-distance Internet lines.

The solution we adopted was to allow administrators to organize the nodes of their
Internet systems in a hierarchical manner for reconfiguration purposes. The admin-
istrator specifies the topology of the distributed application as a directed graph and
creates a mobile reconfiguration agent which is injected into the network. The recon-
figuration agent then visits the nodes of this graph of interconnected ORBs. In each
ORB, the agents are received by the Reconfiguration Agent Broker. The broker first
replicates and forwards the agent to neighboring nodes, then processes the DCP com-
mands locally, and finally, collects the reconfiguration results, sending them back to
the neighboring agent source. [8]

27

2.8 Current Reflective Research

The development of MRAs illustrates the potential power of an open coordinated meta-level.
The simple DCP interface facilities the development of MRAs that travel through the ORB network
performing reconfigurations based on the administrator’s instructions. The DCP was able to
achieve this simple form of coordinated interaction between MRAs and the ORBs meta-level.

The primary design objective of the DCP is remote ORB administration; its ability to facilitate
non-administrative coordination interactions between ORBs is limited. The protocol offers only
limited support for state exchange and provides no mechanism to extend itself to contain such
information, or to extend its interaction capability. The protocol assumes a master/slave relation-
ship between client and servant with no ability for a servant ORB to refuse a reconfiguration. In
its current form, v1.11, it provides simple administrative capabilities but does not support any
security or access control mechanisms; although, a security extension is planned. The protocol
itself is specific to dynamicTAO/TAO and does not support any other middleware types, however
its abstract principles could define a generic protocol for ORBs.

2.8.5 K-Components

K-Components [23] is a component framework designed to support autonomic components with
the use of reflective techniques. K-Components is of particular interest to this research as it is
one of the first efforts to investigate the coordination of the decentralised reflective systems with
the use of Collaborative Reinforcement Learning (CRL) and facilitates communication between
decentralised runtime deployments by exploiting the event-communication paradigm.

K-Components provides a description language to describe possible adaptation of components,
similar to the QDL used for writing QoS contracts within the QuO project covered in Section 2.8.2.

The model provides a component interface definition language called K-IDL, an
extension to IDL that supports the definition of component states and adaptation
actions, as well as required interfaces. Component states and adaptation actions are
used by decision making programs to reason about component operation and adapt
component operation. A K-IDL compiler translates component interface definitions into
an extended version of IDL-2 and interfaces are compiled using modified Orbacus/C++
middleware. [38]

Reflective capabilities are introduced into the framework with the use of “adaptation contracts”.
These contracts are associated with a component and provide reflective capabilities by “reason-
ing about adaptation conditions using component/connector states and feedback events regarding
remote component states” [38]. These adaptation contracts are specified using the Adaptation Con-
tract Description Language (ACDL); this language allows the “association of component/connector
states or feedback events with adaptation actions using if-then rules or the event-condition-action
(ECA) paradigm” [38].

Within the context of self-adaptive systems one of the major drawbacks of the top-down “rule-
based and the ECA approach to specifying self-adaptive behaviour is that it becomes infeasible
as the space of possible feedback events and adaptation actions increases” [38]. To cope with this
limitation a capability for components to perform autonomous learning was introduced. Using this
approach, self-adaptive behaviour can be “learnt by components using an unsupervised technique

1 http://choices.cs.uiuc.edu/2k/DCP

28

2.8 Current Reflective Research

Figure 2.8 A K-Component runtime (from [27])

called Collaborative Reinforcement Learning (CRL). CRL enables the decentralised coordination
of groups of connected components for the purpose of establishing system-wide properties” [38].
The CRL technique allows similar agents to share their information between one another to help
improve their problem solving capabilities (i.e. collaborative feedback). With the sharing of optimal
policies at the agent level, a bottom-up approach may be taken to solve complex problems.

The infrastructure for this CRL is provided by the K-Component framework [23]. A K-
Component is a runtime within a single address space. K-Components are interconnected using
the connector abstraction as defined by Fielding:

A connector is an abstract mechanism that mediates communication, coordination,
or cooperation between components. [50]

“Architectural reflection is used to reify the structure of components and connectors in a K-
Component runtime as an [Architectural Meta-Model] AMM” [27]. The AMM is a configuration
graph describing components, component interfaces, and component connectors. It “is designed to
enable the construction of self-adaptive software in decentralised systems” [27]. Given its decen-
tralised nature, there is no global view of an AMM within the K-Components framework. Each
runtime manages an AMM to represent its own interest (internal components, connectors, and ex-

29

2.8 Current Reflective Research

ternal components interacting with components within its runtime). Reconfigurations are limited
to “type-safe connector binding and component replacement” [27].

Interaction with the AMM is achieved with the use of the ArchReflect MOP. This MOP allows
the binding/unbinding and replacement of components and connectors within the AMM and the
ability to invoke any methods defined on entities within the AMM. The ArchEvents interface
registers entities within the AMM. This architecture is illustrated in Figure 2.8.

The Adaptation Contract Description Language (ACDL) specifies adaptation logic for compo-
nents and connectors within a K-Component runtime. Within the ACDL, Event Condition Action
(ECA) policies are specified with the use of feedback events. “A feedback event is defined as a
predicate on the value of a component feedback state and an associated handler” [27]; feedback
states are only observable via feedback events. Feedback event communication is handled by the
Feedback Event Manager, see Figure 2.8. Within each K-Component runtime, it is possible to
subscribe to feedback events from remote runtimes known as remote feedback events. The KBind
interface allows remote clients to subscribe to feedback events and the transfer of component de-
scriptions between remote hosts. Figure 2.9 illustrates this process by facilitating the update of a
remote component binding.

Figure 2.9 Abstract model of interaction between component binding
and AMM transfer between K-Component runtimes (from
[27])

Feedback events and the KBind interface facilitate the construction of coordination protocols
between connected K-Components runtimes in a decentralised manner. When examined from a
coordination perspective “each K-Component in the decentralised system maintains a local soft-
ware architecture and a partial view of the system that covers directly connected components on
neighbouring nodes” [27]. While this approach is appropriate for large-scale distributed systems, it
can limit the level of coordination between participants within the system. With each system only
containing a partial system view, it is difficult to create a system-level reflective agent to manage
system-wide concerns.

Coordination is further limited by the type of information that can be exchanged between
K-Component runtimes; state transfer is limited to feedback events and the transfer of known
component definitions. It is not possible to retrieve a list of components within the repository of a
remote runtime, as is possible with dynamicTAO’s Distributed Configuration discussed in Section
2.8.4. This limits coordination potential to pre-referenced components, restricting the ability of
the framework to perform unanticipated runtime adaptations.

30

2.8 Current Reflective Research

In addition, system-level state exchange is limited: “Feedback states and feedback events can
be defined on components, however the only support for a system feedback state is the status state
defined on connectors” [27]. This restricts the ability of K-Components to model its underlying in-
frastructure and constrains its potential to monitor and react to changes within this infrastructure.
Such ability was one of the primary reasons the QuO framework was developed, further details on
QuO are available in Section 2.8.2.

2.8.6 Other Reviewed Systems

As an addition to in this review, a number of other systems have been examined to place this
research within the wider reflective and self-management research community. This review starts
with the CodA and GARF projects; both of these works are seen as pioneering landmarks in
reflective research.

2.8.6.1 CodA and GARF

The CodA file system is designed as an object meta-level architecture, its primary design goal
was to allow for decomposition by logical behaviour. Utilising the principle of decomposition from
Object-Oriented (OO) software engineering, CodA eliminates the problems existing in ‘monolithic’
meta-architectures. CodA achieves this by using multiple meta-objects with each one describing a
single small behavioural aspect of an object, instead of using one large meta-object that describes
all aspects of an objects behaviour. This approach offers a fine-grained approach to decomposi-
tion. Once the distribution concern has been wrapped in meta-objects, aspects of the systems
distribution such as message queues, message sending and receiving can be controlled.

GARF [36] (automatic generation of reliable applications) is an object-oriented tool that sup-
ports the design and programming of reliable distributed applications. GARF wraps the distri-
bution primitives of a system to create a uniform abstract interface that allows the enhancement
of the systems basic behaviour. One such technique improves application reliability by replicating
the application’s critical components over several machines. Group-communication schemes im-
plement these techniques by multicasting message delivery to the groups of replicas. To facilitate
group-communication, multicasting functionality needs to be mixed with application functionally.
GARF acts as an intermediate between group-communication functionality and applications, pro-
moting software modularity by clearly separating the implementation of concurrency, distribution,
and replication from functional features of the application.

2.8.6.2 Strathclyde Context Infrastructure

The Strathclyde Context Infrastructure (SCI) is a middleware service that provides contextual
information (i.e. user preferences, usage history, and environmental constraints) for interactions
with users. SCI is focused on the “extraction, placement and management of context in the face
of mobility” [51], simplifying the development of context aware applications.

SCI is broken down into two layers. The upper layer manages the interconnection of nodes and
utilises an overlay network to provide scalability and robustness, overcoming the limitations of a
hierarchical node topology [51]. The lower layer of the infrastructure is concerned with:

The contents of each node, which consists of entities (People, Software, Places,

31

2.8 Current Reflective Research

Devices and Artefacts) responsible for producing, managing and using contextual in-
formation, and is referred to as a range [51].

A Context Server within each range provides communication capabilities and access to con-
text utilities. The notion of context services such as SCI is of particular interest to autonomic
initiatives and reflective middleware platforms. The benefits of contextual information within user
interactions can also be realised within the reflective process via contextual reflection. Enhancing
reflective logic with relevant contextual information can improve its ability to adapt its base-level
to meet current requirements.

2.8.6.3 RAFDA

The Reflective Architecture Framework for Distributed Applications (RAFDA) [52] is a reflective
framework enabling the transformation of a non-distributed application into a flexibly distributed
equivalent application. RAFDA allows an application to adapt to its environment by dynamically
altering its distribution boundaries. RAFDA can transform a local object into a remote object
and vice versa, allowing local and remote objects to be interchangeable.

Single Address Space

A

C

B

Address Space A

A

Cp

B

Transformation C

Address Space B

Figure 2.10 An example RAFDA re-distribution transformation
(adapted from [52])

As illustrated in Figure 2.10, RAFDA achieves flexible distribution boundaries by substituting
an object with a proxy to a remote instance. In the example in Figure 2.10, objects A and B
both hold references to a shared instance of object C; all objects exist in a single address space
(non-distributed). The intention is to move object C to a new address space. RAFDA transforms
the application so that the instance of C is remote to its reference holders; the instance of C in
address space A is replaced with a proxy, Cp, to the remote implementation of C in address space
B.

The process of transformation is performed at the bytecode level. RAFDA identifies points of
substitutability and extracts an interface for each substitutable class; every reference to a substi-
tutable class must then be transformed to use the extracted interface. The proxy implementations
provide a number of transport options including the Simple Object Access Protocol (SOAP), Re-
mote Method Invocation (RMI), and Internet Inter-ORB Protocol (IIOP). The use of interfaces
makes non-remote and remote versions of a class interchangeable thus allowing for flexible distri-
bution boundaries. Policies determine substitutable classes and the transportation mechanisms
used for the distribution.

32

2.9 Comparison of Reviewed Systems

2.8.6.4 Multichannel Adaptive Information Systems

The Multichannel Adaptive Information Systems (MAIS) is designed to create adaptive information
systems capable of delivering e-Services using a reflective architecture. The MAIS architecture uses
adaptable distribution channels (video, audio, etc) to satisfy QoS demands. The MAIS architecture
is broken down into three layers:

e-Service composition platform, which is in charge of receiving the client request,
selecting e-Service(s) satisfying it, and invoking the selected e-Service(s).

Interaction enabling platform, which is the core of [the] architecture, because it is
in charge of collecting constraints from e-Services, clients and context, determining the
QoS for each e-Service according to the client profile and selecting the best channel
where the e-Service can be delivered.

Reflective platform, which is in charge of adapting the selected distribution chan-
nel according to the constraints obtained from the Interaction enabling platform and
monitoring if the distribution channel along which an e-Service is delivering respects
the QoS level chosen by user. [53]

MAIS allows a user to specify the QoS level they desire, the platform then composes a distri-
bution channel to meet these demands; this is a best-effort process. Once in place, the distribution
channels QoS is monitored and adapted if necessary to maintain the defined QoS level. Even
though the level of interaction is minimal and is user/system centric interaction, MAIS demon-
strates the advantages of user direction and the potential of context information exchange (the
clients desired QoS) within the reflective process.

2.9 Comparison of Reviewed Systems

Each of the systems examined are designed with different goals in mind. From the perspective
of this research, the main objective of this review is to examine each system and consider its
capability for runtime coordination with external systems at the meta-level. This analysis can be
broken down into the following three steps:

1. Coordination Capability

2. Interaction Protocol

3. Meta-level Access capabilities

Each of these steps builds on the analysis of the preceding step. The remainder of this section
presents the results of the survey.

2.9.1 Coordination Capability

The first step within this survey checks for the presence of basic coordination capability. In order
to examine a systems coordination capability the following criteria have been identified:

• Coordinated Behaviour – Does the system exhibit any coordinated behaviour?

33

2.9 Comparison of Reviewed Systems

• Dynamic / Static Participants – Can new participants join the coordination activity at run-
time?

• Deployment – What is the topology used within the system?

Table 2.1 presents a summary of coordinated behaviour within each of the projects.

Reviewed System Coordinated Behaviour Dynamic/Static
Participants

Deployment

mChaRM Limited to recipient list Static Centralised

QuO Limited to SysCond objects Static Centralised

Open ORB No No No

Open ORB (Binding

Framework)

Limited to component binding Dynamic Centralised

dynamic TAO Admin protocol (DCP) Dynamic Both

K-Components Feedback Events and KBind in-

terfaces

Dynamic Decentralised

Table 2.1 Comparison of coordinated behaviour within reviewed systems

The overall level of coordinated behaviour within the survey is minimal with only one project,
K-Components, exhibiting first-class coordinated behaviour. Limited coordinated behaviour was
observed within some aspects of the remaining projects. While Open ORB did not contain any
coordinated capabilities within its meta-level, its binding framework does posses coordinated be-
haviour.

Two of the systems illustrated a dynamic participant capability with respect to their coordi-
nated behaviour. Open ORBs binding framework also displayed limited dynamic capabilities with
binding creation. When examined for topological support, only K-Components does not provide
centralised support. The next step in the survey focuses on the capabilities of the interaction
protocols used to achieve coordinated behaviour.

2.9.2 Interaction Protocol

Coordinated behaviour must be implemented using some form of interaction protocol to facilitate
communication between participants. Interaction protocols can vary in nature from simple remote
method innovations to elaborate multi-step interactions. This stage of the survey examines the
protocols utilised within the reviewed systems, broken down along the following lines:

• Open Accessibility - Can previously unfamiliar systems interact using the protocol?

• Extensible Interaction – Can the protocol be extended to provide additional capabilities?

• Implementation agnostic – Is the protocol capable of working within heterogonous environ-
ments and with different technology platforms?

• Independent Control – Does the protocol preserve independent control between participants?

34

2.9 Comparison of Reviewed Systems

Reviewed
System

Open Accessibil-
ity

Extensible
Interaction

Implementation
Agnostic

Independent
Control

MChaRM No No No No

QuO No No No No

Open ORB No No No No

Open ORB

(Binding Frame-

work)

No Limited to

bindings

No No

dynamicTAO Limited to dynamic

TAO compatible par-

ticipants

No No No

K-Components Limited to

K-Component run-

times

Connector

(Binding)

dependant only

No No

Table 2.2 Comparison of interaction protocols within reviewed systems

The results of this examination are presented in Table 2.2.
Only limited interaction support is available within the reviewed systems, providing minimal

meta-level interactions. Interactions within mChaRM and QuO were very simplistic offering only
basic exchanges between participants, while the binding framework within Open ORB also provided
similar capabilities with the capacity for limited interaction extension at the binding-level.

Only two of the reviewed systems, dynamicTAO and K-Components, provided some form
of abstract high-level interaction protocol. With DCP, dynamicTAO demonstrates meta-level
interactions to simplify administration tasks. The DCP is a straightforward protocol to facilitate
remote administration of an ORB and does not possess any facilities to extend its interaction
capabilities.

K-Components facilitates interaction as a first-class entity within its runtime to provide meta-
information exchange. However, the interaction protocol that it utilises is not designed to facilitate
open accessibility and only offers limited extensibility at the connector level, similar to Open ORB.

None of the systems reviewed provided interaction capabilities in a technology neutral manner
or preserved participants control independence.

2.9.3 Meta-Level Access Capabilities

The final step in this survey examines the level of access provided by the interaction mechanisms
examined in the previous step. Four key capabilities have been identified to measure meta-level
accessibility within the reviewed systems:

• State – Can meta-state be transferred using the protocol?

• Realisations – Does the protocol allow an adaptation to be requested and realised by the
meta-level?

• Analysis – Will the protocol allow access to the analytical capabilities of the meta-level?

• Event Notification – Is support for meta-level event notifications provided by the protocol?

35

2.9 Comparison of Reviewed Systems

Reviewed
System

State Realisations Analysis Event Notifications

mChaRM Limited to

recipient list

No No No

QuO Shared system

state model

Possible coordi-

nated reactions

to shared state

changes

Limited to

syscond analysis

State model events only

Open ORB No No No No

Open ORB

(Binding Frame-

work)

Context infor-

mation only

Limited to

construction of

bindings

Binding im-

plementation

specific only

Binding implementation

specific only

dynamicTAO Administration

state only

Administration

only

Object monitor

and user sup-

plied

No

K-Components Feedback events

& component

descriptions

Component

binding connec-

tors only

No Feedback events only

Table 2.3 Comparison of meta-level access capabilities within reviewed
systems

As detailed in Table 2.3, meta-level access capabilities vary considerably within the reviewed
systems. mChaRM is limited to a very simple state exchange mechanism to facilitate the exchange
of recipient lists between loci locations; no support for realisation, analysis, or events are provided.

The QuO project utilises a shared meta-state between clients and servants using SysCond
objects. The communal nature of sysconds objects could be exploited to provide a basis for
coordinated behaviour between clients and servants. This could be achieved by using SysCond
objects to trigger realisation from the client to servant and vice versa. Sysconds also facilitate
limited communal state analysis and event notifications between client and servant.

As previously noted, Open ORB does not facilitate interaction at the meta-level. However,
limited interaction is present within its binding framework to exchange information on binding
implementations. Once this information is exchanged, the receiving binding framework will perform
an adaptation to create the binding locally, illustrating a simple realisation. While no support is
provided for analysis or event exchange interactions, this functionality could be included within
the binding implementation itself.
dynamicTAO offers remote administration facilities with the ability to access the state of an ORB
and perform realisations and analysis via DCP. While this scope of the DCP is limited to the
configuration of components, it illustrates a more complete interaction protocol when compared to
the systems reviewed at this point.

The coordination of distributed components is a key objective of the K-Component framework.
The framework allows state exchange in the form of feedback events and component descriptions.
A limited form of realisation is available in the form of component binding connectors, similar in
concept to the binding framework within Open ORB.

36

2.10 Summary

2.9.4 Review Summary

The three stages of this survey have revealed that while some limited cooperation and coordina-
tion behaviour exists within current reflective systems, with the exception of K-Components, this
behaviour is not seen as a first-class activity within the meta-level. A great deal of the behaviour
witnessed can be attributed to the desire for remote system configuration and the infrastructure
necessities for distributed component bindings.

Current state-of-the-art systems do not provide full meta-level (state, analysis, realisation,
events) access in an implementation agnostic, openly accessible manner. Furthermore, no sys-
tem offers an extensible interaction protocol in which to create such a capability. Each of the
reviewed systems operate within a master/slave environment where participants do not maintain
independent control with the ability to refuse a request.

2.10 Summary

Adaptive and reflective techniques have been noted as a key emerging paradigm for the development
of dynamic next-generation middleware platforms [12]. These techniques empower a system to
automatically self-alter (adapt) to meet its environment and user needs. Adaptation can take place
autonomously or semi-autonomously, based on the systems deployment environment, or within the
defined policies of users or administrators [17].

The use of a meta-level is a key technique employed in the construction of self-managed systems.
Systems built using a meta-level are separated into two levels, a base- and meta-level. The base-
level provides system functionality, and the meta-level contains the policies and strategies for the
behaviour of the system. The inspection and alteration of this meta-level allows for changes in the
system’s behaviour. Meta-levels have been developed for a number of middleware platforms such
as CORBA ORBs (dynamicTAO and Open ORB), component frameworks (K-Components), and
RPC-based distribution mechanisms (mChaRM).

The majority of meta-levels are designed as introverted entities with limited or no coordination
capabilities. The interaction mechanisms used do not provide full meta-level (state, analysis,
realisation, events) access in an implementation agnostic, openly accessible manner.

37

Chapter 3

Rudimentary Message-Oriented

Middleware

The realm of Message-Oriented Middleware is interaction-centric, providing an ideal environment
for the study of coordinated self-managed systems. The goal of this chapter is to introduce the
Message-Oriented Middleware domain, its basic concepts, current research activities, and investi-
gate their capability with respect to self-management capabilities.

3.1 Introduction

As software systems continue to be distributed deployments over ever increasing scales, tran-
scending geographical, organisational and traditional commercial boundaries, the demands placed
upon their communication infrastructures will increase exponentially. Modern systems operate in
complex environments with multiple programming languages, hardware platforms, and operating
systems. These systems face requirements including dynamic flexible deployments, 24/7 reliability,
high throughput performance, and security while maintaining a high Quality of service (QoS). In
these environments the traditional direct Remote Procedure Call (RPC) mechanisms quickly fail
to meet the challenges present.

In order to cope with the demands of such environments, an alternative to the RPC distri-
bution mechanism has emerged. This mechanism, called Message-Oriented Middleware or MOM,
provides a clean method of communication between disparate software entities. MOM is one of the
cornerstone foundations that distributed enterprise systems are built upon. MOM can be defined
as any middleware infrastructure that provides messaging capabilities.

A client of a MOM system can send messages to, and receive messages from, other clients of the
messaging system. Each client connects to one or more servers that act as an intermediary in the
sending and receiving of messages. MOM uses a model with a peer-to-peer relationship between
individual clients; in this model, each peer can send and receive messages to and from other client
peers. MOM platforms allow the creation of flexible cohesive systems; ones that allow changes in
one part of a system to occur without the need for changes in other parts of the system.

This chapter discusses the RPC and MOM distribution mechanisms, providing a through de-
scription and comparison of both mechanisms. A number of fundamental MOM concepts such

38

3.2 Interaction Models

as queues, filtering, and messaging models are introduced, along with an overview of the Java
Message Service API; an API that provides standardised MOM interaction for Java programs.
Current MOM research is reviewed to reveal the broad range of multi-purpose implementations
available. In particular, the review seeks to identify common messaging and administrative capa-
bilities present within MOM platforms. The chapter commences with an introduction to the main
interaction models used within distributed computing.

3.2 Interaction Models

Two interaction models dominate distributed computing environments, synchronous and asyn-
chronous communication. This section introduces both interaction models; a solid knowledge of
these models and the differences between them is key to understanding the benefits and differences
between MOM and other forms of distribution available.

3.2.1 Synchronous Communication

When using the synchronous interaction model, as illustrated in Figure 3.1, systems do not have
processing control independence; they rely on the return of control from the called systems. When
a procedure/function/method is called using the synchronous interaction model the caller code
must block and wait (suspend processing) until the called code completes execution and returns
control to it, the caller code can now continue processing.

Caller Called

Call Remote Procedure

Remote Procedure Returns

Caller is blocking and must
wait for control to return

Figure 3.1 The synchronous interaction model

3.2.2 Asynchronous Communication

The asynchronous interaction model, illustrated in Figure 3.2, allows the caller to retain processing
control. The caller code does not need to block and wait for the called code to return. This
model allows the caller to continue processing regardless of the processing state of the called
procedure/function/method. With asynchronous interaction, the called code might not execute
straight away. This interaction model requires an intermediary to handle the exchange of requests;
normally this intermediary is a message queue.

39

3.3 Introduction to the Remote Procedure Call (RPC)

Producer Consumer

Producer does not need to block,

retaining control allowing it to

contuine processing

MOM/Queue

Send Message

Pull or Push Message

Send Reply

Pull or Push Reply

Figure 3.2 The asynchronous interaction model

While more complex than the synchronous model, the asynchronous model allows all partici-
pants to retain processing independence. Participants can continue processing, regardless of the
state of the other participants.

With a clear understanding of both interaction models in place, the next sections introduce the
remote procedure call and message-oriented middleware. Both of these distribution mechanisms
are examined with respect to coupling, reliability, scalability, and availability.

3.3 Introduction to the Remote Procedure Call (RPC)

The traditional RPC [54, 55] model is a fundamental concept of distributed computing and is
utilised within a number of middleware platforms including, CORBA, Java RMI, Microsoft DCOM
and XML-RPC. The objective of RPC is to allow two processes to interact. RPC creates the façade
of making both processes believe they are in the same process space (i.e. are the one process).
Based on the synchronous interaction model, RPC is similar to a local procedure call whereby
control is passed to the called procedure in a sequential synchronous manner while the calling
procedure blocks waiting for a reply to its call. RPC is analogous to a direct conversation between
two parties (similar to a person-to-person telephone conversation). An example of an RPC based
distributed system deployment is detailed in Figure 3.3. RPC is now examined with respect to
coupling, reliability, scalability, and availability.

3.3.1 Coupling

RPC is designed to work on object or function interfaces, resulting in the model producing tightly
coupled systems as any changes to the interfaces will need to be propagated throughout the code-
base of both systems. This makes RPC a very invasive mechanism of distribution. As the number
of changes to source or target systems increase, the cost will increase too. RPC provides an

40

3.3 Introduction to the Remote Procedure Call (RPC)

A

CE

D

BF

= Application

= Connection

Figure 3.3 An example remote procedure call deployment

inflexible method of integrating multiple systems.

3.3.2 Reliability

Reliable communications can be the most important concern for distributed applications. Any
failure outside of the application: - code, network, hardware, service, other software or service
outages of various kinds (network provider, power, etc), can affect the reliable transport of data
between systems. Most RPC implementations provide little or no guaranteed reliable communica-
tion capability; they are very vulnerable to service outages.

3.3.3 Scalability

In a distributed system constructed with RPC, the blocking nature of RPC can adversely affect
performance in systems where the participating subsystems do not scale equally. This effectively
slows the whole system down to the maximum speed of its slowest participant. In such conditions,
synchronous based communication techniques such as RPC may have trouble coping when elements
of the system are subjected to a high-volume burst in traffic. Synchronous RPC interactions use
more bandwidth because several calls must be made across the network to support a synchronous
function call. The implication of this supports the use of the asynchronous model as a scaleable
method of interaction.

3.3.4 Availability

Systems built using the RPC model are interdependent, requiring the simultaneous availability
of all subsystems; a failure in a subsystem could cause the entire system to fail. In an RPC

41

3.4 Introduction to Message-Oriented Middleware (MOM)

deployment the unavailability of a subsystem, even temporally, due to service outage or system
upgrading can cause errors to ripple throughout the entire system.

3.4 Introduction to Message-Oriented Middleware (MOM)

MOM [56] systems provide distributed communication based on the asynchronous interaction
model. This non-blocking model allows MOM to solve many of the limitations found in RPC.
Participants in a MOM based system are not required to block and wait on a message send,
messages when the sender or receiver is not active or available to respond at the time of execution.

MOM supports message delivery for messages that may take minutes to deliver, as opposed
to mechanisms such as RPC (i.e. Java RMI) that deliver in milliseconds or seconds. When using
MOM, a sending application has no guarantee that its message will be read by another application
nor is it given a guarantee about the time it will take the message to be delivered. The receiving
application determines these aspects of the system.

MOM-based distributed system deployments, as shown in Figure 3.4, offer a service-based ap-
proach to inter process communication. MOM messaging is similar to the postal service. Messages
are delivered to the post office; the postal service then takes responsibility for safe delivery of
the message [57]. MOM is now examined with respect to coupling, reliability, scalability, and
availability.

A

CE

D

BF

MOM

= Application

= Connection

Figure 3.4 An example Message-Oriented Middleware deployment

3.4.1 Coupling

MOM injects an independent intermediary between message senders and receivers to facilitate
message exchange. An illustration of this concept is provided in Figure 3.4. A primary benefit

42

3.5 When to use MOM or RPC

of MOM is the loose coupling between participants in a system - the ability to link applications
without having to adapt the source and target systems to each other, resulting in a highly cohesive,
decoupled system deployment [56].

3.4.2 Reliability

MOM prevents message loss through network or system failure by using a store and forward
mechanism for message persistence. This capability of MOM introduces a high-level of reliability
into the distribution mechanism. Store and forward prevents loss of messages when parts of the
system are unavailable or busy. The specific level-of-reliability is typically configurable, but MOM
messaging systems are able to guarantee that a message will be delivered, and that it will be
delivered to each intended recipient exactly once.

3.4.3 Scalability

In addition to decoupling the interaction of subsystems, MOM also decouples the performance
characteristics of the subsystems from each other. Subsystems can scale independently, with little
or no disruption to other subsystems. MOM also allows the system to cope with unpredictable
spikes in activity in one subsystem without affecting other areas of the system. MOM messaging
models contain a number of natural traits that allow for simple and effective load balancing, by
allowing a subsystem to choose to accept a message when it is ready to do so rather than being
forced to accept it. This load balancing technique is covered in more detail in the Section 3.7.3.

State-of-the-art enterprise-level MOM platforms have been used as the backbone to create
massively scalable systems. Within one study of massive scalability, a real-time customer self-
service portal was developed. This system scaled to handle more than 16.2 million customer
requests per hour with over 270,000 new order requests per hour [58].

3.4.4 Availability

MOM introduces high availability capabilities into systems allowing for continuous operation and
smoother handling of system outages. MOM does not require simultaneous or “same-time” avail-
ability of all subsystems. Failure in one of the subsystems will not cause failures to ripple through-
out the entire system. MOM can also improve the response time of the system, by reducing tem-
poral coupling to slower subsystems. This can reduce the process completion time and improve
overall system responsiveness and availability.

3.5 When to use MOM or RPC

Depending on the deployment scenario, both MOM and RPC have their advantages and disad-
vantages. RPC provides a more straightforward approach to distribution using the familiar and
straightforward synchronous interaction model. However, the RPC mechanism suffers from inflexi-
bility and tight coupling (with potential geometric growth of interfaces) between the communicating
systems. It is also problematic to scale parts of the system and deal with service outages. RPC
deployments are temporally coupled and assume that all parts of the system will be simultaneously

43

3.6 Message Queues

available. If one part of the system were to fail, or even become temporarily unavailable (network
outage, system upgrade), the entire system could stall as a result.

There is a large overhead associated with an RPC interaction; RPC calls require more band-
width than a similar MOM interaction. Bandwidth is an expensive performance overhead and is
the main obstacle to scalability of the RPC mechanism [59]. The RPC model is designed on the
notion of a single client talking to a single server. Traditional RPC has no built in support for
one-to-many communications. The advantage of an RPC system is the simplicity of the mechanism
and straightforward implementation.

The RPC model is ideal if you want a strongly-typed/Object-Oriented (OO) system. A
strongly-typed system can produce more stable code and relieve the developer from having to
create infrastructure level code needed to move data into strongly-typed language level objects. A
strongly typed interface definition can facilitate greater compile time assistance following Bjarne
Stroustrup’s mantra of preferring compile-time errors to runtime errors [60].

An important advantage RPC has over MOM is the guarantee of sequential processing. With
the synchronous RPC model you can control the order in which processing occurs in the system.
For example, in an RPC system you can be sure that at any one time all the new orders received by
the system have been added to the database and that they have been added in the order in which
they were received. However, with an asynchronous MOM approach this cannot be guaranteed,
as new orders could exist in queues waiting to be added to the database. This could result in
a temporal inaccuracy of the data in the database. There is no concern that these updates will
not be applied to the database, however a snapshot of the current database would not accurately
reflect the actual state of orders placed. RPC is slow but consistent; work is always carried out in
the correct order. These are important considerations for sections in a system that requires data
to have 100% temporal integrity. If this type of integrity is more important than performance,
you will need to use the RPC model or else design the system to check for potential temporal
inaccuracies.

MOM allows a system to evolve with its operational environment without the need for dramatic
changes to its application assets. It provides an integration infrastructure that accommodates
functionality changes over time without disruption or compromise on performance and scalability.
The decoupled approach of MOM allows for flexible integration of clients, support for large numbers
of clients, and client anonymity. Commercial MOM implementations provide high scalability with
support for tens of thousands of clients, advanced filtering, integration into heterogeneous networks
and clustering reliability [58].

The RPC model is ideal if you want a strongly-typed/Object-Oriented (OO) system with tight
coupling, compile-time semantic checking, and an overall more straightforward system implemen-
tation.

MOM is the ideal solution if the distributed system will be a geographically dispersed de-
ployment with poor network connectivity and stringent demands in reliability, flexibility, and
scalability.

3.6 Message Queues

The message queue is a fundamental concept within MOM. Queues provide the ability to store
messages on a MOM platform and are central to the implementation of the asynchronous inter-

44

3.6 Message Queues

action model within MOM. A queue, as shown in Figure 3.5, is a destination to which clients
may send messages and receive messages from. Messages contained within a queue are sorted in a
particular order, the standard queue found in a messaging system is the First-In First-Out (FIFO)
queue. As the name suggests the first message sent to the queue is the first message retrieved from
the queue.

Message
Producer 1

Message
Consumer ..

Message
Producer N

Message
Producer ..

Message
Consumer N

Message
Consumer 1

M

M

M

MM M M M

M = Message

First in First Out Queue

Figure 3.5 The role of a message queue

There is no constraint on queue usage within a deployment. Depending on requirements,
applications may have their own queue, or they may share a queue, there is no restriction on the
set-up. Queuing is of particular benefit to clients without constant network connectivity such as
sales personnel on the road accessing a mobile network (GSM, GRPS, etc) to remotely send orders
to head office or for remote sites with poor communication infrastructures. These clients can use
a queue as a makeshift inbox, periodically checking the queue for new messages when network
connectivity exists.

Queue Type Purpose

Public Queue Public open access queue.

Private Queue Require clients to provide a valid username and password for au-

thentication and authorisation.

Temporary Queue Queue created for a finite period, this type of queue will only last

for the duration of a particular condition or a set time-period.

Journal Queue Designed to keep a record of messages or events. These queues

maintain a copy of every message placed within them, effectively

creating a journal of messages.

Connector/Bridge Queue Enables proprietary MOM implementation to interoperate by mim-

icking the role of a proxy to an external MOM provider. A

bridge handles the translation of message formats between differ-

ent MOM providers, allowing a client of one provider to access the

queues/messages of another.

Dead-Letter/Dead-Message

Queue

Messages that have expired, or are undeliverable (i.e. invalid queue

name or undeliverable addresses), are placed in this queue.

Table 3.1 Message queue formats

Typically, MOM platforms support multiple queue types, each with a different purpose. Table
3.1 provides a brief description of commonly available queues. Many attributes of a queue may be

45

3.7 Messaging Models

configured including the queue’s name, queue’s size, the save threshold of the queue, and message
sorting algorithm.

3.7 Messaging Models

A solid understanding of the available messaging models within MOM is key to appreciate the
unique capabilities it provides. Two main message models are commonly available, the Point-
to-Point and Publish/Subscribe models. The exchange of messages through a destination (chan-
nel/queue/topic) is the basis for both of these models. A typical messaging solution will utilise
a mix of these models to achieve different messaging objectives. The remainder of this section
describes both messaging models and concludes with a comparison.

3.7.1 Point-to-Point

Only one consumer receives the message

Producer 1

Point-to-Point
Queue Consumer ..

Producer N

Producer ..

Consumer N

Consumer 1

Figure 3.6 The point-to-point messaging model

The Point-to-Point messaging model provides a straightforward asynchronous exchange of mes-
sages between software entities. In this model, shown in Figure 3.6, messages from producing clients
are routed to consuming clients via a queue. As discussed in Section 3.6, the most common queue
used is a FIFO queue, messages are sorted in the order in which they were received by the message
system, and as messages are consumed, they are removed from the head of the queue.

While there is no restriction on the number of clients that can publish to a queue, there is
usually only a single consuming client, although this is not a strict requirement. Each message
is delivered only once to only one consumer; the model allows multiple consumers to connect to
the queue but only one of the consumers will receive the message. This is commonly referred
to as once-and-once-only-messaging. The technique of using multiple consuming clients to read
from a queue can be used to easily introduce smooth, efficient load balancing into a system. In
the point-to-point model, messages are always delivered and will be stored in the queue until a
consumer is ready to retrieve them.

Request-Reply Messaging Model

This model is designed around the concept of a request with a related response. The
request-reply model is used for the World Wide Web (WWW). A client requests a

46

3.7 Messaging Models

page from a server, and the server replies with the requested web page. The model
requires that any producer who sends a message must be ready to receive a reply from
consumers at some stage in the future. The model is easily implemented with the
use of the point-to-point or publish/subscribe models and may be used in tandem to
complement both models.

3.7.2 Publish/Subscribe

Publisher 1

Publish/Subscribe
Topic Subscriber ..

Publisher N

Publisher ..

Subscriber N

Subscriber 1

Figure 3.7 The publish/subscribe messaging model

The Publish/Subscribe messaging model, Figure 3.7, is a very powerful mechanism used to
disseminate information between anonymous message consumers and producers. This one-to-
many and many-to-many distribution mechanism allows a single producer to send a message to
one consumer or potentially hundreds of thousands of consumers.

In the publish/subscribe or “pub/sub” model, the sending and receiving application is free from
the need to understand anything about the target application. It only needs to send its information
to a destination within the publish/subscribe engine. The engine will then send it to the consumer.
Clients producing messages ‘publish’ to a specific topic or channel, these channels are then ‘sub-
scribed’ to by clients wishing to consume messages. The service routes the messages to consumers
based on the topics to which they have subscribed an interested in. Some publish/subscribe en-
gines don’t use the concepts of a destination and route messages directly between publishers and
subscribers. Within these systems, message exchange between publishers and subscribers is based
purely on subscription constraints.

Within the publish/subscribe model there is no restriction on the role of a client. A client may
be both a producer and consumer. A number of methods for publish/subscribe messaging have
been developed which support different features, techniques and algorithms for message filtering
[61], publication, subscription, subscription management distribution [62], and facilitation within
the agent-oriented paradigm [63].

PUSH and PULL

Within both messaging models a consuming client has two methods of receiving mes-
sages from the MOM provider.

Pull - A consumer can poll the provider to check for any messages, effectively pulling
them from the provider.

47

3.7 Messaging Models

Push - Alternatively, a consumer can request the provider to forward relevant messages
as soon as the provider receives them; they instruct the provider to push messages to
them.

3.7.2.1 Destination Hierarchies

Destination or topic hierarchies are a destination grouping mechanism within the publish/subscribe
messaging model. This type of structure allows destinations to be defined in a hierarchical fashion,
so that they may be nested under other destinations. Each sub-destination offers a more granular
selection of the messages contained in its parent. Clients of destination hierarchies subscribe to the
most appropriate level of destination to receive the most relevant messages. In large-scale systems,
the grouping of messages into related types (i.e. into channels) helps to manage large volumes of
different messages [64].

Figure 3.8 An automotive destination hierarchy structure

The relationship between a destination and sub-destination(s) allows for super-type subscrip-
tions, where subscriptions that operate on a parent destination/type will also match all subscrip-
tions of descendant destinations/types. A destination hierarchy for an automotive trading service
may be structured by categorising messaging into buys or sells, then further sub-categorisation
breaking down for commercial and private vehicle types. An example hierarchy illustrating this
categorising structure is presented in Figure 3.8. A subscription to the “Sell.Private Vehicles”
channel would receive all messages classified as a private vehicle sale, whereas subscribing to
“Sell.Private Vehicles.Cars” would result in only receiving messages classified as a car sale.

48

3.8 Message Filtering

Hierarchical destinations require the destination namespace schema be both well defined and
universally understood by the participating parties. Responsibility for choosing a destination in
which to publish messages is left to the publishing client. Hierarchical destinations are used in
routing situations that are more or less static. Consumers of the hierarchy are able to browse the
hierarchy and subscribe to destinations.

Frequently used in conjunction with the publish/subscribe messaging model, hierarchical des-
tinations allow for the dissemination of information to a large number of unknown consumers.
Hierarchical destinations can compliment filtering as a mechanism of routing relevant messages to
consumers. They provide a more granular approach to consumer subscription that reduces the
number of filters needed to exclude unwanted messages, while supporting highly flexible, easy-
access, subject-based routing.

3.7.3 Comparison of Messaging Models

The two models have very different capabilities and most messaging objectives can be achieved us-
ing either model or a combination of both. The fundamental difference between the models is that
within the publish/subscribe model every consumer to a topic/channel will receive a message pub-
lished to it, whereas in point-to-point model only one consumer will receive it. Publish/subscribe is
normally used in a broadcast scenario where a publisher wishes to send a message to one-to-many
clients. The publisher has no real control over the number of clients who receive the message, nor
have they a guarantee any will receive it. Even in a one-to-one messaging scenario, topics can be
useful to categorise different types of messages. The publish/subscribe model is the more powerful
messaging model for flexibility; the disadvantage is its complexity.

In the point-to-point model, multiple consumers may listen to a queue, although only one
consumer will receive each message. However, point-to-point will guarantee that a consumer will
receive the message, storing the messages in a queue until a consumer is ready to receive the
message; this is known as ‘once-and-once-only’ messaging. While the point-to-point model may
not be as flexible as the publish/subscribe model, its power is in its simplicity.

A common application of the point-to-point model is for load balancing. With multiple con-
sumers receiving from a queue, the workload for processing the messages is distributed between
the consumers of the queue. In the pull model, the exact order of how messages are assigned to
consumers is specific to the MOM implementation, but if you utilise a pull model, a consumer will
only receive a message when they are ready to process it. This provides an effective method of
load balancing.

3.8 Message Filtering

Message filtering allows a message consumer/receiver to be selective about the messages it receives
from a MOM. This section introduces the basic theory of message filters and describes the common
forms found within MOM platforms. The techniques of filter covering and filter merging, used to
increase efficiency within content-based routing, are also discussed.

Filtering can operate on a number of different levels. Filters use Boolean logic expressions
to declare messages of interest to the client, the exact format of the expression depends on the
implementation but the WHERE clauses of SQL-92 standard (or a subset of) is commonly used as

49

3.8 Message Filtering

the syntax. Filtering models commonly operate on the properties (name/value pairs) of a message.
However, a number of projects have extended filtering to message payloads [65].

The overall efficiency of any service and its routing of messages are affected by the power of
the language used to construct messages or notifications and to express filters and patterns. As
the power of the language increases, so does the complexity of the processing.

Within the MOM domain, the abstract concept of a message is often referred to as an event or
notification. While subtle differences exist between these classifications, within the context of this
discussion they are interchangeable terms.

Filter Type Description

Channel-based Channel based filtering categorise messages into pre-defined groups.

Consumers subscribe to the group(s) of interest and receive all mes-

sages sent to the group(s).

Topic-based /

Subject-based

Messages are enhanced with a tag describing its subject or topic. Sub-

scribers can declare their interests in these subjects flexibly by using

a string pattern match on the subject, e.g. all messages with a sub-

ject/topic of ”Car for Sale”.

Content-based /

Attribute-based

As an attempt to overcome the limitations on subscription declara-

tions, content-based filtering, also referred to as attribute-based filter-

ing, allows subscribers to use flexible querying languages to declare

their interests with respect to the contents of the messages. An exam-

ple query is: Give the price of stock ‘SUN’ when the volume is over

10000. This query in SQL-92 is:

“stock symbol = ‘SUN’ AND stock volume > 10000”.

Content/attribute-

based with patterns

Content/attribute-based filtering with patterns enhances content-

based filtering with additional functionality for expressing user inter-

ests across multiple messages. An example query is: Give the price of

stock ’SUN’ when the price of stock ’Microsoft’ is less than $50.

Composite Events Composite events [66] provide a higher-level abstraction for pattern-

based event subscriptions. Composite events encapsulate a pattern

of low-level events, and are published when the given pattern oc-

curs. From the client’s perspective, composite events simplify complex

multi-event pattern-based subscriptions.

Table 3.2 Message filtering types

Listed in Table 3.2 are common filtering capabilities found within messaging systems, listed
in order of increasing sophistication. It is useful to note that as the filtering techniques get more
advanced they are usually able to replicate the techniques which proceed them. For example,
subject-based filtering is able to replicate channel-based filtering, just as content-based filtering is
able to replicate both subject and channel-based filtering.

3.8.1 Covering & Merging

The techniques of filter covering and filter merging can increase the efficiency of content-based
routing solutions. Covering and merging of filters can be used to reduce the size of the routing
table and the overhead associated with routing tasks [62, 65, 67, 68]. Before it is possible to
describe these techniques, a formal definition of a filter and a notification is required:

50

3.9 Java Message Service

A filter, F, is a stateless Boolean function that is applied to a notification n (i.e.
message). A notification matches a filter if F(n) evaluates to true

Each message consumer may have multiple active filters (subscription constraints) that may be
interpreted disjunctively. The notification service has a responsibility to only deliver all messages
that match the subscription constrains of the consumer.

3.8.1.1 Covering

A covering relationship between two filters exists when one of the filters defines a subset of the
constraints in the other F1 covers F2 if and only if N(F1) ⊇N(F2). To illustrate the concept an
example is provided:

Filter A [Vehicle Type = {‘SUV’, ‘Motorcycle’} AND Colour = ‘Blue’]

Filter B [Vehicle Type = ‘SUV’ AND Colour = ‘Blue’ AND Mileage =< 60000]

In this example, Filter A covers Filter B because any message that matches Filter A will also
match Filter B.

3.8.1.2 Merging

The objective of filter merging is to generate a new filter from a given set of filters. The new filter
must cover the set from which it is derived. In order to illustrate this point, Filter A and Filter B
from the previous section can be merged to create a new Filter AB:

Filter AB [Vehicle Type = {‘SUV’, ‘Motorcycle’} AND Colour = ‘Blue’
AND Mileage =< 60000]

“The aim of filter merging is to generate a filter F so that N(F) is a superset of N(F1) .. N(Fn)
for a set of filters {F1, ..., Fn}” [65]. Since a merged filter covers the filters from which it was
generated, its ancestor filters can be dropped from the routing table, reducing the table’s size.
Further information on filter covering and merging techniques is available [62, 65, 67, 69].

3.9 Java Message Service

A diverse range of MOM implementations exist that include WebSphere MQ (formerly MQSeries)
[70], TIBCO [71], SonicMQ [72], Herald [73], Hermes [64], SIENA [62], Gryphon [74], JEDI [75],
REBECCA [76], and OpenJMS [77]. As a means of simplifying the development of systems utilising
MOMs, a standard was needed to provide a universal interface to MOM interactions. To date,
a number of MOM standardisations have emerged such as the CORBA Event Service, CORBA
Notification Service, and most notably the Java Message Service (JMS) [78]. The JMS provides a
common way for Java programs to create, send, receive, and read an enterprise messaging system’s
messages. The JMS provides a solid foundation for the construction of a messaging infrastructure
that can be applied to a wide range of applications. This section briefly introduces the JMS and
provides an overview of the JMS programming model.

The JMS specification defines a general purpose Application Programming Interface (API) to
an enterprise messaging service and a set of semantics that describe the interface and general

51

3.9 Java Message Service

behaviour of a messaging service. The goal of the JMS specification is to provide a universal way
to interact with multiple heterogeneous messaging systems in a consistent manner. The learning
curve associated with many proprietary-messaging systems can be steep, thus the powerful yet
simple API defined in the JMS specification can save a substantial amount of time for developers
in a pure Java environment.

The specification also defines a Service Provider Interface (SPI). The role of the SPI is to allow
MOM developers to hook up their proprietary MOM implementation to the API. This allows you
to write code once using the API and plug-in the desired MOM provider, making client-messaging
code portable between MOM providers that implement the JMS specification, reducing vendor
lock-in and offering a choice for message provision. It should be noted that the JMS is an API
specification and does not define the implementation of a messaging service. The semantics of
message characteristics such as reliability, performance, and scalability are not fully defined. In
addition, the JMS specification does not define an ‘on-the-wire’ transportation format for messages.
Essentially, two JMS compatible MOM implementations cannot talk to each other directly and
will need to use a tool such as a connector/bridge queue to enable interoperability.

3.9.1 Programming using the JMS API

The JMS API provides basic MOM interaction functionality through its programming model,
illustrated in Figure 3.9, allowing it to be compatible with most MOM implementations. This
section gives a brief overview of the programming model.

createConsumer()

Lookup Connection
Factory from JNDI createSession()

send()

Message
Producer

Message
ConsumerSession

ConnectionConnection
Factory

createConnection()

createProducer()

Synchronous
receive()

Asynchronous
- implement

setMessageListener()

Destination

Figure 3.9 The JMS API programming model (adapted from [79])

3.9.1.1 Connections and Sessions

When a client wants to interact with a JMS compatible MOM platform, it must first make a
connection to the message broker. Using this connection, the client may create one or more sessions.
A JMS session is a single-threaded context used to send and receive messages to and from queues

52

3.9 Java Message Service

and topics. Each session can be configured with individual transactional and acknowledgements
modes.

3.9.1.2 Message Producers and Consumers

In order for a client to send a message to, or receive a message from a JMS provider, it must first cre-
ate a message producer or message consumer from the JMS session. Within the publish/subscribe
model a javax.jms.TopicPublisher sends messages to a topic and a javax.jms.TopicSubscriber to
receive. For the point-to-point model, the javax.jms.QueueSender and javax.jms.QueueReceiver
send and receive messages respectively.

3.9.1.3 Receive Synchronously and Asynchronously

The JMS API supports both synchronous and asynchronous message delivery. To synchronously
receive a message the receive() method of the message consumer is used. The default behaviour of
this method is to block until a message has been received, however this method may be passed a
time-out value to limit the blocking period. To receive a message asynchronously, an application
must register a Message Listener with the message consumer. Message listeners are registered
with a message consumer object by using the setMessageListener(javax.jms.MessageListener msgL)
method. A message listener must implement the javax.jms.MessageListener interface. Further
detailed discussion and explanations of the JMS API are available in [79, 80].

3.9.1.4 Setting Message Properties

Message properties are optional fields contained in a message. These user-defined fields can be
used to contain information relevant to the application or to identify messages. Message properties
are used in conjunction with message selectors to filter messages and are sometimes referred to as
message attributes.

3.9.1.5 Message Selectors

Message selectors, a form of attributed-based filtering, filter the messages received by a message
consumer, they assign the task of filtering messages to the JMS provider rather than to the ap-
plication. The message consumer will only receive messages whose headers and properties match
the selector. A message selector cannot select messages based on the content of the message
body/payload. Message selectors consist of a string expression based on a subset of the SQL-92
conditional expression syntax:

“Property Vehicle Type = ‘SUV’ AND Property Mileage =< 60000”

3.9.1.6 Acknowledgement Modes

The JMS API supports the acknowledgement of the receipt of a message. Acknowledgement modes
are controlled at the sessions level, supported modes are listed in Table 3.3.

53

3.9 Java Message Service

Acknowledgements
Modes

Purpose

AUTO ACKNOWLEDGE Automatically acknowledges receipt of a message. In asynchronous

mode, the handler acknowledges a successful return. In syn-

chronous mode, the client has successfully returned from a call to

receive().

CLIENT ACKNOWLEDGE Allows a client to acknowledge the successful delivery of a message

by calling its acknowledge() method.

DUPS OK ACKNOWLEDGE A lazy acknowledgment mechanism that is likely to result in the

delivery of message duplicates. Only consumers that can tolerate

duplicate messages should use this mode. This option can reduce

overhead by minimising the work to prevent duplicates.

Table 3.3 JMS acknowledgement modes

3.9.1.7 Delivery Modes

The JMS API supports two delivery modes for a message. The default Persistent delivery mode
instructs the service to ensure that a message is not lost due to system failure. A message sent
with this delivery mode is placed in a non-volatile memory store. The second option available is
the “Non Persistent”delivery mode; this mode does not require the service to store the message
or guarantee that it will not be lost due to system failure. This is a more efficient delivery mode
because it does not require the message to be saved to non-volatile storage.

3.9.1.8 Priority

The priority setting of a message can be adjusted to indicate to the message service an urgent
message that should be delivered first. There are ten levels of priority ranging from 0 (lowest-
priority) to 9 (highest-priority).

3.9.1.9 Time-to-Live

JMS messages contain a use-by or expiry time known as the Time-to-Live (TTL). By default,
a message never expires; however, you may want to set an expiration time. When the message
is published, the specified TTL is added to the current time to give the expiration time. Any
messages not delivered before their specified expiration times are destroyed.

3.9.1.10 Message Types

The JMS defines five message types, listed in Table 3.4, which allow you to send and to receive
data in multiple formats. The JMS API provides methods for creating messages of each type and
for filling in their contents.

3.9.1.11 Transactional Messaging

JMS clients can include message operations (sending and receiving) in a transaction. The JMS
API session object provides commit and rollback methods that are used to control the transaction
from a JMS client. Further detail on transactional messaging is available [81, 82].

54

3.10 Current MOM Platforms

Message Type Message Payload Contains

javax.jms.TextMessage A java.lang.String object

javax.jms.MapMessage A set of name/value pairs, with names as strings and values

as java primitive types. The entries can be accessed by name.

javax.jms.BytesMessage A stream of uninterrupted bytes.

javax.jms.StreamMessage Stream of Java primitive values, filled and read sequentially.

javax.jms.ObjectMessage A Serializable Java object.

Table 3.4 JMS message types

3.10 Current MOM Platforms

The objective of this review is to investigate state-of-the-art MOM platforms to reveal the broad
range of multi-purpose implementations available. In particular, the review seeks to identify com-
mon messaging and administrative capabilities present within MOM platforms. The review covers
a number of MOM platforms from the pioneering commercial developments of TIBCO Rendezvous
[71] and IBM MQSeries [70] to innovative academic implementations such as SIENA [62, 67] and
Hermes [83]. In addition, the review includes well-known commercial and open-source platforms
such as SonicMQ [84] and ActiveMQ [85].

3.10.1 CORBA Event Service & Notification Service

The Object Management Group’s (OMG) CORBA Event Service specification defines a general
purpose communication service that supports the asynchronous exchange of event messages be-
tween clients [86]. In this model, event suppliers produce event messages for event consumers to
receive. This exchange is achieved with the use of an Event Channel ; a mediator that propagates
events to consumers on behalf of suppliers. Communication between suppliers and consumers may
use one of the following two modes:

• Pull Mode – Consumers request data from the supplier using the event channel

• Push Mode – Suppliers push data to a consumer using the event channel

The event service specification defines an EventChannel interface that provides the basic ad-
ministrative capabilities needed to interact with the channel. The three administrative operations
provided by the interface are adding consumers, adding suppliers, and destroying the channel.

The OMG Notification Service is designed to enhance the event service by introducing the con-
cepts of filtering and the configurability of QoS requirements [87]. Consumers of event notification
channels can specify filters to employ on the channel. The notification service attempts to preserve
all the semantics specified for the event service, allowing for interoperability between basic event
service clients and notification service clients.

The notification specification includes a brief description of basic administration interfaces for
event notification channels, using this interface it is possible to create a new notification channel
and obtain a list of all notification channels with associated consumers and suppliers. The ad-

55

3.10 Current MOM Platforms

ministration interfaces also support the manipulation of QoS and filtering characteristics of event
delivery.

Asynchronous communication within both the event and notification services uses the CORBA
synchronous method invocation protocol. This pseudo asynchronicity requires a costly remote
method invocation for every event delivered, reducing the scalability of the deployment.

The simplicity of the concept within these specifications has led to widespread acceptance
and multitudes of implementations have emerged, including commercial offerings from TIBCO,
IBM (MQSeries), and others. The majority of implementations have extended the basic concepts
of the specifications and include support for additional proprietary features such as bridges to
enable interoperability between disparate implementations, transactional messaging, clustering,
and security capabilities. A significant number of the research-based MOM implementations build
on the event and notification service specifications.

3.10.2 TIBCO Rendezvous

As the name suggests TIBCO Rendezvous [71] is designed to allow programs to locate other clients
without the need to determine their network address. Rendezvous, developed by Dale Skeen in
the early ‘90s, is a cornerstone in the foundation of the publish/subscribe messaging model, of
which anonymous participants is a fundamental characteristic. Rendezvous provides subject-based
addressing which is similar to hierarchical topic namespaces within the JMS API. This addressing
schema allows the definition of a namespace that message participants can search with the use of
wildcard operators (*, >, <, etc). Rendezvous runs within a Rendezvous daemon on each machine
within the messaging solution.

The Rendezvous daemon runs on each participating computer on your network. All
information that travels between program processes passes through the Rendezvous
daemon as the information enters and exits host computers. The daemon also passes
information between program processes running on the same host. [88]

This federated approach to messaging provision eliminates bottlenecks and single points of
failure within a system deployment. Rendezvous support both publish/subscribe and point-to-
point messaging; point-to-point messaging is achieved by using a unique “inbox name” address.

Rendezvous supports a large number of programming languages including C, C++, Java, COM,
and Perl 5. Each of these languages has a proprietary interface of the generalised Rendezvous API
used to connect to the Rendezvous daemon. It should be noted that the Java interface is not
JMS compatible. The Rendezvous Daemon, illustrated in Figure 3.10, sits between clients and
the network to provide the infrastructure for message transportation, including data transmission,
packet ordering, receipt acknowledgement, retransmission requests and routing instructions. Run-
time configuration of a daemon is available through the DaemonManager and DaemonProxy APIs.
These APIs allow access to the internal configuration of the daemon, facilitating the reconfigura-
tion of its communication transports and routing behaviours. In addition, the APIs also provide
access to internal daemon information on aspects such as logging, http tunnelling, fault tolerance,
security, and caching.

56

3.10 Current MOM Platforms

Figure 3.10 The TIBCO Rendezvous operating environment (from
[88])

3.10.3 OpenJMS

OpenJMS [77] is an open source JMS compatible provider. Initiated in 1999, OpenJMS is part
of the ExoLab initiative, an informal organisation working on the development of open source
enterprise software projects. ExoLab focuses its efforts on Java and XML technologies and includes
a number of leading projects such as OpenJMS, Open ORB1, Castor, and Tyrex. In addition, it
also contributes to external open source projects such as Tomcat, James, Xalan, and Xerces.

As of version 0.7.6.1, OpenJMS is conformant to the JMS 1.0.2 API specification and provides
support for both point-to-point and publish/subscribe messaging models. When examined from an
administrative perspective, OpenJMS can be configured using an administration GUI, an XML-
based configuration file, or programmatically via a non-standardised administrative API. The
administrative API allows the following limited manipulation of the provider’s internal runtime
state:

1. Destination Administration

(a) Determine if a destination exists

(b) List destinations

(c) Create administered destination

(d) Remove a destination

1 This is not the same Open ORB project covered in Chapter 2.

57

3.10 Current MOM Platforms

(e) Count messages in a queue

(f) Count messages for a durable subscriber

2. User Administration

(a) List all users

(b) Add user

(c) Remove user

(d) Change user password

The API does not contain any application specific information and offers limited options for in-
teroperability with other platforms. With the ability to retrieve a destination message count aside,
the API does not expose any internal provider information such as current usage statistics. This
limits any potential to reflect on current operation conditions and perform meaningful adaptations.

3.10.4 ActiveMQ

ActiveMQ [85] is a new open source JMS provider. Released under the Apache 2.0 license, it is
a high performance messaging backbone with the ability to create a scalable cluster of message
brokers. Version 2.0 fully supports JMS 1.1 and Java 2 Enterprise Edition (J2EE) 1.4, allowing it
to integrate seamlessly into J2EE 1.4 compliant containers, light weight containers (such as Pico or
Spring), or any Java application using its Java Connector Architecture (JCA) 1.5 resource adaptor.

ActiveMQ supports a wide range of different deployment topologies scaling in both the large
and small. Each topology has specific strengths when deployed within different environments. The
following topologies are available:

• Client/Server - The traditional client/server approach for distributed deployments is an effi-
cient solution for servicing a large numbers of clients requiring a diverse range of messaging
demands. With this topology, a number of communication protocols such as the Trans-
mission Control Protocol (TCP), User Datagram Protocol (UDP), or Secure Sockets Layer
(SSL) are employed to connect with a message broker. When deployed within a high-volume
environment, brokers can be setup in logical clusters to provide high-availability using broker
failover and load balancing.

• Embedded - Similar to the client-server topology, the embedded topology places an embedded
broker locally within each client VM. With such a deployment, communication between the
client and broker (server) take place within the same JVM, avoiding the extra hop required
to go from producer to broker to consumer. Embedded brokers may also be used to provide
store and forward isolation from remote brokers, allowing a remote broker to fail without
affecting the publishing client e.g., the network could fail, but the client can continue to
publish messages to its embedded broker.

• Peer-to-Peer - The peer-to-peer topology allows clients to communication in peer-based clus-
ters, without the use of a central server. The peer-to-peer deployment can be setup in a
number of ways. The most popular method is to utilise a multicast transport protocol for

58

3.10 Current MOM Platforms

communication; all nodes communicate using the same multicast address. As well as stan-
dard multicasting, other options for multicasting include using JGroups [89] or Suns Java
Reliable Multicast Service (JRMS) [90]. While multicast deployments have great potential,
they are not always a feasible choice for a production deployment. Pointcast based socket
communication is a more mature and scalable solution within Java deployments.

Similar to most messaging services, ActiveMQ provides a configuration file to control a num-
ber of internal settings including transport connectors (consisting of transport channels and wire
formats), network connectors (using network channels), discovery mechanisms, and persistence
mechanisms.

While ActiveMQ does not have an administration API for runtime configuration, it does have
a number of on-the-fly adaptive capabilities that cover some of the more common operations found
within such APIs. ActiveMQ has an adaptive capability that creates destinations (queues or topics)
on the fly when a message is send to an inexistent destination. While it is currently not possible to
direct specific configuration settings of the destination, such functionality is planned for a future
version.

3.10.4.1 J2EE Management API

ActiveMQ also provides partial support for the J2EE Management API [91], also know as the
Java Specification Request 77 (JSR 77). This management API is a vendor-neutral API used
to manage J2EE application servers. The management API enables the development of resource
management tools for JSR-77-compliant J2EE servers; such resources include Java Database Con-
nectivity (JDBC) connection pools and deployed applications.

One of the key features of this specification is the ability for an application server to describe
its resources in a standard data model. With the use of the model, the API can probe the server to
obtain information on its resources. This information can then be used to reflect on the operating
conditions of the server and adjust its configuration accordingly. In order to convey performance
related information, a substantial portion of the specification is dedicated to providing performance
monitoring. Each resource is required to provide performance statistics; this information is grouped
into Stats tailored for each managed object. These stats provide a snapshot of the current state of
the resource. If a number of snapshots are taken over a time-period, it is possible to build a trend
of the resource’s usage.

Currently ActiveMQ does not support full J2EE management statistics, however their inclusion
is planned in a future release. When in place these statistics will offer various stats concerning the
connection, session, consumer, producer, and endpoint constructs within the ActiveMQ provider.
This will enable the management stack (e.g. a JMX program) to use JMX based alerts (JMX
notifications) to trigger actions when certain conditions exist within the provider. Even though
there is currently no management API for ActiveMQ, its planned support for JSR 77 will in-
crease the administrative capability of the service and simplify integration with JSR 77-compliant
administration tools.

3.10.5 SonicMQ

SonicMQ [84] is a leading commercial JMS provider from Sonic Software with compliance for JMS
1.1 and J2EE 1.4, which provides integration support for J2EE application servers such as BEA

59

3.10 Current MOM Platforms

WebLogic and IBM WebSphere. SonicMQ is a high-performance messaging backbone capable of
massive scalability in high-volume messaging environments [58, 92]. With its clustering capability,
SonicMQ can share the messaging load among clusters of message brokers, allowing deployment to
support large numbers of messages, users, and applications. A broker cluster can handle a greater
number of connections, destinations, and persistent messages than an individual broker.

SonicMQ also has support for wide area deployments with the ability to establish groups of
clusters, creating highly distributed deployments across loosely coupled locations. With the use of
a technique know as Dynamic Routing Architecture (DRA) [93], SonicMQ can automatically senses
the availability of communication paths and choose the best route to optimise network resource
utilisation, ensuring an efficient traffic flow.

The administrative capabilities of SonicMQ are the most comprehensive of all the messaging
services reviewed, providing full configuration control and performance metrics for the message
broker at runtime. Broker administration is facilitated via two APIs:

• Configuration API – This API is used to configure all aspects of the broker including con-
nections, containers, brokers, clusters, queues, and routings. It can be used to get and set
individual attributes on a configuration, create and delete configurations, and manipulate
tables and lists within the configuration.

• Runtime API – Provides monitoring and management facilities for running brokers and their
containers. The API can be used to gather runtime information (i.e. performance metrics)
on containers and components (i.e. agent, agent manager, activation daemon, and broker)
within the broker using a JMX interface or the proprietary Sonic Proxy API.

The metrics exposed by the Runtime API can be selectively and dynamically enabled and
disabled during broker execution. A certain amount of overhead is associated with statistical data
collection and metric interpretation. Metrics are available for a number of aspects of the broker
including:

• Memory usage

• Management thread pool

• Message traffic

• Connection activity

• Queue usage (per queue)

• Size of durable subscription store

• Connection reject rate

The administrative access in SonicMQ is based on a proprietary API that increases the com-
plexity of interaction. However, it does provide a great degree of control over the broker, offering
the potential for developing a number of reflective capabilities.

60

3.10 Current MOM Platforms

3.10.6 SIENA

The Scaleable Internet Event Notification Architectures (SIENA) [62, 67] is a popular example of a
service utilising content-based filtering. SIENA is designed as a ubiquitous event notification service
for use in wide-area networks and is suitable to support highly distributed applications. One of the
main challenges faced by notification services in wide-area settings is maximising expressiveness in
the selection mechanism without sacrificing scalability in the delivery mechanism.

The SIENA notification service extends the traditional publish/subscribe protocol with an ad-
ditional interface function called advertise. A client uses this function to inform the service of the
nature of notification that it might publish. Clients use the access points to advertise the infor-
mation about events that they generate and to publish notifications containing that information.
Clients also use access points to subscribe to notifications of interest. The service will then use the
access points to deliver any relevant notifications to the client. The SIENA notification service is
implemented as a network of servers that provide points of access to clients; the network of servers
may be connected in a hierarchical or peer-to-peer topology.

Figure 3.11 The SIENA hierarchical client/server architecture (from
[62])

The hierarchical topology, illustrated in Figure 3.11, is a straightforward extension of a cen-
tralised architecture. Within this topology, the central server must be modified to propagate any
information that it receives (i.e., subscriptions) on to its ‘master’ server within the hierarchy. The
inter-server communication protocol used within the hierarchical architecture is the same protocol
used between the client and server. Effectively, the master server sees the slave server as just an-
other client. The slave receives subscriptions, advertisements, and sends and receives notifications
like any other client. The main shortcoming of the hierarchical architecture is the possibility of
overloading servers located at the top of the hierarchy. In addition, each server within the hierarchy
acts as a critical point of failure for the whole network; failure in a server disconnects all the slave

61

3.10 Current MOM Platforms

servers and their clients from the rest of the network.

Figure 3.12 Acyclic peer-to-peer server architecture in SIENA (from
[62])

SIENA also has a peer-to-peer architecture as illustrated in Figure 3.12. Within this topol-
ogy, servers communicate with each other symmetrically as peers, utilising a protocol that allows
a bidirectional flow of subscriptions, advertisements, and notifications between servers. SIENA
conceptually supports both an acyclic and general peer-to-peer topology; however, only an acyclic
topology has been implemented. To ensure the correct function of the routing algorithms it is im-
portant that server inter-connections maintain the property of acyclicity. However, administration
of this can be difficult in a wide-area deployment. As with the hierarchical architecture, a lack of
redundancy in the topology constitutes a limitation in assuring connectivity, a failure in one server
isolates all the servers and clients reachable from the failed server.

SIENA does not provide an administrative interface to examine the internal routing informa-
tion within a server, nor does it offer any API to alter these structures. This reduces the ability for
reflective capabilities within SIENA. However, if such access were available a number of opportuni-
ties exist to develop reflective capabilities to improve redundancy within the SIENA architecture.
One prospect is the development of an agent to identify servers with a history of common out-
ages or failures. Once vulnerable servers are identified, the agent establishes redundant back-up
routes around these servers to provide an alternative route when they fail. This reflective capabil-
ity increases service availability and reduces the occurrence of subnet isolation within the overall
notification service.

3.10.7 REBECA

The Event-Based Electronic Commerce Architecture (REBECA) [94, 95] aims to provide an event-
based architecture for electronic business applications. Within such environments, highly cus-
tomised multi-step flows require the engineering and administration of complex event-based appli-

62

3.10 Current MOM Platforms

cations and infrastructure. REBECA has two unique capabilities to service these environments;
scopes to improve the interoperability of notification services and services to support location-
mobility. In addition, REBECA also introduces the concepts of subscription merging [65, 69],
described in Section 3.8.1, as a mechanism to minimise the size of routing tables.

The concept behind scopes [96] is to bundle the functionality that comprises an event-based
system into a collection of sub-components. A scope is a collection of these sub-components that
provides the rest of the world with common higher-level input and output interfaces to the event
service. Scopes also act as an encapsulation mechanism by hiding the details of service imple-
mentation, such as the underlying data transmission mechanisms, the interface mappings between
internal and external notification representations, security, and transmission policies. Scopes from
the notification perspective provide an “encapsulation unit, a scope constrains the visibility of
the notifications published by the grouped components” [96], effectively limiting the visibility of
notifications within the system to a subset of message participants.

REBECA offers support for location mobility services [97] within event-based systems with the
use of location-dependent subscriptions as a means to use the event-based paradigm within mobile
scenarios. Mobile consumers using the location mobility service will only receive notification events
related to their current location.

With no direct management interface, limited administrative capabilities are provided by Java
Management Extensions (JMX) [98] events at key locations within the REBECA mobility service
infrastructure [99]. The mobility service relies on data distributed among the brokers within the
network; this information is exchanged between brokers using management events. Management
events are first-class participants within the event service and may be subscribed to in a similar
fashion to any other event within the service. These events allow a client, such as an adminis-
trative service, to receive interval management communications and ‘update events’ [99] from the
REBECA mobility service and provide limited management capabilities.

3.10.8 Hermes

The Hermes distributed event-based middleware platform, developed at the university of Cam-
bridge, is “a type- and attribute-based publish/subscribe model that places particular emphasis
on programming language integration by supporting type-checking of event data and event type
inheritance” [83]. A Hermes deployment consists of a network of peer-to-peer event brokers using
an overlay network to create a distributed dissemination tree.

The three layers of networks in Hermes are illustrated in Figure [3.13]. The bottom
layer is the physical network with routers and links that Hermes is deployed in. The
middle layer constitutes the peer-to-peer overlay network that offers a distributed hash
table abstraction. The top layer consists of multiple event dissemination trees that
are constructed by Hermes to realise the event-based middleware service. When a
message is routed using the peer-to-peer overlay network, a callback to the upper layer
is performed at every hop, that allows the event broker to process the message by
altering it or its own state. [83]

Within Hermes, Rendezvous Nodes ensure consensus between brokers within dissemination tree
for a particular event type. Any broker within a Hermes network can be a rendezvous node for an
event type(s).

63

3.10 Current MOM Platforms

Figure 3.13 Layered networks in Hermes (from [83])

Hermes offers two forms of filtering, type-based, and type- and attribute-based filtering. Type-
attribute based filtering enhances type-based filtering with content-based routing on the attributes
of an event. Type-based filtering is similar in concept to topic-based (group) filtering within JMS.
In addition to its filtering services, Hermes also offers a number of higher-level publish/subscribe
services such as composite events, access control and a congestion control service.

Hermes use of a peer-to-peer overlay network has a number of benefits for event broker deploy-
ments. It also exhibits some of the self-management characteristics desirable within autonomic
systems:

The advantage of such peer-to-peer overlay network are threefold: First, the overlay
network can react to failure by changing its topology and thus adding fault-tolerance
to Hermes. Second, the peer-to-peer routing substrate that manages the overlay net-
work is responsible for handling membership of event brokers in a Hermes deployment.
Third, the discovery of rendezvous nodes, which must be well-known in the network, is
simplified by the standard properties of the distributed hash table. [83]

The Hermes Broker API allows limited administration access for the interconnection of brokers
within a network; the API also provides a list of neighbouring event brokers to which a broker is
connected. An additional API is available to manipulate the distributed hash table, called PAN,
within a Hermes broker. The PAN API enables administration of the overlay network, allowing
nodes to join and leave the network, and provides capabilities to route messages over the overlay
network.

3.10.9 WebSphere MQ (formerly MQSeries)

WebSphere is an IBM software family designed for business integration. The family contains
a number of members including Business Integration Adapters, a Business Integration Message
Broker, and Data Interchange services. The members of the family deal with various aspects of

64

3.10 Current MOM Platforms

the integration process such as centralising and applying business operations rules, or enabling the
capture, visualisation, and automation of business processes. WebSphere MQ (formerly MQSeries
[70]) is the family member that provides the communication mechanism between applications on
different platforms.

WebSphere MQ enables integration by helping business applications to exchange information
across different platforms; sending and receiving data as messages. WebSphere MQ provides a
number of Application Messaging Interfaces (AMI) to interact with the message provider; interfaces
are available for C, C++, COBOL, and Java using the JMS 1.1 API. WebSphere MQ can also be
deployed on a number of operating systems including AIX, HP OpenVMS, HP-UX, iSeries, Linux
for Intel and zSeries, Solaris, z/OS, and Microsoft Windows.

WebSphere MQ contains comprehensive administration capabilities, allowing the management
of its configuration at run-rime. These include:

• Resource management - Queue creation and deletion

• Performance monitoring - Maximum queue depth or message rate

• Control - Tuning queue parameters such as maximum queue depth, maximum message length,
and enabling and disabling queues

• Message routing - Definition of alternative routes through a network

Administration of a WebSphere MQ provider can be performed in a number of ways. The two
more popular methods of administration are:

• Programmable Command Formats (PCF) - PCFs define command and reply messages that
may be exchanged between a program and a compatible queue manager in a network. PCF
commands are used for the administration of WebSphere MQ objects: queue managers,
process definitions, queues, and channels. Each queue manager has an administration queue
with a standard queue name to send PCF command messages to. PCF commands and reply
messages are sent and received using the normal Message Queue Interface (MQI).

• The Message Queuing Administration Interface (MQAI) – MQAI is a programming interface
to WebSphere MQ, using the C or Visual Basic languages. It performs administration tasks
on a WebSphere MQ queue manager. The MQAI provides a more straightforward method
of administration than PFCs.

Two further administration interfaces are available. The OS/400 Control Language (CL) may
be used to issue administration commands to WebSphere MQ for iSeries. WebSphere MQ Com-
mands (MQSC) provides a uniform method of issuing commands, expressed in WebSphere MQ
Script (MQSC), across WebSphere MQ platforms. MQSC responses are designed to be human
readable, whereas PCF command and response formats are intended for program use.

3.10.10 Other Reviewed Systems

As an addition to the projects examined within the main review, a number of other projects are
briefly highlighted to place this research within the wider MOM research domain.

65

3.10 Current MOM Platforms

3.10.10.1 Gryphon (IBM Research prototype)

Initiated in 1997 at the IBM T. J. Watson Research Centre the Gryphon [74] project was designed
to support the next generation of web applications, to go beyond the pull-based generation of
applications and develop a robust publish/subscribe message broker.

Gryphon is implemented 100% in Java with optional native libraries for performance-critical
sections; non-blocking I/O socket libraries for Windows NT, Linux, and AIX. Clients access the
provider system through the JMS API.

Gryphon provides a content-based publish/subscribe service with a matching engine [100, 101]
that offers high-speed filtering when compared to a topic-only approach. Gryphon also takes
advantage of the benefits of channel hierarchies by organising its topics into hierarchies with support
for wildcards to allow subscribers maximum flexibility in their topic subscriptions. Central to
Gryphon’s scalability and reliability is the possibility for deployment of Gryphon message brokers
into a multi-broker network. Similar to concepts of clustering, a Gryphon multi-broker network can
accommodate growth in load by simply adding additional broker machines. Gryphon provides a
rich set of configuration options, allowing multi-broker deployments to exploit underlying network
configurations and congestion control techniques [102] to improve scalability.

Gryphon was used as a core part of the Sydney Olympics Intranet (providing real-time moni-
toring and statistics data) and for real-time score delivery for the US Tennis Open, the Ryder Cup,
and the Australian Open where it was used to push real-time information to over 50,000 concur-
rent clients. Gryphon now forms part of the IBM’s WebSphere suite as the WebSphere MQ Event
Broker, extending the suite with multi-broker, content-based publish/subscribe functionality.

3.10.10.2 Cambridge Event Architecture

The Cambridge Event Architecture (CEA) [103] extends the traditional synchronous request/reply
interaction pattern to an asynchronous publish-register-notify interaction. CEA was designed to
provide publish/subscribe communications for multimedia and sensor rich distributed applications.
Message publishers within the CEA are known as an event source, while message consumers are
known as an event sink. Within the CEA, it is possible for event sources and sinks to communicate
directly with one another without the use of an intermediary. However, to reduce source/sink
coupling event mediators can be introduced into the messaging deployment.

The CEA provides a strongly-typed event system where events are of a particular event class
and are statically type-checked at compile time [83], due to this event type-checking, event sources
and sinks are tightly coupled to one another. Content-based routing is performed at event sources
to minimise communications overhead. This complicates the implementation of the event source
as it is required to perform subscriptions evaluation for each of its event sinks; event mediators
have no filtering capabilities, limiting the scalability of a deployment to that of its event sources.

3.10.10.3 ECO

The Event, Constrains, and Objects or ECO distributed event model, developed at Trinity Col-
lage Dublin, is designed to support virtual world applications. ECO is “designed to be scalable by
including filtering capabilities that were intended to decrease network traffic in a distributed imple-
mentation” [104]. ECO demonstrates “that filtering coupled with multicast communications can
substantially decrease network traffic and thus enhance scalability” [104] within an event service.

66

3.11 Comparison of Reviewed Systems

ECO is designed to extend a “host” language with event-based communication concepts using
the ECO model. ECO provides a simple three operation API that is used by message participants,
or entities, to communicate. These operations are:

• Subscribe(eventType, eventHanlder, constraint) – Used by an entity to declare an interest in
a particular type of event

• Raise(event) – Invoked to produce an event, ECO will deliver this event to all interested
subscribers

• Unsubscribe(event-type, event-handler) – Used to remove a subscription

ECO does not include any administration API at the abstract model level, however such capa-
bility is not restricted within the models implementation.

3.10.10.4 JEDI

The Java Event-Based Distributed Infrastructure (JEDI) [75] is a distributed content-based pub-
lish/subscribe middleware. Within JEDI, active objects produce or consume messages. Messages
are routing between active objects through event dispatchers organised as a tree structure; with
support for the reconfiguration of the tree to cope with the failure of an event dispatcher. Sub-
scriptions within JEDI are to a specific event or to an event pattern. “An event pattern is an
ordered set of strings representing a very simple form of regular expression” [75].

JEDI has support for mobility and allows active objects to join and leave at different points
within the network with the use of the moveOut and moveIn operations. “While the [Active Object]
is disconnected, the event dispatcher stores the event patterns the [Active Object] is subscribed
to, so that, when it reconnects, it does not have to resubscribe” [75].

3.10.10.5 Self-Organising Broker Topology

Researchers at the Technical University of Berlin are currently investigating the use of self-organising
techniques within publish/subscribe broker topologies. Within such networks, the topology of the
brokers is often assumed static. This work investigates the possibilities for “reconfiguration of the
broker overlay network structure to increase pub/sub system efficiency. This includes adaptivity
to changing usage patterns, issues in reconfiguration (like delay, message overhead, and message
ordering) as well as the development of a metric to decide whether reconfiguration might be ben-
eficial” [105].

While at an early stage of investigation, the approach to reconfiguration is based on the analysis
of usage patterns. The self-organisation operation is based on the “actual message flow to decide
if and how a reconfiguration of the overlay network can help to improve system performance”
[106]. Reconfigurations are performed “while notifications are queued in the critical section to
maintain message completeness and ordering properties” [106] ensuring against message loss due
to self-organisation activity.

3.11 Comparison of Reviewed Systems

Each of the MOM systems reviewed are designed with different goals in mind. From the perspective
of this research, the main objective of this review is to examine each system and consider its

67

3.11 Comparison of Reviewed Systems

messaging and administration capability. This analysis easily breaks down into two key questions:

• What are the common message capabilities of MOM platforms?

• What common administration access is available?

The remainder of this section presents the results of the survey.

3.11.1 Message Capabilities

Given the diverse objectives of the reviewed systems, it is no surprise that there is significant variety
in their approach to messaging provision. However, considering one of the objectives of this research
is to define a generic MOM meta-level, it is important to identify common messaging capabilities
among the systems. To this end, four criteria have been selected to highlight commonalities:

• Supported Messaging Models - Does the implementation support point-to-point and/or pub-
lish/subscribe messaging model(s)?

• Filtering/Routing Capability – What filtering capabilities are provided?

• JMS Compliance – Does the implementation provide JMS support?

• Destination Construct – Is a destination-like construct used in the implementation?

The results of this MOM survey are available in Table 3.5.

MOM Name Supported
Messaging Models

Filtering Type
(Routing Capability)

JMS
Compliant

Destination
Construct

CORBA Event

Service

Publish/Subscribe Channel-based No Yes

CORBA Notifi-

cation Service

Publish/Subscribe Content-based with

patterns

No Yes

OpenJMS Both Attribute-based

Topic based

Yes Yes

ActiveMQ Both Attribute-based

Topic based

Yes Yes

SonicMQ Both Attribute-based

Topic based

Yes Yes

SIENA Publish/Subscribe Content-based No No

TIBCO

Rendezvous

Both Topic-based No Yes

REBECCA Publish/Subscribe Content-based No No

Hermes Publish/Subscribe Composite events No No

WebSphere MQ

(formerly

IBM MQSeries)

Both Attribute-based

Topic based

Yes Yes

Table 3.5 Comparison of MOM messaging capabilities within reviewed
systems

68

3.11 Comparison of Reviewed Systems

Within the survey, half the systems reviewed supported both messaging models, with the
remainder supporting only the publish/subscribe model. While it is possible to replicate a basic a
point-to-point solution using a publish/subscribe only system, it can be difficult to recreate all of
the characteristics of point-to-point; such as once-and-once-only messaging using multiple queue
consumers.

Filtering capabilities of the systems within the survey range from simple channel-based mecha-
nisms present within the CORBA Event Service, to content-based pattern filtering and composite
events within SIENA and Hermes respectively. The majority of systems supported a form of
content/attribute-based filtering, however the capabilities of the mechanisms used varied. JMS
compliant systems provide support for attribute-based filtering via message selectors and the pos-
sibility of topic-based filtering via hierarchical topic structures1.

Within the survey, of the ten systems examined, only two are system specifications: the CORBA
Event and Notifications services. The remaining eight are a mix of three commercial, three aca-
demic and two open source systems. Of these eight systems, four are JMS compliant (2 open
source and 2 commercial). Compliance to the JMS specification was non-existent among academic
systems, this is most likely a result of the target audience of the work; research prototypes are
unlikely to be utilised within production environments where portability, vendor neutrality and
legacy integration concerns are paramount.

The destination construct was present in seven of the ten systems reviewed. The three sys-
tems without such an entity were academic research prototypes supporting content-based publish
/subscribe, these system also lacked support for the point-to-point messaging model and JMS
standard.

3.11.2 Administration Capabilities

The second part of this survey examines the administration capabilities within the reviewed sys-
tems. The objective of this survey is to reveal any administration facilities and to classify their
capability. To this end, the following four criteria are used to examine each system:

• Administration API – Does the implementation provide an API to access its administration
capabilities?

• Extensibility – Can the Admin API be extended to perform additional operations?

• Runtime Reconfiguration – Can the MOM be reconfigured at runtime?

• Monitoring Capability – Does the MOM provide any monitoring capabilities to reveal its
current operating condition?

The results of this administration survey are presented in Table 3.6.
All but one of the systems reviewed, SIENA, has some form of administration API. The

only system capable of extending its administration capability is WebSphere MQ using its Pro-
grammable Command Formats, three other systems have a limited possibility of extension through
the Java Management eXtensions API [98] which contains a built in ability to define generic man-
agement actions. Administration capabilities varied with eight systems providing some form of

1 The JMS specification does not specify the implementation of this functionality. However, the majority of
implementations contain a provider-specific topic grouping mechanism.

69

3.12 Summary

MOM Name Administration
API

Extensibility Runtime
Reconfiguration

Monitoring
Capability

CORBA Event

Service

Very Basic No Limited to associat-

ing suppliers and con-

sumers with a channel

No

CORBA Notifi-

cation Service

Yes No Yes Yes (Channel,

Supplier and

Consumer lists)

OpenJMS Yes No Yes Limited to Queue

message count

ActiveMQ Planned Limited,

via JMX

Yes (partial) Planned

SonicMQ Yes Limited,

via JMX

Yes Yes

SIENA No No No No

TIBCO

Rendezvous

Yes No Yes Yes

REBECCA Yes Limited,

via JMX

No Restricted to up-

date events

Hermes Yes No Broker and Overlay

network node admin-

istration

Neighbouring

Broker List

WebSphere MQ

(formerly IBM

MQSeries)

Yes Yes (via PCF) Yes Yes

Table 3.6 Comparison of MOM administration capabilities within
reviewed systems

runtime-reconfiguration ability ranging from simple supplier/consumer channel associations with
the CORBA Event Service to fully featured APIs within SonicMQ and WebSphere MQ. A similar
variation in capacity is also observed for monitoring capacity within the systems.

Overall, the survey uncovered that while most MOM implementations posses some form of
proprietary administration API, none possessed a first class generic meta-level capable of runtime
monitoring and inspection of a MOM base-level. Even within the systems possessing a comprehen-
sive administration API, no standard representation of an internal MOM structure and state was
evident between the systems, limiting the possibility of coordinated administration interactions.

3.12 Summary

Message-Oriented Middleware (MOM) provides an alternative to the Remote Procedure Call distri-
bution mechanism. With its clean method of communication between disparate software entities,
MOM is one of the cornerstone foundations that distributed enterprise systems are built upon.
MOM can be defined as any middleware infrastructure that provides messaging capabilities and a
multitude of implementations exist to target diverse messaging requirements such as mobility and
enterprise integration to scaling in both the large and small.

70

3.12 Summary

While MOM provides a powerful mechanism to integrate multiple systems, its setup and main-
tenance is unnecessarily labour intensive. When examined from the perspective of administration,
no standardised management interface is available for MOM, limiting the scope of cross-platform
administration tools and coordination. Limited reflective self-management techniques are utilised
within current MOM implementations, presenting an opportunity to investigate their use within
this domain to develop self-management capabilities to ease the maintenance burden, and improve
service performance.

71

Part II

Contribution

72

Chapter 4

Meta-level Coordination

The investigation of meta-level coordination is the primary research objective of this work. This
chapter details the process used to define an interaction protocol to facilitate coordination between
meta-levels.

4.1 Introduction

Self-managed middleware systems have been developed to cope with the demands of current and
next-generation computing environments. Such systems are capable of adapting or self-adapting
to meet changing user or environmental requirements. A number of reflective middleware plat-
forms have been developed to provide such capabilities including Open ORB [7], DynamicTAO [8],
RAFDA [52], QuO [39], and mChaRM [32].

Current research has focused on the reflective capabilities of a system to examine its own
internal operation, known as internal reflection. In reality, the vast majority of software solutions
comprise of a number of interacting proprietary implementations. In such environments, internal
reflection is not sufficient; systems need to examine both themselves and their interactions with
other systems.

Standards and protocols such as General Inter-ORB Protocol (GIOP), Java Remote Method
Invocation over IIOP (RMI-IIOP), and the Web Service stack (HTTP, SOAP, UDDI, and WSDL)
have provided a common infrastructure to enable proprietary software implementations to interact.
This regulated infrastructure facilitates the exchange of information between implementations. As
self-managed platforms are deployed in the field, they will inevitably encounter and interact with
other self-managed capable systems. These infrastructure standards enable the base-level of a
self-managed platform to interact. However, no standard or protocol is available to allow the
meta-levels of the platforms to interact.

Interoperability within the meta-level is one of the key challenges for future self-managed plat-
forms. The emergence of an open standard for meta-level interaction is imperative to support the
development of next-generation, self-managed middleware that coordinate and cooperate with sys-
tems with which they interact. Such standards need to define adaptive and reflective capabilities
in a neutral format, increasing interoperability across proprietary implementations.

This chapter provides motivation for the investigation of meta-level coordination activities with
a vision of coordinated self-managed environments. The requirement for an interaction protocol

73

4.2 Motivational Scenario

for such environments is then highlighted. The chapter concludes with the definition of the Open
Meta-level Interaction Protocol (OMIP) that meets these requirements.

4.2 Motivational Scenario

As motivation for the research hypothesis, a hypothetical scenario of an online multimedia broad-
casting service is presented. This service broadcasts audio streams using an open standard, an
MP3 stream, as its distribution format. Utilisation of this open format enables multiple propri-
etary media players to seamlessly connect to the service. In this environment, as illustrated in
Figure 4.1, any media client that supports the MP3 format is capable of receiving the multime-
dia (MP3 stream) broadcasts. With this configuration, clients connect to a MP3 stream of fixed
quality.

Encodes and
transmits

Multimedia Service
Provider

Retrieve
requested

media

(Server-side
only)

Multimedia Client

Network
(28k, 56k, 128k,

256k, 512k)

Media
Store

Media Player

Ap
pl

ic
at

io
n

La
ye

r
M

id
dl

ew
ar

e
La

ye
r

Decode and relay
to media player

Forward
requested

media

Ap
pl

ic
at

io
n

La
ye

r
M

id
dl

ew
ar

e
La

ye
r

Figure 4.1 A non-reflective media broadcast service

With the use of current reflective research, such as Open ORB, it is possible to build such
a service with the ability to self-adapt to a client’s capability including bandwidth, latency, or
connection reliability. Current reflective techniques improve the Quality of service (QoS) provided
by the multimedia broadcasting service by altering the process in which it serves media to its
clients. For example, attempting to send a high-quality live audio stream to a client on a low-
bandwidth connection will result in a poor QoS for that client. Ideally, the service should recognise
the current network capability and transmit a more suitable, lower-quality stream to the client.
The choice of an appropriate media encoding and service infrastructure can achieve an increase in
the QoS received by the client.

As illustrated in Figure 4.2, current reflective research is proficient at implementing a service
with self-adaptive capability. In this reflective broadcast service, it is important to note that the

74

4.2 Motivational Scenario

Transmission

Multimedia Service
Provider

Retrieve
requested

media

(Server-
side only)

Multimedia Client

Network
(28k, 56k, 128k,

256k, 512k)

Media
Store

Media Player

Ap
pl

ic
at

io
n

La
ye

r
M

id
dl

ew
ar

e
La

ye
r

Forward
requested

media

Ap
pl

ic
at

io
n

La
ye

r
M

id
dl

ew
ar

e
La

ye
r

Adapt Media
Encoding

Adapt Service
Infrastructure

Reflective Platform

Transmission

Adapt Media
Decoding

Adapt Service
Infrastructure

Reflective Platform

Figure 4.2 A proprietary reflective broadcast service

same reflective implementation (i.e. Open ORB) is present in both the server- and client-side
middleware stacks. When compared to the stack of the first solution, the reflective capabilities
have greatly improved the QoS provided by the service. However, utilisation of these capabilities
removes the independence provided by the open MP3 format, resulting in lock-in to a particular
proprietary reflective implementation1.

Ideally, the use of adaptive capabilities should not result in lock-in to a proprietary implemen-
tation. This could be achieved with the use of an interaction mechanism for the meta-level of
adaptive and reflective platforms to coordinate the operation of these capabilities between diverse
implementations.

In Figure 4.3, a coordinated reflective broadcast service is presented. The middleware stack
introduces a new meta-level interaction protocol. This protocol allows for communications between
the server- and client-side meta-levels to coordinate their reflective activities. When a new client
joins, it is able to discover what “capabilities” or “formats” the service can distribute its multimedia
content in, i.e. what adaptations are available/provided by the service? The client is now able to
request the service to deliver the media in a format that best suits the client’s current operating
conditions. It may also request additional adaptations if its infrastructure was to change (improve
or worsen).

When compared to the previous proprietary reflective approach, the service adapts to improve
its QoS in the same manner. However, the additional meta-level interaction protocol alleviates the
problem of proprietary lock-in. Any client that supports this protocol can benefit from the service’s
reflective capabilities and request adaptations while maintaining implementation independence.

1 This problem is not unique to Open ORB and would be experienced if any propriety technology were to be
used.

75

4.3 Opening the Meta-Level

Transmission

Multimedia Service
Provider

Retrieve
requested

media

(Server-
side only)

Multimedia Client

Network
(28k, 56k, 128k,

256k, 512k)

Media
Store

Media Player

Ap
pl

ic
at

io
n

La
ye

r
M

id
dl

ew
ar

e
La

ye
r

Forward
requested

media

Ap
pl

ic
at

io
n

La
ye

r
M

id
dl

ew
ar

e
La

ye
r

Adapt Media
Encoding

Adapt Service
Infrastructure

Reflective Platform

Transmission

Adapt Media
Decoding

Adapt Service
Infrastructure

Reflective Platform

OMIP OMIP

Request Encoding
/ Infrastructure

Inform of available
Encodings /

Infrastructure

Figure 4.3 A coordinated reflective broadcast service

4.3 Opening the Meta-Level

Critical to the development of interoperable heterogeneous systems is the definition of standards
that define the interface and interactions among interacting systems. To provide some background
to this problem and shed some light on possible solutions, this section briefly examines standardi-
sation efforts within other domains.

The networking community developed standards such as the Management Information Base
(MIB) and Simple Network Management Protocol (SNMP) for network management. These stan-
dards have made network devices easier to control through a common administrative protocol.
Similar management standards have also reached the software management domain with efforts
such as Java Management Extensions (JMX). JMX enables the integration of Java application
into existing network management solutions, simplifying the management of software applications.
The vision of Grid computing has been made possible thanks to the development of the Open
Grid Services Architecture (OGSA) which defines the standard interfaces and behaviours of a Grid
service by building on a web services base. Each of these efforts illustrate the benefits of stan-
dardised interaction protocols at the management layer. If self-managed systems are to take their
place within future computing environments, they will require their own management interaction
protocol.

Researchers within the Agent community encountered similar issues at an early stage of investi-
gation into open multi-agent based systems. After a number of years the Foundation for Intelligent
Physical Agents (FIPA) [107] emerged as a standards body for the agent community. FIPA is an
international organisation dedicated to promoting the industry of intelligent agents by openly de-
veloping specifications to support interoperability amongst agents and agent-based systems. FIPA

76

4.4 A Vision of Coordination and Cooperation

defines a number of standards and specifications that include architectures to support inter-agent
communication [108], interaction protocols [109] between agents, as well as communication and
content languages [110] to express the meaning of these interactions. With the use of these stan-
dards, any FIPA-compliant platforms and their agents are able to seamlessly interact with any
other FIPA-complaint platform. FIPA serves as an example for a similar effort with self-managed
reflective middleware.

4.4 A Vision of Coordination and Cooperation

The merits of coordination and cooperation have been highlighted but before the enabling protocol
is discussed, it is beneficial to consider potential characteristics of open self-managed environments
to offer guidance for the definition of the protocol. To this end, a vision of open self-managed
systems is examined to investigate potential participant interactions, participant relationships,
and the changing role of reflection. All of these factors are considered to define the prerequisites
needed by the protocol to enable open self-management interaction.

One of the most interesting aspects of open self-managed systems is their relationship to one
another and the rules that govern the relationship. Within an open environment, participants are
able to reflect on their current requirements and request actions from others, such as requesting
information or an adaptation. The dynamics of inter-participant relationships may be set up in a
variety of manners allowing the definition of communities in a number of fashions, including:

• Cooperatives – All participants work together to achieve mutual goals

• Market Places – Resource trading between participants

• Master/Slave – Slaves relinquish control to a master

• Commons – Deregulated control of common resources between participants

Participant relationships may also extend beyond simple adaptation requests to the sharing of
information between participants. When a new participant arrives into an environment, it may
request an individual or group of participants to inform it of their history within the environ-
ment. This sharing enables the participant to examine past requirements or patterns within the
environments, enabling it to rapidly gain experience of its new environment with the help of its
community. Such arrangements could also exchange real-time environmental information. This
can reduce the overhead and burden of reflection by normalising and sharing common monitoring
activities between participants. The concept of information sharing can be extended to a common
independent information service to assist in the collection, aggregation, maintenance, and disper-
sion of heterogeneous information sources within self-managed middleware, minimising the cost
associated with these tasks. The Collective [111] is one such service which assimilates common in-
formation collection tasks within self-managed systems, reducing the effort required to implement
self-managed systems by removing the need to duplicate common information infrastructure.

When operating within an open environment the scope of reflective computation must also
change from an introverted process to a more extroverted one. Reflective computation will need
to be more liberal as the bounds of the reflection process are extended beyond the concern of
the systems own base-level to include the affects of cooperation and coordination with other self-
managed systems. Coordinated environments provide interesting possibilities for the formation of

77

4.5 Protocol Prerequisites

autonomic system groups. When examined from a group/community perspective, the reflective
process is opened to the investigation of group dynamics and game theory, where participants
desire to coordinate but may not have mutual goals.

4.5 Protocol Prerequisites

When designing a protocol to facilitate open interaction it is important to consider that reflective
self-managed systems have been developed for a diverse range of deployment environments. Given
the diversity of these environments, and the impossibility of evaluating each one, a pragmatic
approach to the development of an interaction protocol is needed to facilitate as much openness
as possible, while minimising the complexity of the mechanism. With this approach in mind, the
basic requirement of the protocol is to:

Facilitate access to self-management services (state, adaptive capability, and anal-
ysis capacity) in a generic manner

Facilitating generic access to self-management services is vital to unleash the maximum po-
tential of coordination and cooperation within an environment. Given the diversity of potential
environments, it is important that an interaction protocol does not define inter-participant rela-
tionships as this could limit the usability of the protocol within certain environments. With the
core requirement of the protocol defined, the next task is to specify desirable qualities of the inter-
action protocol. Given the heterogeneous nature of current and future computing environments it
is vital that the interaction protocol possess the following characteristics:

• Open Accessibility - Previously unfamiliar systems must be able to interact using the proto-
col.

• Extensible Interaction – The protocol is extendable to provide previously undefined interac-
tion requirements, facilitating interaction within newly defined application domains.

• Implementation Agnostic – The protocol must work with different implementations and tech-
nologies.

• Independent Control – The protocol must not dictate a relationship between interacting par-
ticipants. Participants maintain independent control and can refuse requests and interactions.
This does not prevent relationship definition at the participant level.

The open and generic nature of these characteristics ensure the protocol will exploit the po-
tential of open interaction between self-managed systems to maximise the likelihood of meeting
unpredictable requirements within the diverse range of deployment scenarios they encounter.

4.6 Open Meta-level Interaction Protocol (OMIP)

Facilitating interaction within diverse operating environments and application domains requires
interactions to be based on a model of semantically grounded communication that is pre-defined,
semantically rich and well understood by all parties. To this end, the Open Meta-level Interaction
Protocol (OMIP) is introduced as the basic building block of communication between self-managed

78

4.6 Open Meta-level Interaction Protocol (OMIP)

participants. The remainder of this section details the design of the OMIP, including a walkthrough
of an OMIP interaction.

The role of the OMIP is to standardise conversations between participants, creating the rules
under which dialogue takes place. The basic requirements of this protocol are:

• An ability to request available capabilities (available actions and information)

• An ability to exchange information

• An ability to request an action (adaptation)1

The OMIP captures a common understanding of the basic elements that comprise a conversation
between two participants. The two fundamentals steps needed to define the OMIP are; firstly, detail
a minimal set of interactions needed to perform the basic requirements of OIMP. Secondly, it must
capture a common understanding of the basic elements that comprise a conversation between two
participants.

To achieve this, the OMIP defines a number of generic interaction commands based on the
Request-Reply paradigm. Each interacting command contains an associated message. The content
of this message is expressed in a domain specific language. These languages are responsible for de-
scribing the application/domain-specific details of the request (i.e. security, hardware, multimedia,
telecoms, flight control, education, or UI); these languages may also contain their own specific in-
teraction commands. Interactions between systems are achieved with a combination of the relevant
interaction command with an associated message expressed in a domain specific language.

4.6.1 Interaction Commands

The goal of Interaction Commands (IC) is to describe entire conversations between participants
to achieve some action (i.e. an adaptation) or outcome (i.e. resource allocation). ICs provide the
context in which to interpret the associated messages. Figure 4.4 illustrates the core ICs.

Abstract
 Request - Reply

Request
Capability

Domain Specific
Request

State

NotificationAnalysis

Adaption

Request Action

Figure 4.4 OMIP interaction command hierarchy

1 An important point on this requirement is to note that this is merely an ability to request an action, the
decision on whether the change takes place or not is up to the target participant.

79

4.6 Open Meta-level Interaction Protocol (OMIP)

The OMIP utilises this collection of request-reply interactions to construct conversations be-
tween participants. Each of these interactions makes a request of another participant; the target
participant returns a related reply to the initiating participant. The core ICs are described in
Table 4.1.

Command Description Possible Reply

Request Capabilities Retrieve a participant’s self-management capabili-

ties and the domain specific languages it uses to

describe them.

Available capabilities

/ Refuse

Request Action Request a participant to perform one of its sup-

ported actions (Adaptation | Analysis | Notification

| Return State).

Accept (optional con-

tent) / Refuse

Table 4.1 OMIP interaction commands

These core ICs are implemented within the domain specific language for the application domain.
For a DSL to be OMIP-compatible it must support the core ICs. This is an important point in
the design of the OMIP. Allowing the DSL to define interaction commands empowers it with
the flexibility to implement the command in a manner that best suits the application domain it
represents. No restriction exists on the definition of the command nor is they’re a restriction on
the medium used to express the commands. The main role of the IC is to capture the semantic
meaning of these commands to provide the basic building blocks of open interaction.

Further non-core ICs may be easily defined for interactions including auctioning, issuing a
Call for Proposals or Participation (CFP), negotiation, brokerage services, and subscription-based
services.

4.6.2 OMIP Walkthrough

With the use of these request/reply commands, it is possible to perform a full-scale interaction with
an external meta-level. As an demonstration of the interaction mechanism proposed, a systematic
walkthrough of a conversation between two participants is described. Figure 4.5 highlights all the
stages of an OMIP interaction, from acquiring the available capabilities of a self-managed system,
to requesting the system to perform an action:

1. Discovery – there is no restriction on participant discovery within OMIP. Participants dis-
covery make take place via a directory service, user prompting, system configuration, or from
another participant.

2. Request Capabilities – post discovery, the first act is to exchange capability information using
the Request Capabilities command. This command will return a list of available capabilities
including possible adaptations, analysis, event, and state information.

3. Request Action - State – The Request Action command allows a participant to request any
of the supported capabilities. The first use of this command in the walkthrough requests
the self-managed system to return state information, enabling the imitator participant to
understand the systems internal management state. The target participant may agree to the
request and reply with the relevant information or refuse the request.

80

4.6 Open Meta-level Interaction Protocol (OMIP)

Requester Requestee

Request Capabilities

Return Capabilities

Reflect Request Action - State

Result (Agree | Refuse)

Reflect
Request Action - Adaptation

Result (Agree | Refuse)

Figure 4.5 OMIP participant interaction sequence

4. Request Action - Adaptation – The second request action command in the sequence asks
the system to perform an adaptation supported within its capabilities advertisement. The
target participant may agree to the request and perform the adaptation request or refuse the
request.

4.6.3 Domain Specific Languages

With the ability to choreograph interactions between participants in place, the next step is to define
the content associated with these interactions. In order for two independently-developed platforms
to interact with one another, a shared common understanding of content must exist to enable
interoperability. To achieve this communication, OMIP uses Domain Specific Languages (DSL) to
describe content related to self-management operations within diverse deployment environments.
The division of languages allows the definition of highly specialised languages to describe specific
conditions within a domain. This allows OMIP to be very comprehensive in its descriptions of
domains without resulting in a bloated single language; such an approach would result in a high
cost of entry by requiring conformance to a large specification.

The use of multiple DSLs reduces the cost of entry to only the relevant DSLs that describe
the domain and its capabilities. DSLs can be defined for a number of areas such as network
connectivity, security, transactions, and notification services. The definition and format of a DSL
is a task for the interest groups of the respective domain to decide. The only requirement for a DSL
to be OMIP compatible is for it to support the core interaction commands described in Section
4.6.1. DSL designers have the freedom to define these commands in the manner that best suits
their application domain, without restriction. To facilitate further discussion two sample DSLs are
provided for the multimedia and security domains.

81

4.6 Open Meta-level Interaction Protocol (OMIP)

4.6.3.1 Multimedia-DSL

In order to provide interaction within the motivational scenario introduced in Section 4.2, a DSL
is required to describe possible multimedia capabilities within the multimedia domain. A DSL for
multimedia platforms such as the broadcast service is provided in Table 4.2. Given the range of
possible service offerings within this domain, only a subset of capabilities is included within the
DSL to maintain clarity.

Name Purpose Service Options

Media Type Type of media available Audio Only, Video Only, Audio and

Video

Encoding Format Formats in which media

can be encoded

aac, avi, mp3, mpg, ram, ogg, wav, wma

Bit Rate Quality of the encoding 28kbps, 56kbps, 128kbps, 256kbps,

512kbps

Delivery Mechanism Mechanism of deliver Streamed, Download

Table 4.2 Sample multimedia domain specific language

With the use of this Multimedia-DSL it is possible for a platform to describe the adaptations
it can perform.

Name Available Service Options

Media Type Audio Only

Encoding Format aac, mp3, ogg, wav, wma

Bit Rate 28kbps, 56kbps, 128kbps, 256kbps, 512kbps

Delivery Mechanism Streamed, Download

Table 4.3 Sample multimedia service definition in Multimedia-DSL

A sample service description is provided in Table 4.3. This service definition details possible
adaptations available from the service. With this information, a participant can request changes
to the format/compression and delivery mechanism of a particular audio source provided by the
service. With the definition provided in Table 4.3, audio can be requested as a 128kbps MP3
encoded stream.

4.6.3.2 Security-DSL

The next example presented is a DSL to describe the security domain for user authentication and
encryption protocols. Again, for the sake of clarity, only a minimal DSL is described and a public
key infrastructure is assumed to be in place. Table 4.4 details the Security-DSL.

The Security-DSL allows a platform to describe the security protocols it supports, Table 4.5
provides a sample service description.

Using this service description it is possible to request authentication to be achieved using EAP
with a SHA-1 hash, and for information to be encrypted using AES and sent using the SSH

82

4.6 Open Meta-level Interaction Protocol (OMIP)

Name Purpose Service Options

Authentication Protocol Authentication options RADIUS, S/Key, TACACS, CHAP,

Kerberos, IPSec (AH), EAP

Hashing Algorithm Optional hashing algorithm

used with authentication pro-

tocol

MD5, SHA-1

Encryption Protocol Protocol for encryption CIPE, SSL, SHTTP, SSH, SSH2, IPSec

Encryption Cipher Cipher used with encryption

protocol

Triple DES, RC4, RC5, AES, IDEA

Table 4.4 Sample security domain specific language

Name Available Service Options

Authentication Protocol Kerberos / IPSec (AH) / EAP

Hashing Algorithm MD5, SHA-1

Encryption Protocol SSL / SHTTP / SSH

Encryption Cipher Triple DES / RC4 / RC5 / AES

Table 4.5 Sample security service definition in Security-DSL

protocol. DSL’s can be used in conjunction with one another to describe different aspects of a
service, for example the Security-DSL could be used with the Multimedia-DSL to describe a secure
multimedia broadcast service. With the semantic of the DSL agreed, the next step is to define the
message format.

4.6.4 OMIP Message Definition Format

The definition of a message format for OIMP must be semantically well-grounded and universally
understood by all participants. The responsibility for message definition rests with the designers
of the DSLs, providing flexibility for the authors of these languages to choose the format which
best suits their domain. To demonstrate the process of creating a message format the remainder of
this section defines one for the Multimedia-DSL. When defining a message format for a DSL two
key factors must be considered; the medium in which messages are expressed and the definition of
the DSL representation within this medium.

4.6.4.1 Message Medium

The choice of medium for message expression is an important one. The medium must be suitable
to convey the interaction commands and express related information. The multimedia domain is a
diverse one, with many media formats and technologies available across heterogeneous platforms.
In order to enable an open exchange of information between such systems, the representation
format becomes key to a successful transference.

Within the Enterprise Application Integration (EAI) and Business-to-Business (B2B) domains,
XML has proved very successful as a means to bridge heterogonous systems. XML is a popular

83

4.6 Open Meta-level Interaction Protocol (OMIP)

medium for the exchange of information within heterogeneous environments. XML would also pro-
vide an ideal format to bridge diversity within the multimedia domain by providing a standardised
medium for the expression of infrastructure. With the medium for message chosen the next step
is to define how the DSL will be expressed within the XML medium.

4.6.4.2 Multimedia-DSL Definition

The definition of the Multimedia-DSL in XML is a straightforward process of expressing the DSL
in an XML document. Two key steps map the DSL in XML:

• Define interaction commands

• Define associated content for commands

Interaction commands are available in two forms, standalone commands and commands with
nested content related to the command. Standalone commands are simple to define as they need
only convey the requested actions and contain no additional content. An example of a standalone
command is the request capabilities command. The second type of command contains related
information such as a request for a particular multimedia service. The body of these commands
must convey the details of the request. A sample of both command types for the Multimedia-DSL
is provided in Table 4.6. A full XML schema definition of the Multimedia-DSL is provided in
Appendix B.

(a) Request Capabilities

<Multimedia-Capability-Request/>

(b) Reply Capabilities

<Multimedia-Capability-Reply>}
 <ServiceDescription media="audio_only" encodingFormat="mp3 ogg wav"
 bitrate="128kbps 256kbps 512kbps" deliveryMechanism="download"/>
 <ServiceDescription media="video_only" encodingFormat="ram avi"
 bitrate="512kbps" deliveryMechanism="stream"/>
</Multimedia-Capability-Reply>

Available services

(c) Request Action (Service Adaptation)

<Multimedia-Service-Request >
 <ServiceRequest requestID="1" media="audio_only" encodingFormat="wma”
 bitrate="128kbps" deliveryMechanism="download"/>
</Multimedia-Service-Request>

Service request

(d) Reply Action (Service Adaptation)

<Multimedia-Service-Reply>
 <ServiceReply requestID="1" response="accept" URL="http://url"/>
</Multimedia-ServiceReply>

Reply to request

Table 4.6 Multimedia DSL sample interaction command definitions

With the use of this XML-based definition of the Multimedia-DSL, two independently developed
multimedia systems are able to interact with one another requesting information and actions from
the other.

84

4.7 Summary

4.6.5 ARMAdA – A Sample Participant Architecture

With the OMIP mechanism in place, open interactions are possible between self-managed systems
where each participating entity (platform, system, service, etc.) is part of a community (group).
Utilising this capability will require a rethink in the design of self-managed systems. The OMIP
does not attempt to describe how to implement a self-managed participant, nor does it attempt to
specify the internal architecture of a participant. To initiate discussion on the design and imple-
mentation of OMIP provision within a self-managed system a sample OMIP enabled architecture
is presented.

The Adaptive and Reflective Middleware Abstract Architecture (ARMAdA) is a conceptual
view of how self-managed systems can interact with one another. ARMAdA is a suggestion of how
such a system may be constructed. The sample architecture, illustrated in Figure 4.6, builds on a
traditional reflective implementation of a base-level controlled by a meta-level.

OMIP Inbox

Incoming OMIP
Requests

Language
Repository

Base-Layer

Meta-Layer

ARMAdA-Layer

Interaction Rules

Instruct Adaptations

OMIP
Replys

Figure 4.6 Sample ARMAdA compliant architecture

The novel element of this sample architecture is an additional layer on top of the meta-level.
This new layer handles OMIP interactions for the participant, acting as a gateway to the platforms
meta-level. The ARMAdA-layer consists of an Inbox, a Language repository, and a description of
the capabilities offered by this platform. With these three elements, the system is able to perform
all the basic interaction needed to participate within a self-managed environment. The ARMAdA
architecture illustrates an approach to implement a new OMIP platform as well as a mechanism
to retrofit OMIP capabilities on a legacy system.

4.7 Summary

Interoperability between adaptive and reflective platforms is an important next step in the de-
velopment of self-managed systems. This chapter presents the vision of coordinated self-managed
systems and introduces the Open Meta-level Interaction Protocol (OMIP) that uses a minimal set

85

4.7 Summary

of interaction commands to enable interaction between self-managed systems.
The OMIP defines self-managed capabilities with the use of Interaction Commands (IC) and

Domain Specific Languages (DSL). These languages allow the creation of highly specialised de-
scriptions for each domain, allowing the OMIP to be very comprehensive in its descriptions of
environments without resulting in a bloated single language.

86

Chapter 5

Definition of GenerIc

Self-management for

Message-Oriented middleware

This chapter introduces GISMO, a generic portable Meta-level for Message-Oriented Middleware
platforms. The chapter covers the challenges and solutions involved with the design of the meta-
level, including the process used to identify common MOM elements for inclusion within the
meta-level.

5.1 Introduction

The motivation for a MOM meta-level is to “open-up” the internal dynamics of a MOM provider,
enabling the provider to be self-managed at runtime. Towards this objective, a meta- level is first
defined to represent and track the state, operations, and events that exist within a MOM. The
process of creating the meta-level is broken down into the following steps:

• Identify generic MOM elements for inclusion within the meta-level

• Enable portability of the meta-level between base-levels

• Design the meta-level

With the meta-level in place, the next step is to empower it with OMIP support by defining
a DSL for the meta-level. This chapter covers the challenges posed with these tasks and their
solutions. The first task discussed is the identification of generic MOM behaviour and state.

5.2 Identification of Generic MOM Elements

To define a generic MOM meta-level the fundamental elements of a MOM need to be identified.
This includes the participants, behaviour, and state of a MOM. Once defined, these elements will be
used as the building blocks for the meta-level. Given the large number of MOM implementations
available, the task of identifying commonalities is a highly complex and time-consuming one.

87

5.2 Identification of Generic MOM Elements

However, a relevant standardisation effort exists in the form of the Java Message Service (JMS)
specification [78].

The JMS specification defines a generic client-oriented interface for MOM interaction; it is
feasible to assume that for every action (interface or method) within this specification, there is a
corresponding action within the MOM implementation. The fact that the JMS specification does
not force any internal provider implementation is one of the main reasons it is a widely supported
format for MOM interaction. For this reason, the specification is a core information source used
to derive common MOM elements. The examination starts with the identification of participants
within a MOM interaction.

5.2.1 MOM Participants

Message

Consumer

MOM Client-side

Destination..Destination

MOM Server-side

Message

Producer

Figure 5.1 Participants within a MOM interaction

When examining a typical MOM deployment, illustrated in Figure 5.1, the key actors partic-
ipating within a MOM interaction are MOM clients and the MOM provider/server. The role of
the MOM provider is to offer messaging services to MOM clients. Given its central role, it is only
natural the provider-side of the deployment is the main source of information for the meta-level;
however, the client-side will also make a significant contribution to the meta-level. Note that the
separation between actors in this deployment is logical, not physical. These roles are suitable to
describe both federated and centralised MOM deployments.

A number of interdependencies exist between the client and provider, including provider specific
libraries used by the client and configuration information. A client can also be semantically coupled
to the configuration of the messaging constructs of a specific provider, such as a destination hierar-
chy or destination-naming schema. Even with these dependencies, both client and provider should
be treated as independent entities and this separation must be recognised within any meta-level.
With generic MOM participants identified, the next step is to examine their actions to identify
common behaviour.

5.2.2 MOM Behaviour Identification

MOM participant behaviour is broken down along two lines, messaging behaviour and administra-
tion behaviour.

88

5.2 Identification of Generic MOM Elements

5.2.2.1 Messaging Behaviour

Messaging behaviour is classified as any activity that involves the transportation of messages
between a message producer and consumer. The goal of this section is to identify a generic interface
for a MOM. There are four key interactions associated with using a MOM [57, 78, 81, 86, 87].

Action Description

SEND Send a message to a specific queue.

RECEIVE (BLOCKING) Read a message from a queue. If the queue is empty, the call will

block until it is non-empty.

RECEIVE

(NON-BLOCKING POLL)

Read a message from the queue. If the queue is empty, do not

block.

LISTENER (NOTIFY) Allows the message service to inform the client of the arrival of

a message using a callback function on the client. The callback

function is executed when a new message arrives in the queue.

Table 5.1 General MOM API interface

These actions, described in Table 5.1, reveal the core actions of a MOM. A survey detecting the
presence of these capabilities within popular MOM implementations is available in Table 5.2. This
survey shows that all MOM providers have the ability to receive a message using a listener, and
also 7 out of 10 implementations can receive a message using a blocking or non-blocking receive
command. The results of this survey reinforce the generality of the interface described in Table
5.1.

MOM Name Send Receive
(Blocking)

Receive
(Non-Blocking Poll)

Listen
(Asyn)

CORBA Event Service Yes Yes Yes Yes

CORBA

Notification Service

Yes Yes Yes Yes

OpenJMS Yes Yes Yes Yes

ActiveMQ Yes Yes Yes Yes

SonicMQ Yes Yes Yes Yes

SIENA Yes No No Yes

TIBCO Rendezvous Yes Yes Yes Yes

REBECCA Yes No No Yes

Hermes Yes No No Yes

WebSphere MQ (for-

merly IBM MQ Series)

Yes Yes Yes Yes

Table 5.2 Survey of MOM messaging capabilities

Developments within MOM platforms have evolved their capacity to include publish/subscribe
capabilities. Within the publish/subscribe paradigm the concept of a subscription is used to define

89

5.2 Identification of Generic MOM Elements

the type of messages received by a message consumer [78, 87], this ability extends the core actions
of a MOM provider with the additional subscription centric actions:

• Create Subscription – The ability to express a subscription

• Delete Subscription – The capability to remove a subscription

All MOM providers with publish/subscribe capabilities support these actions. Combining the
generic actions described in Table 5.1 with these publish/subscribe actions would produce a generic
messaging interface1 to a MOM platform. With the messaging behaviour identified, the next step
is to identify behaviour relating to the administration process of a MOM.

5.2.2.2 Administration Behaviour

Administration behaviour encompasses any activity related to the configuration or management
of the infrastructure used to exchange messages between consumers and producers. Very little
standardisation is provided for the definition of administration capabilities within a MOM. The
JMS [78] specification does not define any administration capability or administration interface
for a JMS provider or its destinations. Given the proprietary nature of administration interfaces
within MOM providers, the identification of generic administration behaviour is an important step
in the definition of a MOM meta- level.

To achieve this objective, common administration tasks must be identified. The diversity of
MOM implementations requires the survey to be performed at an appropriate level of abstraction
to identify similar capabilities. With this in mind, the key capabilities sought within the survey
centre on destination administration:

• Create Destination – An ability to create a destination within the MOM

• Update Destination – A capacity to reconfigure a destination

• Delete Destination – The ability to delete a destination within the MOM

The results of the survey are provided in Table 5.3. The survey revealed that of the MOM
platforms which posses the concept of a destination:

• All posses the ability to create a destination

• Four contain the ability to reconfigure a destination

• All except one posses the ability to delete a destination

The survey shows that these three capabilities are commonly found within MOM implementa-
tions and provide a good foundation for the creation of a generic MOM administration interface.

With the basic behaviours of a MOM in place, the focus turns to identifying generic state
associated with MOM implementations.

1 This interface is compliant with the JMS specification. Indeed, this may have well been the same process used
to create the specification.

90

5.2 Identification of Generic MOM Elements

MOM Name Create
Destination

Update
Destination

Delete
Destination

CORBA Event Service Yes No Yes

CORBA Notification Service Yes Yes Yes

OpenJMS Yes No Yes

ActiveMQ Yes No No

SonicMQ Yes Yes Yes

SIENA - - -

TIBCO Rendezvous Yes Yes Yes

REBECCA - - -

Hermes - - -

WebSphere MQ

(formerly IBM MQ Series)

Yes Yes Yes

Table 5.3 Survey of MOM administration capabilities

5.2.3 MOM State Identification

The final element identified for the generic meta-level is MOM state. The objective of this task
is to identify MOM state that would be useful within a self-management context. In particular,
information that is not readily available in a standardised manner, such as via the JMS specification
[78], is of immense benefit. Similar to the division used to identify MOM behaviour, MOM state
can also be categorised into messaging state and administration state.

5.2.3.1 Messaging State

Messaging state is any information related to messaging activity. A major source of information
within this category are the messages transported via the MOM. However, messages are not con-
sidered as suitable candidates for inclusion within the meta-level since they are readily available
with the use of destination browsing specified within the JMS specification.

Within message centric systems, client demands are an important metric used to define current
operating requirements. An accurate representation of such information would be invaluable to
correctly gauge demands within the operating environment. With this in mind, the following states
related to subscribers and message consumers have been identified:

• Destination Name - The destination associated with this subscriber/consumer

• Filter/Selector State

– Attribute Name - Attribute identifier

– Operator - Logical comparison operator used

– Value - State used in comparison

91

5.2 Identification of Generic MOM Elements

MOM Name Destination
Name

Filter
Attribute Name

Filter Operator Filter Value

CORBA

Event Service

Yes - - -

CORBA

Notification Service

Yes Yes Yes Yes

OpenJMS Yes Yes Yes Yes

ActiveMQ Yes Yes Yes Yes

SonicMQ Yes Yes Yes Yes

SIENA - Yes Yes Yes

TIBCO Rendezvous Yes Message subject

only

Subject-based ad-

dressing operators

-

REBECCA - Yes Yes Yes

Hermes - Yes Yes Yes

WebSphere MQ

(formerly IBM MQ

Series)

Yes Yes Yes Yes

Table 5.4 Survey of MOM messaging state

The survey in Table 5.4 revealed that all MOM platforms that utilise a destination-like construct
use a destination name to receive messages. All platforms that provided filtering capabilities
contain the three filter states with the exception of TIBCO, which uses a form of subject routing
that does not utilise a comparison value within the filter. The messaging state identified provides
a very useful abstraction for the tracking of client demands across multiple MOM providers. The
next step is to identify information related to the administration process.

5.2.3.2 Administration State

To maintain consistency, the identification of administration state follows the same abstractions
used to identify administration behaviour by concentrating on the administration of destinations
within a MOM. Therefore, the identification process of administration state involves pinpointing
any state associated with destination administration behaviour. A survey of MOM administration
capabilities sought the existence of the following state:

• Destination Name – A name associated with the destination

• Destination Type – The category of the destination (including queue, topic, and journal)

The results of the survey, available in Table 5.5, shows that for all systems utilising a destination
abstraction, a name is associated with it. In addition, only two systems do not support multiple
destination types.

Both messaging and administration state provide valuable information on the current configu-
ration and environmental demands experienced by the MOM. As such, any worthwhile meta-level
must capture this information. With the generic elements of a MOM meta-level identified, the

92

5.3 Designing a Portable Meta-Level

MOM Name Destination Name Destination Type

CORBA Event Service Yes No

CORBA Notification Service Yes No

OpenJMS Yes Yes

ActiveMQ Yes Yes

SonicMQ Yes Yes

SIENA - -

TIBCO Rendezvous Yes Yes

REBECCA - -

Hermes - -

WebSphere MQ (formerly IBM MQ Series) Yes Yes

Table 5.5 Survey of MOM administration state

next task is to examine the portability of the meta-level over multiple proprietary base-level MOM
implementations. It is important to consider portability issues first in order to incorporate any
useful design approaches into the ground-up design of the meta-level.

5.3 Designing a Portable Meta-Level

Traditional approaches to the development of a meta-level normally result in a tight coupling to the
base-level. This work requires a meta-level to be portable between multiple base-levels. Generic
portability presents a number of challenges for meta-level development. This section examines cur-
rent approaches to meta-level design to highlight how facilitating portability requirements prompt
a rethink in meta-level design and construction.

5.3.1 The Role of a Meta-Level

The meta-level of a system has a number of roles and responsibilities, however three key roles are
desired:

• Information – The meta-level is responsible for maintaining information on the base-level’s
current state and the operational conditions experienced within its environment.

• Examination – The meta-level must provide an ability to access state information and perform
relevant examinations on it.

• Realisation – The meta-level must be capable of altering the state information and updating
the base-level to express these changes.

These meta-operations are key to providing an effective meta-level and are present within most
current meta-levels including Open ORB [7], dynamicTAO [8], and K-Components [27].

93

5.3 Designing a Portable Meta-Level

5.3.2 Monolithic Meta-Level Design

With respect to the meta-operations identified, current meta-levels have taken a monolithic ap-
proach to their provision. Current implementations of self-managed systems utilise an approach
using single objects or a crosscutting collection of objects to fulfil these meta-operations. This
approach is illustrated in Figure 5.2 as a single object containing information, examination, and
realisation operations. The example operations within this class diagram are taken from the Open
ORB architectural meta-model1.

get_obj_graph() : ObjectGraph

Architectural Meta-Model

+get_internal_components() : IDSeq

+get_style_rules() : RuleSeq

+get_arch_style() : ArchStyle

+insert_component(In OpenORB::RepositoryId

new_comp_type, in Name new_comp_name,

in InsertLocation location) : Void

State

+remove_component(In ID comp_id, In

LBindSeq rebind_mapping) : Void

+replace_component(In ID old_comp_id, In

Name new_comp_name, In

OpenORB::RepositoryId new_comp_type) :

Void

Realisation

+get_obj_graph() : ObjectGraph

+get_symbiotic_constraints() : SymbioSeq

+get_bound_components(In ID comp_id) :

BoundComponentSeq

Analysis

Figure 5.2 A monolithic meta-level design

5.3.2.1 Information

The one area where concern separation exists within current meta-levels is in the division of
meta-information into multiple models. A number of projects have been developed that divide
information concerns into multiple meta-models. For example, OpenCOM (Open ORB) separates
the information between architecture, interface, interception, and resource models. Such division
is very beneficial and simplifies meta-level interaction. Typically, this is the only dimension in
which concerns are separated within a monolithic meta-level; other concern dimensions, such as
meta-operations, are incorporated within the model.

5.3.2.2 Examination

Within a monolithic meta-level, the examination operations of the meta-level are included within
the same objects as the meta-information and benefit from the division of information concerns.
However, as the number of models increases with ever more-complex systems modelled, the com-
plexity of the examination process will also increase. The need to consult multiple models to
take a particular snapshot of the system will not only amplify the complexity of the meta-level
interface, i.e. the Meta-Object Protocol (MOP), but also increase the effort required to construct

1 This is a sample class used to illustrate the monolithic approach to meta-level design.

94

5.3 Designing a Portable Meta-Level

and analyse system snapshots. With such an approach, the MOP of a monolithic meta-level can
quickly become bloated, complex, and difficult to manage and understand.

5.3.2.3 Realisation

Similar to the benefits obtained by the examination process, the division of information concerns is
also beneficial to the realisation meta-operation. Within the monolithic approach, the same objects
that contain the information and examination concerns perform ratification of the meta-level. Cur-
rent meta-levels have only been required to realise changes to a single base-level implementation,
in the case of Open ORB a single ORB implementation. A monolithic meta-level is tightly coupled
to its base-level implementation, reducing the portability of the meta-level between alternative
base-levels.

A requirement of this research is to produce a meta-level that is portable across multiple base-
levels. While one cannot avoid the work required to ratify a meta-level to its base-level or the
work required to examine the meta-level, some benefit can be achieved with a further separation
of concerns along the meta-operation dimension within the meta-level.

To assist in the design of meta-levels that meets these challenges, a separation of concerns
similar in spirit to the Model-View-Controller (MVC) design pattern is proposed for meta-operation
concerns within a meta-level. Before discussing this new separation, a brief summary of the MVC
design pattern is presented.

5.3.3 The Model-View-Controller Design Pattern

User interaction within Smalltalk-80 centres on a framework known as Model-View-Controller or
MVC. This design pattern, illustrated in Figure 5.3, allows for the decomposition of an applications
interface into three parts: the model, the view, and the controller.

Display

Controller

Model View

Notifications

Keyboard
Mouse

User InteractionApplication Infrastructure

Figure 5.3 The Model-View-Controller (MVC) design pattern

95

5.3 Designing a Portable Meta-Level

“The model contains the core functionality and data. Views display information to the user.
Controllers handle user input. Views and controllers together comprise the user interface. A
change-propagation mechanism ensures consistency between the user interface and the model”
[112].

By separating the three elements of GUI interaction, the system is more competently able to
cope with changes.

• Isolation of the data within the Model makes it independent from:

– How it is viewed/rendered for the user

– User input behaviour

• The View presents information contained in the model to the user. Multiple views of the
model are possible to provide alternative representations of the model. The number and type
of views will not affect the model.

• Controllers receive user input or commands to alter the model. The controllers contain the
logic to alter the model. Any view that allows the model to be altered will use a controller to
perform the relevant changes. Controllers may be general to all views or may be associated
with a specific view.

5.3.4 Meta-State Analysis Realisation (M-SAR) Design Pattern

Motivated by the mobility challenges faced by a portable meta-level, the Meta-State Analysis Re-
alisation (M-SAR) design pattern proposes a new separation of concerns along the meta-operation
dimension within a meta-level. Inspired by the MVC design pattern, successfully used to simplify
ever-increasing complexity with user interaction, M-SAR separates the three main operations of
a meta-level, information, examination, and realisation, into distinct encapsulated entities. The
proposed restructuring of the meta-level is presented in Figure 5.4.

With this approach the meta-level is broken into three parts, decomposing the meta-level into
the following entities:

• State – Similar to the model objects within MVC these objects only contain meta-information
in order to separate it from the realisation and examination procedures.

• Analysis - Examination of meta-state is performed within analysis objects. These entities
have the responsibility to construct/render views of the meta-state from a particular snap-
shot. There is no restriction on the composition of analysis objects; they may be created
using a mixture of information from multiple state objects. Analysis objects may also per-
form computations on the meta-state and augment it with additional information, allowing
for a highly customised analysis of the meta-level.

• Realisation - The final part of the pattern covers the realisation meta-operation. Realisation
entities are responsible for the ratification of the meta-level to the underlying base-level. The
realisation process requires direct interaction with the base-level; as such, realisation objects
are tightly coupled to a specific base-level. However, these objects encapsulate this base-level
interaction coupling and decouple the rest of the meta-level (state and analysis objects) from

96

5.3 Designing a Portable Meta-Level

Monitoring
Inspection

Realisation

State Analysis

Norifications

Adaptation
Requests

Meta-Level InteractionMeta-Level Infrastructure

Figure 5.4 The Meta-State Analysis Realisation (M-SAR) design
pattern

the base-level. Multiple realisation objects may be used to ratify the meta-level to a variety
of base-level implementations.

The M-SAR design pattern is a vital tool in the design of portable meta-levels. The benefits
of the M-SAR design pattern are discussed in the next section.

5.3.5 Benefits of a Separated Meta-Model Design

The main barrier to the portability of a meta-level is the ratification process. This part of the meta-
level is tightly coupled to the base-level. Insulating as much of the meta-level from the realisation
process produces a more controlled, looser coupling between the meta-level and underlying base-
level. The M-SAR design encapsulates base-level interaction to minimise the changes required to
replace the base-level implementation.

Within reflective systems, information analysis is paramount to directing meaningful and pos-
itive changes to the base-level; a successful adaptation is dependant on the quality of information
available. As systems are modelled in more detail, the complexity of meta-levels and their exami-
nation will also increase. The use of multiple models within an examination can lead to inter-model
dependencies that promote poor encapsulation. Analysis entities within the M-SAR pattern en-
capsulate the examination process within specific objects. This separation improves encapsulation
within the meta-level, reduces the size of the basic MOP, and enables the creation of highly spe-
cialised views of the meta-level to describe specific parts of the system. This approach allows for
comprehensive environment descriptions, without creating a bloated single-object interface (MOP).

The monolithic meta-level design discussed in Section 5.3.2 is recast using the M-SAR de-
sign pattern. The resulting meta-level is illustrated in Figure 5.5. Within this new design, the
state, analysis, and realisation meta-operation concerns are separated into independent objects,

97

5.4 GISMO: GenerIc Self-management for Message-Oriented middleware

simplifying the interface to the meta-level and reducing coupling between concerns.

Architectural Analysis

Meta-Model

+get_obj_graph() : ObjectGraph

+get_symbiotic_constraints() : SymbioSeq

+get_bound_components(In ID comp_id) :

BoundComponentSeq

Architectural State

Meta-Model

+get_internal_components() :

IDSeq

+get_style_rules() : RuleSeq

+get_arch_style() : ArchStyle

Architectural Realisation

Meta-Model

+insert_component(In

OpenORB::RepositoryId new_comp_type,

in Name new_comp_name, in

InsertLocation location) : Void

State

+remove_component(In ID comp_id, In

LBindSeq rebind_mapping) : Void

+replace_component(In ID old_comp_id,

In Name new_comp_name, In

OpenORB::RepositoryId new_comp_type)

: Void

RealisationAnalysis

Figure 5.5 An M-SAR based meta-level design

5.4 GISMO: GenerIc Self-management for

Message-Oriented middleware

The GenerIc Self-management for Message-Oriented middleware (GISMO) has been defined to
provide a general-purpose meta-level that can be applied to a number of MOM providers. GISMO
represents the generic participants, behaviour, and state identified for MOM within Section 5.2.
The GISMO meta-level, illustrated in Figure 5.6, separates concerns along two dimensions, in-
formation concerns and meta-operation concerns. Information concerns are separated into three
distinct sub meta-models covering destinations, subscriptions, and interception. The meta-level
also contains an event model and reflective engine. The design of each sub meta-model uses the
M-SAR design pattern to provide separation of meta-operation concerns. The remainder of this
section examines each of these sub-models in detail, covering their state, analysis, and realisa-
tion processes. Before examining each of the sub-model, the roles of MOM participants are first
discussed.

5.4.1 Client and Provider Roles

A central objective of a meta-level is to provide additional information on the operations of a
base-level. Within the MOM domain, the two participants of the base-level are MOM clients
and the MOM provider. While these two participants are independent of one another, they both
contain vital information to the make-up of a useful meta-level. With this in mind, GISMO offers a
meta-level that incorporates both the MOM client and provider. Using this approach, neither the
client nor provider will be able to construct an entire GISMO meta-level without coordinating with
one another. This unified approach enables a streamlined modelling of a MOM deployment and
promotes the exchange of information and coordination between clients and providers. Exchange
of meta-level information can be achieved with the use of OMIP introduced in Chapter 4; further
information on OMIP support within GISMO is available in Section 5.5.

The core of the GISMO meta-level exists on the provider. In a typical MOM deployment, the
provider is assumed to fully implement its side of a GISMO meta-level. While it is possible for

98

5.4 GISMO: GenerIc Self-management for Message-Oriented middleware

Figure 5.6 The GISMO abstract meta-level design

a client to interact with a provider that does not posses a GISMO meta-level, the capabilities of
a client-side only meta-level are limited. However, unlike providers, clients have a choice of three
levels of compliance:

• Non-Compliance - A traditional client that does not possess a meta-level.

• Minimum Compliance - The most basic level of compliance requires a client to inform the
provider meta-level of its actions. Given that GISMO is designed to sit upon an underlying
MOM implementation, client notifications are vital for the provider meta-level to be aware
of the workings of the base-level.

• Full Compliance - A client that fully implements the client-side elements of the GISMO
meta-level and provides support for open access to its meta-level via OMIP.

The following sections examine the sub-models within the GISMO meta-level, as each of these
meta-models is discussed its relevance to the client or provider-side is highlighted.

5.4.2 Destination Meta-Model

The first sub-division within GISMO is the Destination meta-model. Destinations are the mech-
anism used for information exchange within a provider and a destination model is vital to the
understanding of a provider’s internal structure.

5.4.2.1 State

The model used to track destination state is the Destination State Model (DSM). In its basic form,
the DSM tracks the existence and basic configuration of a destination. The basic unit of storage
with the DSM is the Destination structure. This standard structure for destination state storage
contains basic information about individual destinations, the information tracked in this structure
is:

99

5.4 GISMO: GenerIc Self-management for Message-Oriented middleware

• Destination ID – A unique identifier for the destination

• Destination Name – The name associated with the destination

• Destination Type – Is the destination a queue of a topic

• Destination Routing Condition – The routing restrictions, if any, are placed on messages in
the destination

The destination structure tracks information on either a queue or topic. If the destination
forms part of a destination hierarchy, additional information needs to be captured by the DSM to
track the intimate interconnected relationships between destinations within a hierarchy.

State on an individual hierarchy is stored within the Hierarchy structure; this simple structure
contains a link to the root destination of the hierarchy and the collection of nodes within the
hierarchy.

• RootNode – The root HierarchyNode of the hierarchy

• Nodes – The collection of HierarchyNodes for this hierarchy

Destinations within the hierarchy need to store additional relationship information. The Hier-
archyNode achieves this by extending the basic DSM with the following relationship information:

• ParentNode - The parent of this node, if any

• ChildNodes - The children of this node, if any

These two entries connect to other HierarhcyNode structures to allow the formation of a larger
interconnected hierarchical structure to enable the modelling of destination hierarchies. This con-
cept is illustrated in Figure 5.7.

Node B

Children

Node A

Children

Node E

Parent

Children

Node D

Parent

Children

Node C

Parent

Children

Parent

Parent

Figure 5.7 A destination hierarchy example

The DSM stores both Destination and Hierarchy structures within two groupings:

100

5.4 GISMO: GenerIc Self-management for Message-Oriented middleware

• Single Designations – Collection of destination structures (Queues or Topics)

• Destination Hierarchies – Collection of Hierarchies with embedded HierarchyNode structures
(Topics in a Hierarchical Namespace)

With the use of these structures, the destination meta-model has the capability to represent
relevant information for destination constructs within a MOM.

5.4.2.2 Analysis

The role of meta-analysis modules within GISMO is to provide an encapsulated method of exami-
nation, allowing highly specialised views of the meta-level to describe specific parts of the system.
There is no limitation on the type of analysis performed within these modules. Modules obtain
their information from one or more meta-state models and may gather additional information from
injecting monitors at specific locations using the interception meta-model. To demonstrate these
principles a selection of sample meta-analyses is presented for each sub-model.

Destination Search Analysis
The Destination Search Analysis (DSA) is a basic analysis designed to search the destination

meta-model for the existence of a specific destination. The DSA illustrates how analysis entities
can perform simple examinations of a meta-level. The analysis contains the following operation:

• DestinationSearch(String destinationName)

This analysis supports the use of wildcard to find similar named destinations, i.e. “Ed*” would
return the destinations “EdInbox” and “EdDeleted”.

5.4.2.3 Realisation

The primary rationale for meta-realisation objects is to encapsulate interaction with the base-level
of the system. With this encapsulation in place, it is possible to change the base-level implemen-
tation while limiting changes to these objects. A standardised interface for meta-realisation would
further simplify base-level interaction. With such an interface in place, base-levels are swappable
without any disruption to the meta-level.

The central meta-realisation within GISMO is the Destination Administration Realiser (DAR).
The DAR is responsible for making changes to the destination model and realising these changes
to the underlying MOM provider. The DAR allows the creation, updating, and deletion of des-
tinations and destination hierarchies (at both the hierarchy and hierarchyNode level). The basic
DAR has the following operations:

• CreateDestination(DestinationModel destModel

• UpdateDestination(DestinationModel currentDestModel, DestinationModel newDestModel)

• DeleteDestination(DestinationModel destModel)

5.4.2.4 Client-side/Provider-Side Notes

Within a MOM deployment, destinations are located in the provider. The logical location of
the DMS is the server meta-level. The destination meta-level may be accessed from the client
meta-level with the use of OMIP.

101

5.4 GISMO: GenerIc Self-management for Message-Oriented middleware

5.4.3 Subscription Meta-Model

The second information concern separation within the meta-level is used to track message con-
sumers. Message consumers are the main force that defines the current operating requirements
and workload within a MOM environment; as such, the Subscription meta-model is an important
source of information for obtaining the current operational demands of the MOM.

5.4.3.1 State

The Subscription State Model (SSM) is a state-model designed to contain information on client
usage within a MOM. The objective of the SSM is to monitor client activity by tracking the
subscription details of message consumers. The basic model tracks the following subscription
details:

• Subscriber ID – Unique identifier for this subscription

• Destination Name – Identifier of the destination associated with this subscription

• Filter/Selector State (collection)

– Attribute Name - Attribute identifier

– Operator - Logical comparison operator used

– Value - State used in comparison

Potentially, the model could be expanded with information in a number of areas such as client
configuration, connection configuration (durability or transactional settings), and subscription his-
tory. Additionally, the model may also cover information specific to a JMS provider or application
domain, such as mobile or ubiquitous environments. However, within the scope of this work, the
SSM tracks only basic subscription information.

5.4.3.2 Analysis

Examination of the subscription meta-model offers a great deal of potential for constructing snap-
shots of the provider’s currents environmental conditions. As an illustration of the benefits of
multi-model analysis, the Destination Subscription Analysis is presented.

Destination Subscriptions Analysis
The Destination Subscription Analysis performs an examination of the subscribers to a specific

destination by combining information from the Destination and Subscriber state-models. This
simple correlation of information contained directly within the two models reveals the number of
subscribers for a specific destination.

• SubscriberCount(DestinationModel destModel) – Returns the total number of subscribers to
the destination

Given the close relationship between destinations within a hierarchy, the meta-analysis provides
an additional query to preserve this relationship between HierarchyNodes. This analysis reveals
the number of subscribers to a specific part of a hierarchy:

102

5.4 GISMO: GenerIc Self-management for Message-Oriented middleware

• TotalNodeSubscriberCount(HierarchyNode hierNode) - Returns total number of subscribers
to the local node and all the subscribers of its descendants

• LocalNodeSubscriberCount(HierarchyNode hierNode) - Reveals the total number of local sub-
scribers to a specific node

• ChildrenNodeSubscriberCount(HierarchyNode hierNode) - Returns the number of subscribers
to the children of the specified node

Further subscription analysis is available with the examination of subscription filters. Snapshots
of this information may be presented in a number of ways, two examples are provided to illustrate
this concept:

• DestinationFilterCount(DestinationModel destModel) - Exposes the number of filters used in
subscriptions on this destination

• DestinationCommonFilterCount(DestinationModel destModel) - Reveals the most common
filters used in subscriptions on this destination

The queries presented in this section show the freedom available for creating highly specialised
analysis. Each query type is encapsulated within its own object ensuring the basic MOP for the
overall meta-level is kept to a minimum.

5.4.3.3 Realisation

The realisation process within the subscription meta-model is unique among the sub-models of
GISMO. Message consumers maintain ownership and control over their subscriptions; as such, it
is not possible for the provider to alter a client’s subscription. This requires the realisation task to
be located within the client-side meta-level. If the provider wishes to alter the subscription meta-
state, it must request that the relevant subscription owner alters their subscription. This request
is carried out using the OMIP implementation within GISMO. Using the interaction protocol, the
realisation of the subscription meta-model is performed on the client-side of the deployment, with
the client altering their subscription. Two other actions exist within the realisation process of the
subscription meta-level, creating a new subscription, and deleting a current subscription. Both of
these methods are available to subscription owners, allowing them to update the meta-level with
their subscription activity. The complete realisation interface consists of:

• CreateSubscription(SubscriptionModel subModel)

• UpdateSubscription(SubscriptionModel currentSubModel, Subscription newSubModel)

• DeleteSubscription(SubscriptionModel subModel)

5.4.3.4 Client-side/Provider-Side Notes

The subscription meta-model is of particular interest when examined from the client/provider
divide. The model and analysis is contained within the providers meta-level, for the client to
access this portion of the meta-level it must perform an OMIP interaction with the providers
meta-level. However, since each individual client maintains ownership on their subscriptions, any
changes to the meta-level must be realised by the client. Thus, if the request is made from the

103

5.4 GISMO: GenerIc Self-management for Message-Oriented middleware

client-side of the subscription owner, the client need only inform the server of the update to its
state. However, if the server wishes to alter the meta-level is must send an OMIP request to the
client for the change. This process illustrates the need for an open interaction protocol at the
meta-level; both systems are capable of requesting information and realisations from the other.

5.4.4 Interception Meta-Model

The next information concern within GISMO is the Interception Meta-Model (IMM). This meta-
model details and tracks call-interception and functionality injection at specific locations or point
cuts within the base-level. Unlike the previous sub-models covered the IMM does not track an
internal state within the MOM, rather it provides information on the current state of interception
operations. The tracking of this information is vital within a self-managed reflective system as
interception is a flexible approach for monitoring, altering, and extending behaviour of a base-level
at runtime. For example, code may be injected to execute every time a new subscriber is added
to the system, or when a message is sent on the client.

Points of injection available within the model are located on both the client and provider-side.
An interception point is a place of execution within a system where code can be triggered to inject
functionality. A good quality injection model will identify appropriate locations for interception
points, such as destination administration, subscription administration, and message processing,
to allow functionality to be enhanced both in and out of-line with base-level execution.

5.4.4.1 State

Within GISMO, the Interception state-model is used to track information relating to interception
within the base-level. At each interception point, the state-model maintains a list of the interceptors
injected at the location. The structure used to store this information is:

• Interceptor Name – The name identifying this interceptor

• Interception Point – The interception point(s) associated with the interceptor

• Interceptor Class Name - The class defining the interceptor

• Scope – The execution scope of the interceptor

• Configuration Options – Collection of associated configuration information for the interceptor

– Option Name, Value

Interceptors must be associated with an interception scope. Interception scopes are used to
associate interceptors with specific types of call-interceptions, the following interception scopes
may be associated with a handler attached to an interception point:

• Global-Scope - System-wide (all destinations)

• Local-Scope - per destination/destination group

• Hierarchy-Scope - per branch

104

5.4 GISMO: GenerIc Self-management for Message-Oriented middleware

Global-scoped interception points are design to operate on all calls intercepted within that point
category. All globally scoped interceptors are triggered before interceptors of any other scope; the
global scoping is designed for attaching system-wide handlers such as auditing, logging, or usage
monitoring.

Local-scoped interception works on a per-destination basis, allowing interceptors to be attached
to a single destination or a group of destinations. Once a call is intercepted (message published,
subscription added, etc.) for a given destination, the interceptors attached to that destination (if
any) will be triggered. These interception points allow functionality to be added/extended at the
destination level

The hierarchy interception scope enables interceptors to be associated with a destination within
a hierarchy. Similar to local-destination interception points, hierarchy interception points work on
the principle that each branch (destination) of the hierarchy can have local interceptors associated
with it. The absolute interceptor collection for a branch consists of the local interceptors and
the absolute interceptor collection of its parent, this recursive approach to interception continues
up the tree until it reaches the root channel. This results in a very powerful mechanism for
processing messages submitted to a destination hierarchy structure. This mechanism is similar
to inheritance within object-oriented programming, where an object (branch destination) inherits
the functionality of its ancestors (parents handlers) and can augment this functionality with its
local implementation (local handlers). Scoping of interception within a hierarchy allows for the
subjective addition of interceptors throughout the hierarchy in a manner that is consistent with
ancestry relationships within the hierarchy.

As listed in Table 5.6, seven suitable interception points have been identified within a MOM
base-level, these points exists on both the client and provider.

Interception Point Injects Functionality

CreateDestination When a destination is added.

UpdateDestination When a destination is reconfigured.

DeleteDestination When a destination is deleted.

CreateSubscription When a subscription is added.

DeleteSubscription When a subscription is removed.

SendMessage When a message is sent.

ReceiveMessage When a message is received.

Table 5.6 Interception points within a MOM base-level

5.4.4.2 Analysis

The meta-analysis for the IMM is a simple query allowing the lookup of interceptors used at each
point within the framework to reveal the current interception activity at that location:

• AllInterceptors(InterceptionPoint iPoint) – All interceptors at the interception point

• GlobalInterceptors(InterceptionPoint iPoint) – Only global interceptors at the interception

105

5.4 GISMO: GenerIc Self-management for Message-Oriented middleware

point

• LocalInterceptors(InterceptionPoint iPoint, Destination destModel) – Local interceptors for
a specific scope at the interception point

With the use of this meta-analysis, it is possible to obtain an accurate snapshot of current
interception activity within the meta-level.

Interception in itself is an extremely valuable tool in the creation of meta-analyses. The use of
interception can greatly enhance the quality of the examination process, providing highly detailed
analysis that would not be possible with a state-model only approach. To illustrate the usefulness
of interception within the analysis process, a sample interception enhanced analysis is discussed.

Destination Usage Analysis
The Destination Usage Analysis illustrates how an analysis process within the meta-level can

be enriched with additional information sources. With the use of interception, a simple message-
monitoring utility called the destination profiler is inserted at the “SendMessage” interception
point on the provider-side with a global scoping. The destination profiler provides the capability
to track the message traffic of a particular or group of destinations within the provider. The profiler
may be configured to log specific information about each message that is sent to a destination,
such as message type, attribute information, sender, etc. With such information available, it is
possible to build a profile of a destination’s usage. Information recordable by the profiler includes:

• Message totals for:

– Destinations

– Hierarchies (Total, Local, Children)

• Time-base message throughputs for: (Destinations, Hierarchies)

– Hourly, Daily, Weekly, Monthly

With such a large quantity of information the storage and analysis of the profile data becomes
an issue. This analysis process can be enhanced with database access to support large volumes
of message traffic; databases also provide a powerful query language SQL that may be used to
perform analysis on the data. The encapsulation of such capabilities is a key benefit of the M-SAR
design pattern. Use of this pattern in conjunction with interception provides a powerful method
of providing highly customised analytical capabilities.

5.4.4.3 Realisation

The interception realisation process has responsibility for managing the use of interception through-
out the MOM base-level. The realisation process may not only be responsible for administrating
interception but may have a significant role in its implementation. If the MOM platform does not
provide support for interception or only provides limited support, the responsibility for the provi-
sion of interception capabilities rests with the interception realisation process. The core interface
for the Interception realisation is:

• CreateInterceptor(Interceptor interceptor)

106

5.4 GISMO: GenerIc Self-management for Message-Oriented middleware

• DeleteInterceptor(Interceptor interceptor)

When examined from the perspective of the base-level, all interceptors are assumed to be in-line
with the synchronous execution of the system. However, no limitation on interceptor implementa-
tion exists, allowing the triggering of an out-of-line asynchronous execution.

5.4.4.4 Client-side/Provider-Side Notes

The interception meta-level provides the clearest divide between the client and provider with both
entities providing independent interception meta-models. If either the client or the provider wishes
to interact with the other’s interception meta-model they must utilise the OMIP.

5.4.5 Meta-Level Event-Model

The GISMO meta-level provides a first-class event model with a range of event sources. As one
would expect from such a model, it covers all the fundamental action within the MOM environment
including messaging events, administrative events, and time-based trigger events.

Event consumers use the event model to register an interest in a specific event that may take
place within the meta-level. When the event occurs, all registered consumers are notified of the
occurrence. It is important to note that the event-model is not an in-line execution mechanism; it
simply provides an asynchronous non-blocking notification of event occurrence. In-line execution
can be facilitated using the interception meta-level. A full list of events contained in the GISMO
event model is described in Table 5.7.

Event Category Event Name Description

Destination CreateDestination Event fires when a new destination is created on

the provider.

Destination UpdateDestination Event fires when a destination is reconfigured.

Destination DeleteDestination Event fires when a destination’s configuration is

deleted on the provider.

User CreateSubscription Event fires whenever a new subscription is re-

quested by a consumer.

User DeleteSubscription Event fires when a consumer unsubscribes from

a destination.

Message SendMessage Event fires when a message is produced.

Message ReceiveMessage Event fires when a message is consumed.

Time-Triggered Start/Stop Run a task or operation between specified times.

Fires a ‘Start’ event at time A, then fires a ‘Stop’

event at time B.

Time-Triggered One-Shot Run a task or operation once. Fires a ‘Run’ event

at a specific time X.

Time-Triggered Repeat Repeat a task or operation at specific intervals.

Fires a ‘Run’ event every X.

Table 5.7 Event types within the GISMO event model

107

5.4 GISMO: GenerIc Self-management for Message-Oriented middleware

Time-triggered events within the event model are not derived from a MOM event source and
have been included to provide a simple integrated method of triggering time-sensitive tasks such
as routine maintenance or monitoring activities.

5.4.5.1 Client-side/Provider-Side Notes

Similar to the interception meta-model, the event-model also has a clear separation between the
client and provider with both possessing independent event models. Participants of client or
provider meta-level can subscribe to the event model of the other with the use of the OMIP.

5.4.6 Reflective Engine

Reflective capabilities within the GISMO meta-level are encapsulated within the reflective engine.
Present on both the client and provider-side, the reflective engine directs reflective actions within
the meta-level. The objective of the reflective engine is to define locations within the meta-level
where reflective computations may occur and to provide a standard interface for reflective policies.
This section examines the reflective engine describing its policy structure and policy call sequence.

5.4.6.1 Reflective Policies

In a similar fashion to other meta-level realisations within GISMO, the reflective meta-level contains
basic operations to add, update, and remove policies as well as simple analysis capabilities to search
the state space. The reflective meta-level contains a state model used to configure policies:

• Policy Name – The name identifying the policy

• Reflective Location – The location(s) at which the policy is invoked

• Class Name – The class defining the policy

• Scope – The execution scope of the policy

• Synchronisation – Is the policy executed ‘in-line’ or ‘out-of-line’

• Configuration Options – Collection of associated policy configuration

– Option Name, Value

Reflective policies are an encapsulation mechanism for reflective computational logic. The struc-
ture of a policy is a straightforward interface with initialisation, execution, and cleanup operations
as illustrated in Figure 5.8.

Once a policy implements this interface, it can be included within the policy repository and
used within the meta-level. Reflective policies may be associated with a number of activities within
the meta-level as detailed in Table 5.8.

Once attached to a reflective location, the next step is to decide the synchronisation of the policy.
Reflective policies may be placed both in-line with system execution for synchronous reflection or
placed out-of-line for asynchronous reflection. Similar to interceptors within the interception meta-
level, reflective policies may also be associated with a global or local destination scoping. Once in
position, reflective policies are able to perform their reflective duties utilising the full resources of
the meta-level to effect change within the system.

108

5.4 GISMO: GenerIc Self-management for Message-Oriented middleware

Figure 5.8 Reflective policy interface

Reflection Location Description

CreateDestination Triggers reflective policies when a new destination is created on

the provider.

UpdateDestination Triggers reflective policies when a destination is reconfigured.

DeleteDestination Triggers reflective policies when a destination is deleted on the

provider.

CreateSubscription Triggers reflective policies when a new subscription is requested

by a consumer.

DeleteSubscription Triggers reflective policies when a consumer unsubscribes from a

destination.

SendMessage Triggers reflective policies when a message is produced.

ReceiveMessage Triggers reflective policies when a message is consumed.

Table 5.8 Reflective locations within GISMO

5.4.6.2 Policy Call Sequence

Given the number of options that can affect the execution of a reflective policy, the exact call
sequence order for reflective policies is as follows:

• Associated event/behaviour occurrence

• Global Policies

– Global synchronous policies invoked

– Global asynchronous policies invoked

• Local Policies

– Local synchronous policies invoked

109

5.4 GISMO: GenerIc Self-management for Message-Oriented middleware

– Local asynchronous policies invoked

An illustration of this call sequence is provided in Figure 5.9.

Policy Exec

Local Policy (Syn)Global Policy (Asyn)Reflective Engine Global Policy (Syn)

Reflective Action

Invoke Global Syn Policies

Local Policy (Asyn)

Invoke Local Syn Policies

Finish Execution

Finish Execution

Policy Exec

Invoke Global Asyn Policies

Invoke Local Asyn Policies

Figure 5.9 Policy call sequence within the reflective engine

5.4.7 Extending the Meta-Level

The overall objective of GISMO is to provide a generic meta-level for MOM. The majority of MOM
implementations share common behaviours and capabilities; however, they may also contain some
form of proprietary functionality. While the basic GISMO meta-level is not intended to cover such
functionality, it can be easily extended in a controlled manner to include such functionality without
affecting core portability.

The core of GISMO covers the basic common elements of a MOM within its sub-models and
interfaces. These core interfaces and models may be extended to provide support for proprietary
MOM behaviour and state. As long as the proprietary model or interface inherits from or imple-
ments the relevant core interface or model, portability is maintained. This process is illustrated
with an example providing a SonicMQ specific extension of the destination meta-model. The core
model is extended to include proprietary information specific to the configuration for a SonicMQ
provider. The SonicMQ extension, illustrated in Figure 5.10, adds the following proprietary state
to the destination state model:

• SonicMQ General Properties

– Enable Queue Cleanup - Enable periodic checking of queues for expired messages

– Cleanup Interval - Specify the approximate time interval in seconds between successive
searches for expired messages

– Number of Delivery Threads - Number of dispatch threads used for dequeueing messages
from queues

– Maximum Temporary Queue Size - Maximum size (in KBytes) of temporary queues

110

5.5 MOM-DSL: Opening GISMO

• Destination Specific

– Save Threshold - Maximum total size in KB of messages that can reside in memory

– Maximum Size - Maximum total size in KB of en-queued messages stored

Figure 5.10 SonicMQ proprietary state model

A SonicMQ specific meta-realisation may utilise this information when creating the destination,
while a non-SonicMQ meta-realisation simply ignores this information and uses the state from the
standard GISMO destination meta-model.

5.5 MOM-DSL: Opening GISMO

The role of the Message-Oriented Middleware-Domain Specific Language (MOM-DSL) is to express
the GISMO meta-level in a medium that is transferable between participants. Using the MOM-
DSL, participants can request state and actions from a self-managed MOM platform. The objective
of this section is to give an overview of the MOM-DSL and the role it plays in opening the GISMO
meta-level. This demonstrates how the MOM-DSL expresses the GISMO meta-level and fulfils
OMIP compliance. Section 5.6 presents a number of sample MOM-DSL interactions and a full
definition of the MOM-DSL XML Schema is provided in Appendix B. Discussion starts with an
overview of the message exchange infrastructure.

5.5.1 Message Exchange Infrastructure

Before a MOM-DSL is defined, it is important to characterise the medium used to express the
MOM-DSL and the mechanism used to exchange messages between participants. The first of these
issues addressed is the medium used to express messages.

111

5.5 MOM-DSL: Opening GISMO

5.5.1.1 Message Format

The format used to express MOM-DSL messages must do so in a technology neutral manner. Given
the diversity of the MOM domain it is important that the message medium is compatible with as
many environments as possible. XML is a popular medium for the exchange of information within
heterogeneous environments and application integration scenarios. Given the standardisation and
widespread acceptance and support for XML within MOM implementations it provides an ideal
expression medium for the MOM-DSL.

5.5.1.2 Message Transport

Given that MOM provides communication services between participants, it is the ideal mechanism
for the exchange of MOM-DSL messages. Utilising the underlying MOM simplifies the task of
exchanging MOM-DSL messages and only requires the definition of relevant destinations to fa-
cilitate message exchange. Each participant needs a destination to receive MOM-DSL requests,
to meet this need the “<ParticiapntName>.GISMO.Inbox” destination may be used by external
entities to send MOM-DSL requests. Replies to a request are sent using the Reply-To field of the
message containing the request; any valid reply-to destination is acceptable including temporary
destinations.

Additional destinations may also be used to transfer MOM-DSL related information such as
event notifications. A high-level overview of the message exchange infrastructure is illustrated
in Figure 5.11. With the infrastructure of the protocol in place, the next step is to define the
MOM-DSL.

MOM Provider

GISMO

External

Particpant

Send

External

Particpant

Send Receive

SendReceive

Receive

SendReceive

Figure 5.11 MOM-DSL message exchange infrastructure

5.5.2 State Structure

Representing GISMO state within the MOM-DSL is a simple process of expressing the state models
within XML. An illustration of this process is presented in Table 5.9 using sample interceptor state.
A full listing of all XML Schema for GISMO state models is available in Appendix B.

112

5.5 MOM-DSL: Opening GISMO

<Interceptor name="Log" interceptionPoint="CreateDestination"

 className="ie.nuigalway.ecrg.chameleon.interceptor.Log" scope="">

 <Option name="message" value="Destination Created"/>

</Interceptor>

Table 5.9 GISMO interceptor state expressed in MOM-DSL

5.5.3 Available Actions

Actions from the GISMO meta-level, such as realisations and analyses, are expressed as interaction
commands within the MOM-DSL. As illustrated in Figure 5.12, the six interaction commands
within the MOM-DSL are:

• Capability Request – Interaction command used to obtain the available capabilities

• State Request – Used to retrieve meta-state

• Create – Generic command to create an entity within a meta-level

• Update – Generic command to update a meta-level entity

• Delete –Generic command to delete an entity within a meta-level

• Analysis – Utilised to obtain the results of an analysis

The three realisation commands are of particular interest as they provide generic realisation
operations for all meta-levels within GISMO. Examples of these and other commands in operation
are provided in Section 5.6 and a full XML Schema of the commands is available in Appendix B.

Figure 5.12 MOM-DSL command structure

113

5.6 Example Interactions

5.5.4 Capabilities Request

The Capability Request of the MOM-DSL is required for OMIP compliance and is not a native
part of the GISMO meta-level. The role of a capability-request is to inform a participant of its
level of access to the meta-level. As illustrated in Figure 5.13, meta-level access is broken down
along the same lines of division used for the GISMO meta-level. Access to each sub meta-model
is then broken down into specific actions for that meta-model such as state and creation requests.
This approach allows access control to be specified in a flexible granular manner. In addition,
both event and analysis capabilities may be expressed in a capability request. A sample capability
request is provided in Section 5.6 with full XML Schema detailed in Appendix B.

Figure 5.13 MOM-DSL capability reply structure

5.6 Example Interactions

The objective of this section is to provide some sample interactions using the MOM-DSL to demon-
strate how it can facilitate coordination between self-managed systems. The examples also illus-
trate how the MOM-DSL expresses the GISMO meta-level and implements the OMIP. This section
illustrates four interactions including state, update, and analysis requests. The first interaction
examined is a capability request.

114

5.6 Example Interactions

5.6.1 Request Capabilities

A capability request, see Table 5.10, within the MOM-DSL is a simple request command that
includes an optional username and password for the requester.

<MOM-DSL>

 <Request requestID="1">

 <Capability-Request username="edcurry" password="rover">

 </Request>

</MOM-DSL>

Table 5.10 Example MOM-DSL capability request

The reply to the capability request, see Table 5.11, details the access available to requester.
The reply details access to each of the four meta-models, details on any events that the requester
has access to and a list of available meta-analyses.

<MOM-DSL>

 <Reply replyID="1" response="accept">

 <Capability>

 <Destination state="true" create="true" update="true" delete="true"/>

 <Subscription state="true" create="false" update="true" delete="false"/>

 <Interception state="true" create="false" update="false" delete="false"/>

 <Reflective state="false" create="false" update="false" delete="false"/>

 <AvailableEvents>

 <EventLocation event="CreateDestination" location="OMIP_Events.Create_Destination"/>

 <EventLocation event="ReceiveMessage" location="OMIP_Events.Receive_Message"/>

 <EventLocation event="SendMessage" location="OMIP_Events.Send_Message"/>

 </AvailableEvents>

 <AvailableAnalysis>

 <Analysis analysis="DestinationFilterCount" access="true"/>

 <Analysis analysis="DestinationSearch" access="true"/>

 <Analysis analysis="SubscriptionCount" access="false"/>

 </AvailableAnalysis>

 </Capability>

 </Reply>

</MOM-DSL>

Sub meta-space

access control

Available analyses

Event

locations

Table 5.11 Example MOM-DSL capability reply

5.6.2 Request Destination State

The state request command within the MOM-DSL, Table 5.12, is a simple interaction command
with a single attribute to identify the state requested.

<MOM-DSL>

 <Request requestID="1">

 <State-Request state="Destination"/>

 </Request>

</MOM-DSL>

Table 5.12 Example MOM-DSL destination state request

115

5.6 Example Interactions

Foobar

General

Inbox

Eds

Inbox

Credit

Delivery

North
America

Figure 5.14 Sample destinations used in state request

The reply to the state request command, if accepted, returns the relevant meta-state model
containing a straightforward description of the GISMO state objects expressed within XML. The
reply in Table 5.13 details the sample destination state, illustrated in Figure 5.14, containing two
queues and a single four-node destination hierarchy.

<MOM-DSL>

 <Reply replyID="1" response="accept">

 <DestinationState>

 <Single_Destinations>

 <Destination id="1" name="General_Inbox" type="queue"/>

 <Destination id="2" name="Eds_Inbox" type="queue">

 <Condition attribute="Recipient" operator="=" value="Ed"/>

 </Destination>

 </Single_Destinations>

 <Hierarchys>

 <DestinationHierarchy hierarchyID="foobar_company" root="foobar">

 <HierarchyNode id="foobar" name="foobar">

 <ChildNode childID="credit"/>

 <ChildNode childID="delivery"/>

 </HierarchyNode>

 <HierarchyNode id="credit" name="credit" parentNode="foobar">

 <Condition attribute="department" operator="=" value="credit"/>

 <ChildNode childID="north-america"/>

 </HierarchyNode>

 <HierarchyNode id="north-america" name="america" parentNode="credit">

 <Condition attribute="region" operator="=" value="north-america"/>

 </HierarchyNode>

 <HierarchyNode id="delivery" name="delivery" parentNode="foobar">

 <Condition attribute="department" operator="=" value="delivery"/>

 </HierarchyNode>

 </DestinationHierarchy>

 </Hierarchys>

 </DestinationState>

 </Reply>

</MOM-DSL>

Standalone

destinations

Child

nodes

Hierarchy root node

Hierarchy

Table 5.13 Example MOM-DSL destination state reply

5.6.3 Update Destination

The update request command is used to update state within the meta-level. The sample update
command provided in Table 5.14 describes a request to update a destination by altering the name

116

5.6 Example Interactions

and adding an extra condition to the destination. Each of the realisation commands (create,
update, delete) work on the principle of using nested content to specify the nature of the request.

<MOM-DSL>

 <Request requestID="1">

 <Update>

 <UpdateDestination>

 <CurrentDestination id="2" name="Eds_Inbox" type="queue">

 <Condition attribute="Recipient" operator="=" value="Ed"/>

 </CurrentDestination>

 <NewDestination id="2" name="Eds_XML_Inbox" type="queue">

 <Condition attribute="Recipient" operator="=" value="Ed"/>

 <Condition attribute="Format" operator="=" value="XML"/>

 </NewDestination>

 </UpdateDestination>

 </Update>

 </Request>

</MOM-DSL>

New configuration

Current

configuration

Table 5.14 Example MOM-DSL destination update request

The reply to this request, see Table 5.15, is a simple accept/reject response informing the
requester as to the result of its request. In this case, the request was accepted.

<MOM-DSL>

 <Reply replyID="1" response="accept"/>

</MOM-DSL

Table 5.15 Example MOM-DSL destination update reply

5.6.4 Request Filter Analysis

The final interaction covered is a request for an analysis. In this request, see Table 5.16, the
analysis interaction command is used to request the result of an analysis specified in the capability
replay. The analysis requested counts the number and type of filters used by subscribers on a
specific destination. The request must specify the destination to analysis.

<MOM-DSL>

 <Request requestID="1">

 <Analysis>

 <DestinationFilterCount destinationName="FooBar"/>

 </Analysis>

 </Request>

</MOM-DSL>

Table 5.16 Example MOM-DSL filter analysis request

The reply to this request, if accepted, returns the results of the analysis. In the example
presented in Table 5.17, three filters have been returned for the “FooBar” destination, 15 filters
compared the Region attribute to ‘Europe’, 10 filters compared the Department attribute to ‘Ac-
counts’ and 5 filters checked the Priority attribute for a value of greater than ‘7’.

117

5.7 Summary

<MOM-DSL>

 <Reply replyID="1" response="accept">

 <AnalysisResult>

 <DestinationFilterCountResults>

 <Filter attribute="Region" operator="=" value="Europe" count="15"/>

 <Filter attribute="Department" operator="=" value="Accounts" count="10"/>

 <Filter attribute="Priority" operator=">" value="7" count="5"/>

 </DestinationFilterCountResults>

 </AnalysisResult>

 </Reply>

</MOM-DSL>

Analysis results

Table 5.17 Example MOM-DSL filter analysis reply

5.7 Summary

This chapter has shown a design for a general-purpose meta-level for MOM platforms. The cen-
tral contribution of this work is the GenerIc Self-management for Message-Oriented middleware
(GISMO). GISMO has been defined to provide a generic meta-level that can be used with a num-
ber of proprietary MOM implementations. The meta-level was designed by identifying generic
elements, such as behaviour and state, common to MOM implementations. Portability of the
meta-level across proprietary MOMs is achieved with the use of the M-SAR design pattern that
also improves encapsulation and concern separation with a meta-level.

The GISMO meta-level is comprised of destination, subscription, and interception meta-models.
The meta-level also includes a reflective engine, with pluggable reflective policies, and support for
event notifications. GISMO is an open meta-level and provides full support for the Open Meta-level
Interaction Protocol (OMIP) through the MOM-Domain Specific Language. The MOM-DSL is
expressed using the eXtensible Markup Language and provides access to all aspects of the GISMO
meta-level.

118

Chapter 6

Implementation of a GISMO

With the design for a generic MOM meta-level in place, the next step is to provide a concrete
implementation of GISMO. This chapter describes an implementation of the GISMO meta-level
using the Chameleon framework to augment the meta-level to multiple MOM base-levels in a
non-invasive manner.

6.1 Introduction

A number of challenges exist when attempting to add a portable meta-level to a 3rd party base-
level implementation. This chapter illustrates how to implement a portable meta-level with the use
of the Chameleon framework. The Chameleon framework and the techniques it uses to augment
functionality in a non-invasive manner are described. An overview of the realisation of the GISMO
meta-level using Chameleon is discussed along with detailed highlights of the novel aspects of
the implementation. The discussion commences with a review of the challenges faced with the
transparent augmentation of a meta-level to an underlying base-level in a non-invasive manner.

6.2 Challenges in System Extension

The process of adding a meta-level to an existing MOM implementation requires the extension
of the MOMs functionality and observation of its behaviour. This task presents many challenges
and a number of techniques exist for the extension of a software system. However, the meta-level
needs to be augmented in a non-invasive manner for it to be portable between MOMs. With
this in mind, the evaluation of potential extension mechanisms needs to consider the invasiveness
of the technique. Does it require source code? Will each change require recompilation and re-
deployment? How flexible is the technique? How safe is it? The remainder of this section introduces
a number of possible techniques for extension and provides a critical evaluation of their suitability
for transparent functionality augmentation.

6.3 Options for Extension

The ever-increasing demands placed on software systems require them to often perform beyond
the scope of their original requirements. Such behaviour may not always be anticipated during

119

6.3 Options for Extension

their initial development phase, thus making it important to design systems that can be easily ex-
tended during their life-cycle. In order to tackle these challenges a number of software engineering
techniques have emerged to allow the extension of a software system to function beyond its origi-
nal design. These software engineering techniques also minimise the runtime of systems designed
for large target audiences with diverse interests. Such systems often include functionality that is
only utilised by a small percentage of users. While such functionality may be vital to some users,
incorporating it into the core system makes it unnecessarily bloated and increases overhead for the
majority of remaining users. In this section, the interceptor design pattern, aspect-orientated pro-
gramming, programmatic reflection, and generative programming are evaluated for their suitability
to transparently augment a meta-level.

6.3.1 Interceptor Design Pattern

The Pattern-Oriented Software Architecture (POSA) Interceptor design pattern [112] is a variant
of the Chain of Responsibility pattern from the Gang of Four (GoF) [113] . This pattern enhances
a system by increasing flexibility and extensibility. The pattern also enables functionality to be
easily added to the system to dynamically change its behaviour. This seamless integration of
functionality can be performed without the need to stop and recompile the system, allowing its
introduction at runtime.

Interceptor
Interceptor Chain

Interceptor N

...

Interceptor 1Dispatcher

Create Context
and pass to Chain

System
System Core

Context

Fires Events Interaction with
System Core

Figure 6.1 The POSA interceptor design pattern

The basic POSA interceptor pattern has four main elements:

• System Core

• Dispatcher

• Context

• Interceptors

The Interceptor pattern, illustrated in Figure 6.1, follows a straightforward sequence of events.
Interceptors are registered with the system dispatcher; the system core may perform registra-

tion, the interceptors may self-register, or they may be registered from an external source (parent

120

6.3 Options for Extension

server/master server). Once the interceptors are registered, the system core notifies the dispatcher
of any events that have occurred. Upon receiving an event, the dispatcher examines the event
to determine which interceptors need to be notified. The dispatcher then packages the event and
any relevant information into a context provided by the system core. The dispatcher then notifies
the relevant interceptors or interceptor chains (a ordered/unordered collection of interceptors) by
passing them the context containing the event. When triggered, the interceptor examines the con-
text and executes its related functionality. An optional addition to the pattern allows interceptors
access to the internals of the core system state and provides a mechanism to control the system
by altering its state.

Interceptors are utilised in a broad range of domains to increase flexibility and extensibility;
such systems include CORBA ORBs (TAO, Orbix) for infrastructure and support services, web
browsers (Microsoft Internet Explorer) for plug-in integration, and web servers (Apache 2.0) to
allow modules to register handlers (interceptors) with the core server. The JBoss J2EE [114]
application server also uses the interceptor design pattern to provide customised functionality in
areas such as transactions, security, remoting, and life-cycle support.

6.3.2 Aspect-Oriented Programming (AOP)

The emergence of multifaceted software paradigms such as Aspect-Oriented Programming (AOP)
and Multi-Dimensional Separation of Concerns (MDSOC) will have a profound effect on software
construction. This section provides a brief overview of these new programming techniques.

A complex software system can be viewed as a combined implementation of multiple concerns,
including business-logic, performance, logging, data and state persistence, debugging and unit
tests, error checking, multithreaded safety, security and various other concerns. Most of these are
system-wide concerns and are implemented throughout the entire codebase of the system, these
system-wide concerns are known as crosscutting concerns.

One of the predominant techniques for implementing software systems is the Object-Oriented
(OO) paradigm. The OO paradigm is a major advancement in the way developers think of and
build software, but it is not a silver bullet and has a number of limitations. One of these limitations
is the inadequate support for crosscutting concerns. The Aspect-Oriented-Programming (AOP)
[43] methodology helps overcome this limitation. AOP complements OO by creating another form
of separation that allows the implementation of a crosscutting concern as a single unit. With this
new method of concern separation, known as an aspect, crosscutting concerns are more straightfor-
ward to implement. Aspects can be changed, removed or inserted into a systems codebase enabling
the reusability of crosscutting code.

A brief illustration would be useful to explain the concept. The most commonly used example
of a crosscutting concern is that of logging or execution tracking, this type of functionality is
implemented throughout the entire codebase of an application making it difficult to change and
maintain. AOP [43] allows this functionality to be implemented in a single aspect; this aspect can
now be applied/weaved throughout the entire codebase to achieve the required functionality.

One of the founding works on AOP highlighted the process of performance optimisation that
bloated a 768-line program to 35,213 lines. Rewriting the program with the use of AOP techniques
reduced the code back to 1,039 lines while retaining most of the performance benefits. Grady
Booch, while discussing the future of software engineering techniques, predicts the rise of multi-

121

6.3 Options for Extension

faceted software i.e. software that can be composed in multiple ways at once. Booch cites AOP as
one of the first techniques to facilitate a multifaceted capability [115].

6.3.3 Dynamic AOP for Reflective Middleware

The OO paradigm is widely used within the base-level of reflective platforms. However, a clearer
separation of crosscutting concerns would be of benefit to reflective architectures. This provides
the incentive to utilise AOP within reflective middleware platforms.

A major impediment to the use of AOP techniques within reflective systems has been the
implementation techniques used by the initial incarnations of AOP [116]. Traditionally, when an
aspect is inserted into an object, the compiler weaves the aspect into the objects code; this results
in the absorption of the aspects into the objects runtime code. The lack of preservation of the
aspect as an identifiable runtime entity is a hindrance to the dynamic adaptive capabilities of
systems created using aspects. Workarounds to this problem exist in the form of dynamic system
recompilation at runtime and load-time weaving, however this is not an ideal solution, and a
number of issues, such as the transference of the system state, pose problems.

Alternative implementations of AOP have emerged which do not have this limitation. These
approaches propose a method of middleware construction using composition filters [44] to pre-
serve aspect as runtime entities. This method of creation facilitates the application of AOP for the
construction of reflective middleware platforms. Another approach involving Java bytecode manip-
ulation libraries such as Javassist provide a promising method of implementing AOP frameworks
(JBossAOP) with dynamic runtime aspect weaving.

6.3.4 Multi-Dimensional Separation of Concerns

The key difference between dynamic AOP and MDSOC is the scale of multifaceted capabilities.
AOP will allow multiple crosscutting aspects to be weaved into a program thus changing its com-
position through the addition of these aspects. Unlike AOP, MDSOCs multifaceted capabilities
are not limited to the use of aspects; MDSOC allows for the entire codebase to be multifaceted
enabling the construction of the software in multiple dimensions.

MDSOC also supports the separation of concerns for a single model [117], when using AOP
you start with a base and use individually coded aspects to augment this base. Working from
a specific base makes the development of the aspects more straightforward but also introduces
limitations such as restrictions on aspect composition [117]; you can’t have an aspect of an aspect.
In addition, aspects can be tightly coupled to the codebase for which they are designed, this limits
their reusability.

MDSOC enables software engineers to construct a collection of separate models, each encapsu-
lating a concern within a class hierarchy specifically designed for that concern [117]. Each model
can be understood in isolation, any model can be augmented in isolation and any model can be
augmented with another model. These techniques streamline the division of goals and tasks for
developers. Even with these advances, the primary benefit of MDSOC come from its ability to
handle multiple decompositions of the same software simultaneously, some developers can work
with classes, others with features, others with business rules, and others with services even though
they model the system in substantially different ways [117].

122

6.3 Options for Extension

To further illustrate these concepts an example is needed, a common scenario by Ossher [117]
is of a software company developing personnel management systems for large international organ-
isations. For the sake of simplicity assume their software has two areas of functionality, personal
tracking which records employees personnel details such as name, address, age, and phone number,
and payroll management which handles salary and tax information.

Different clients seeking similar software approach the fictitious company, they desire the soft-
ware but have specific requirements, some clients want the full system while others do not want
the payroll functionality and refuse to put up with the extra overhead within their system imple-
mentation.

Based on market demands the software house needs to be able to mix and match the payroll
feature. It is extremely difficult to accomplish this sort of dynamic feature selection using standard
object-oriented technology. MDSOC allows this flexibility to be achieved within the system using
on-demand remodularisation capabilities, it also allows the personnel and payroll functionality to
be developed almost entirely separate using different class-models that best suit the functionality
they are implementing.

6.3.5 Programmatic Reflection

Refection capabilities are popular in programming languages, including Lisp, Smalltalk, Python,
and Java. Within programming languages, reflection can offer the ability to alter the structure and
behaviour of programs. The Java programming language allows a program to obtain structural
information on the methods and attributes of a class using the java.lang.reflect package. The
package also allows for classes to be dynamically loaded and for the discovery and execution of
methods at runtime. One of the major drawbacks of packages like java.lang.reflect is the drastic
difference, not only in format but also in complexity, between code used for program introspection
and dynamic invocation when compared to regular code. Steve Vinoski, chief engineer of product
innovation for IONA Technologies1, sheds some light on this issue:

To call a function with normal programming-language syntax, the developer simply
writes the function name and passes arguments to it, also by name. With reflection,
you must find the metadata for the function or operation to be invoked, and use it to
dynamically construct appropriate values to pass as arguments. This can be arduous
even for relatively simple types. Worse, you often have to perform the dynamic in-
vocation using syntax or calls that look nothing like normal invocations. The relative
complexity of reflective programming, which often results in applications consisting of
one or two orders of magnitude more lines of code than similar static application code,
tends to mean that only sophisticated programmers practice it. [118]

While these factors are a major drawback of using programmatic reflection, it is becoming a
popular way of developing systems that need to be flexible and adaptive to meet their operating
requirements.

1http://www.iona.com

123

6.3 Options for Extension

6.3.6 Generative Programming

Generative programming [119] is the process of creating programs that construct other programs.
The basic objective of a generative program, also known as a program generator [120], is to
automate the tedious and error-prone tasks of programming. Given a requirements specification,
a highly customised and optimised application can be automatically manufactured on demand.
Program generators manufacture source code in a target language from a program specification
expressed in a higher-level domain language. With the requirements of the system defined in
domain language, the target language used to implement the system may be changed. The program
generator could use Java, C, Visual Basic (VB), or any other language as the target language for
implementation. The use of multiple program generators could offer the user a choice for the
implementation of the program, such as a Java version and a C version.

Generative programming allows for high-levels of code reuse in systems that share common
concepts and tasks, providing an effective method of supporting multiple variants of a program;
this collection of variants is known as a program family. Program generation techniques may also
be used to create systems capable of adaptive behaviour via program recompilation.

6.3.7 Evaluation

The main object of the Chameleon framework is to augment the base functionality of an underlying
message provider in a non-invasive manner. The method used to achieve this needs to be flexible,
dynamic, and capable of runtime changes. Moreover, the implementation must be straightforward
to develop and intuitive to understand.

Each of the techniques has been chosen from a larger pool of candidates based on their estab-
lished record of accomplishment within production environments. All the techniques have their
own strengths and weaknesses depending on the requirements of a given situation. Two main
requirements exist for Chameleon:

• Does it require source code?

• Can it perform runtime changes without the need for a recompile?

A summary of each technique’s ability to meet these criteria is presented in Table 6.1.

Technique Require
Source Code

Runtime Change Requires Recompile

Interceptor Design Pattern No No

Aspect-Oriented

Programming

Yes Partial

(Newer frameworks allow load-time weaving)

Programmatic Reflection Yes No

Generative Programming Yes Yes

Table 6.1 Summary of extension techniques

AOP, programmatic reflection, and the interceptor design pattern can all perform dynamic
runtime changes without the need for a system recompile. Such a capability is vital to the operation
of a framework like Chameleon. Further examination of these techniques reveal that programmatic

124

6.3 Options for Extension

reflection requires possible changes to be expressed in the compiled code. This reduces the ability of
the code to perform unanticipated changes. These unforeseen adaptations would require the code to
be altered and recompiled, thus limiting its adaptive capability. Vinoski [118] suggests a potential,
but limited, solution to this problem with the use of a “simple - although not quite uniform -
service interface”. Essentially, he proposes that any object introduced at runtime would need to
conform to a specified interface, thus removing the need for code changes and recompilation. The
two remaining techniques allow runtime adaptations with the use of a runtime/load-time weaver
for AOP or the addition of a single or multiple interceptors in the Interceptor design pattern.

The portability of any framework that is designed to work on a specific non-standardised
codebase would require the framework to be customised to each specific codebase, thus negating
the portability benefits gained through use of the JMS specification. In addition, only a handful of
the MOM providers available are open-sourced. Any framework that requires intimate knowledge of
a providers code base would reduce its potential user-base considerably. These considerations lead
to the second major requirement for the Chameleon framework, the ability to extend a platform
without the need for access to the platform’s source code. Out of the reviewed approaches, the
Interceptor design pattern is the only technique that does not require the source code of the
underlying MOM provider.

Based on this evaluation process the interception design pattern is the most suited approach
to meet the requirements of the Chameleon framework. AOP was also given serious consideration
in the final decision but the code-centric nature of the approach was deemed less suitable for
this project. As previously noted, a major drawback of programmatic reflection is code bloat that
“results in applications consisting of one or two orders of magnitude more lines of code” [118]. This
made the approach unsuitable for a lightweight framework placed upon an underlying platform.
Generative Programming, while very useful in creating adaptive and flexible applications, is code
and complication centric; such characteristics diminish its suitability for the framework.

The interceptor design pattern was chosen as the method of extension. However, the pattern
is not a silver bullet to the problem. The interceptor pattern has a number of advantages and
disadvantages. Benefits of the pattern include the decoupling of communications between a sender
and receiver of an interceptor request; this permits any interceptor to fulfil the request and allows
interceptors to change system functionality, even at runtime.

The pattern also has a number of drawbacks that if left unresolved may lead to a number
of issues in the system design. One of the main drawbacks is increased complexity in design,
the more interceptors can hook into the system the more bloated its interface becomes. The
inherent openness of the pattern also introduces potential vulnerabilities into systems. With such
an open design, the introduction of malicious or erroneous interceptors may result in system error
or corruption.

Another important issue to consider is the possibility of incompatibilities between interceptors
and potential infinite interceptor loops whereby an event produced by an interceptor triggers
another interceptor that in turn generates an event that triggers the original interceptor. Such
errors will only occur at runtime and may be difficult to locate.

When used within the messaging domain the abstract generic interceptor pattern is imple-
mented using a customised context and interceptor, these are commonly referred to as ‘Message
Context’ and ‘Message Handler’ respectively.

125

6.4 Chameleon

6.4 Chameleon

The goal of the Chameleon framework is to allow the transparent extension of functionality onto
a base MOM platform. Towards this objective, the Java Message Service (JMS) Application
Protocol Interface (API) [78] is used as an interface to the underlying core messaging platform.
MOM services/features are then packaged as interceptors or message handlers and deployed to add
functionality on top of the base service, enhancing its functionality. The remainder of this section
examines the architecture of Chameleon and discusses its ability to extend functionality on both
the client-side and provider-side of a MOM platform.

6.4.1 Call Capture Proxy

The Chameleon framework will require a mechanism to capture the actions and events that occur
within the underlying MOM implementation. These events and behaviour include messaging and
administration activity. To clearly define the challenge faced by this mechanism, a simple messag-
ing interaction is presented in Figure 6.2. Within the call sequence, a message is produced and
consumed.

MOM Client MOM Provider MOM Client
Produces
Message

Consumes
Message

Figure 6.2 MOM call sequence

The objective of the framework is to receive notifications of the actions within the call sequence
and extend the functionality.

MOM Client MOM Provider MOM Client
Produces
Message

Consumes
Message

Extension Framework

Notify only Notify only

Figure 6.3 Notification call sequence

Receiving notifications from the MOM is illustrated in Figure 6.3. Within this call sequence, the
client delivers its message directly to the MOM provider and sends a notification to the extension
framework informing it of its action. A similar notification is sent to the framework when the
message is consumed.

The process of intercepting and extending the functionality of the call sequence is illustrated in
Figure 6.4. Within this sequence, the produced message is intercepted and redirected to the exten-
sion framework where functionality may be injected. Once completed, the message is forwarded
onto the message provider. Message consumption follows a similar process. The challenge faced

126

6.4 Chameleon

MOM Client MOM Provider MOM Client

Produces
Message

Consumes
Message

Extension Framework

Intercept Intercept

Figure 6.4 Interception call sequence

with these tasks is to facilitate them in a transparent manner from the perspective of the MOM
clients while maintaining portability across MOM implementations.

Given the large number of proprietary MOM implementations in existence and the desire for
Chameleon to be compatible with as many as possible, a generic solution to this problem is vital
to support portability. Fortunately, the JMS specification is widely accepted as an industrial
standard, providing an ideal solution for capturing MOM interaction. The JMS API provides a
universal interface to proprietary MOM implementations. A MOM provider’s client-side library
implements the JMS API. The position of the API within the call sequence is illustrated within
Figure 6.5.

Invoke JMS API Operation

MOM ProviderClient App JMS API

MOM Operation Exec

MOM Operation

Figure 6.5 JMS API client/provider interaction sequence

In effect, the API acts as an intermediary between the client and the provider, decoupling a
client application from the MOM. This allows the provider to be changed without affecting the
client application. This portability presents an opportunity to introduce an additional intermediary
into the call sequence to capture client-provider interaction. If this intermediary or proxy also
implements the JMS API, it can seamlessly replace the MOM provider’s client-side library from
the client’s perspective. Once in place the proxy can seamlessly intercept client-provider calls,
send notification, or inject functionality before forwarding the request onto the provider’s client-
side library. The proxy enhanced call sequence is illustrated in Figure 6.6.

The proxy allows for the actions of the client to be seamlessly captured and conveyed to
Chameleon in a non-invasion transparent manner. With the capability to capture MOM interac-
tions in place, the next step involves extending functionality once a call is captured.

127

6.4 Chameleon

Invoke JMS API Operation

MOM ProviderClient App Call Capture Proxy

MOM Operation Exec

MOM Operation

JMS API

Capture Call

Figure 6.6 JMS API client/provider captured interaction sequence

6.4.2 Interception

Once a call has been captured, for functionality to be extended, a mechanism must be in place
to inject this functionality to alter the system’s runtime operation. In order to achieve this, the
Chameleon framework provides a full-scale interception mechanism. The architecture of the inter-
ception framework is illustrated in Figure 6.7. The requirements set out for GISMO interception
capabilities, detailed in Chapter 5, define a powerful general-purpose interception mechanism for
systems within the MOM domain. The requirements, including global and local interception with
support for destination scopes, are incorporated within the design of the interception mechanism
within Chameleon. The implementation of this mechanism covers the following areas, server-
side interception, client-side interception, and the context used to pass information between both
client- and server-side interceptors and mobile interceptors. The remainder of this section describes
a high-level overview of the operation of these areas.

6.4.2.1 Server-side

The core of the Chameleon framework exists in its server-side deployment. When the framework
initialises, it first registers any handler chains present in its start-up configuration. When a message
is intercepted, Chameleon first checks for the existence of a client-side message context. If one exists
it uses it as the basis to create a server-side context. Alternatively, it creates a new context for the
inbound message. Once the context is ready, it is passed to any relevant global server-side chains.
After the global dispatcher has completed evaluating the message it is passed on to the local-
chain dispatcher. This local-dispatcher is responsible for triggering any local-chains associated
with specific destinations.

6.4.2.2 Message context

The message context is an interceptor’s main point of interaction with the framework. Message
contexts act as a medium to store data, to communicate with other handlers, or to interact with
the framework. Handlers are able to store and retrieve information within the context using the
setProperty() and getProperty() methods. These methods can save any serializable object and the
basic Java primitive types within the context.

128

6.4 Chameleon

J
M
S
S
C

Client

Client-side Virtual Machine Server-side Virtual Machine

Chain
Services

Global Chain

Handler N
...

Handler 1Dispatcher
Client-side Chain

Handler 1

...

Handler N

Forwarder

Dispatcher

Destination Chain Destination Chain Destination Chain

Destination..Destination
Client produces

message

Create message
context

Extract message
context

Local Dispatcher

Pack message
context

(Server-side
only)

(Client- and
Server-side)

Dynamic Proxy

Java Message Service System Core (JMSSC)

Chameleon Server-sideChameleon Client-side

Figure 6.7 Chameleon interception architecture

Contexts can communicate information between client-side and server-side handlers. This al-
lows for the behaviour on the server-side or client-side to be dynamically altered based on events
and information from either side.

6.4.2.3 Client-side

Client-side handlers offer the ability to extended and enhance the functionality of the MOM
provider on the client. Client-side chains allow the message service to dynamically alter the be-
haviour of its client at runtime. This capability has a number of advantages by easily distributing
computational tasks and behaviour to client machines. With this support framework in place, ad-
vanced features may be developed with cooperation and coordination between both the client and
server-side of the platform. Such capabilities can increase the scalability of centralised deployments
by distributing tasks to the clients, such as message transformation or filtering.

The operation of the client-side interception framework is as follows. Once client-side chain
initialisation has completed, the outbound/inbound message is placed into a message context and
passed to the client-side dispatcher. As soon as the message has passed through the chain, the
message context is packaged into the JMS messages and sent to the server-side. Upon receipt of
a new message, the server checks for the existence of a client-side context and uses this in the
construction of the server-side context. This process allows client-side handlers to communicate
with the server-side, allowing data exchange between them, such as the results of a distributed task
or the results of any computations or pre-processing carried out on the message by the client-side.

The inverse of this process is also possible, whereby server-side handlers wish to pass message
specific information to the client-side.

129

6.4 Chameleon

6.4.2.4 Mobile Chains

Client-side handlers can be constructed in two manners, the first approach is to build the chain
from local handlers which reside on the client machine, this approach requires the machine to have
the relevant handlers installed or the use of a distributed classloader. The second approach, known
as mobile chains, involves the construction of chains on the server-side and transferring it to the
client; this removes the need to have application-specific stubs that need to be pre-installed on the
client machine.

The dynamic retrieval and configuration of client-side handlers has a number of benefits; the
deployment of services to clients can now take place without any special arrangements on the client-
side. This streamlined distribution of services reduces the amount of administration needed to alter
a deployed system, making frequent changes to its behaviour and configuration more feasible. A
service can adapt itself into a more optimal state based on its current operating conditions. Clients
may now connect to multiple servers and retrieve their specific client-side chain without the need
for extra configuration or intervention by a system administration.

The major benefit of mobile chains is the ability for a simple clean base install of Chameleon to
connect to a previously unknown message broker and download the related code needed to interact
with any non-standardised parts of the broker. To illustrate this ability imagine that a service
requires messages submitted to be in a specific format or a specific categorisation was used to sort
and store messages on the service. Using Chameleon, message transformation or sorting logic can
be autonomously sent to the client to allow seamless interaction with the service.

The prospect of deploying functionality to the client-side is an interesting proposition, however
due diligence must be taken when considering the use of this “mobile code”. If configuration of
a client-side chain is directed from a remote location or if the configuration is downloaded, it
presents a number of security issues and potential vulnerabilities to the client system. Such issues
are covered in more details in [121].

6.4.3 Non-Invasive Extension of Functionality

In order to demonstrate the extension capabilities of the Chameleon framework, a small case study
is provided to illustrate how functionality may be added to a MOM provider. When choosing a
candidate for this study, a number of possibilities were considered including, message routing and
filtering, message security, and message encryption. In the end, a decision was taken to package
enhanced message transformation capabilities, and to allow such transformation to be performed
on the clients-side (i.e. using XSL/T and XPath filters to transform XML payloads).

Message transformation takes place when two disparate systems need to interconnect; such
requirements are commonplace within Enterprise Application Integration (EAI) environments.
Tasks of this nature are typically performed by integration platforms, such as IONA’s ARTiX,
Microsoft’s BizTalk Server, and SAP’s NetWeaver. In this case study, the motivational scenario is
that of an information service which accepts information from message producers in a single format,
Format A, and provides this information to message consumers in a number of formats, Formats
A, B and C. In a conventional deployment, the information service upon receiving a message in
format A would be required to transform the message into the two alternative formats (formats B
and C) for consumers. This process is illustrated in Figure 6.8.

Depending on the amount of work required to perform the transformation, this centralised

130

6.4 Chameleon

Application
Format C
Consumer

Format A
Consumer

B

A

C

Message
Transformer

Format A

Format B

Format A A

B

C

Message Broker

Figure 6.8 Centralised message transformation

approach could have limited and expensive scalability. With the use of Chameleon, it is possible to
decentralise the message transformation task among the participating clients. This is achieved by
intercepting the message send action from the message producer and performing the two message
transformations before the message is sent. Once the transformations are complete three messages,
one in each format, would be sent to the information service.

Application
Format C
Consumer

Format A
Consumer

B

A

C

Message
Transformer

Format A

Format B

Format A

Format C

Format B

Message Broker

Figure 6.9 Decentralised message transformation

The decentralised message transformation service1 is illustrated in Figure 6.9. Within this
service the message send action for Format A messages is intercepted by a dynamic proxy and
passed to client-side chains. Message transformation handlers for format B and C clone the message
and transform the clone into their respective formats. Messages in formats A, B, and C are sent
to the information service

This trivial example illustrates the simplicity of the Chameleon mechanism for functionality ex-
tension and the ease of its deployment. Once the Chameleon infrastructure is in place, the message
transformation capability can be deployed on-top of any JMS compatible MOM provider. This
capability is of particular use to the academic community as it provides a platform for academia to
expose their MOM related work to a wider audience. This concept is demonstrated in the Chapter
8 case study where the techniques of covering and merging from the SIENA [67] research project
are added to a JMS compliant MOM. Within the case study, message participants choose the most

1It is important to note that this solution requires three messages to be sent to the MOM and is only beneficial
in scenarios where the cost of message transformation (i.e. video compression) is greater that the cost of message
transport.

131

6.5 Realisation of a GISMO

appropriate destination for their messages using a derivative of the SIENA filtering libraries.

6.5 Realisation of a GISMO

With the Chameleon framework in place, the next step is to implement the GISMO meta-level
using the framework. This process involves implementing the GISMO abstract design from Chapter
5 using the Chameleon framework. An overview of the layers within the GISMO implementation
model are illustrated in Figure 6.10.

Abstract Meta-Level Design

JMS Compatible Base-Level

Chameleon Framework

Meta-Level Implementation

Subscription
Meta-Model

Destination
Meta-Model

Interception
Meta-Model

Reflective
Meta-Model

Reflective
Engine

Interception
Services

Event
Manager

Subscription
Manager

OMIP
Infrastructure

Figure 6.10 The GISMO implementation model

An examination of this model from the top-down shows the abstract design of the MOM
meta-level that encompasses the concepts of its constituent sub meta-models. The abstract design
is implemented by the three lower levels in the architecture. The next level provides concrete
implementations of the concepts from abstract meta-level design including a reflective engine,
subscription manager, and event manager. This layer uses Chameleon to augment itself upon a
JMS compliant provider. Chameleon is capable of augmenting a JMS provider in a transparent
manner by injecting new functionality with the use of interception. The bottom layer, a JMS
compliant provider, is responsible for the provision of messaging services within the architecture
and is the target benefactor of the three layers above it.

The remainder of this section covers the implementation of GISMO using Chameleon, starting
with destination realisation. To avoid duplication with the description of the abstract design
from Chapter 5 the discussion omits straightforward tasks and focuses on the novel aspects of the
implementation.

6.5.1 Destination Realisation

The task of implementing the destination meta-model is for the most part a straightforward process
of ratifying changes made to the meta-model in the configuration of the base-level. The most
interesting part of this solution is the use of the M-SAR design pattern to streamline portability
between multiple base-levels.

As identified within Chapter 5, no standardised administration interface is available for MOM
platforms. To this end, the destination meta-model defines a generic administration interface that
includes common administration actions. With an interface in place, the next step is to ratify
these changes to the base-level.

132

6.5 Realisation of a GISMO

Each base-level (MOM platform) possesses a different proprietary administrative interface,
resulting in a different realisation process for each base-level. The M-SAR design pattern promotes
a separation of concerns between the state, analysis and realisation concerns within a meta-level.
By encapsulating the realisation process within an object, it simplifies the process of ratifying
the meta-level to different base-levels. The current implementation of the destination realisation
process provides support for three JMS providers, OpenJMS, ActiveMQ, and SonicMQ. The role
of M-SAR in assisting this portability is illustrated in Figure 6.11.

Destination
State

Destination
Analysis

Norifications

Base-Levels
Meta-Level

OpenJMS ActiveMQ SonicMQ

Destination
Realisation

Figure 6.11 Multiple base-level realisations

6.5.2 Interception Provision

The next sub meta-model to be examined is the interceptions meta-model. Where a message
provider does not provide native support for interception, the implementation of GISMO must
fulfil this requirement. Given that very few message providers include interception support and
the fact that Chameleon provides a fully functional interception mechanism, the decision was taken
to assume responsibility for interception provision. With the use of Chameleon-based interception,
the implementation of the interception meta-model is simply a process of ratifying the meta-model
to the configuration of the Chameleon interception mechanism. Further details on the techniques
used to intercept base-level interaction are provided in Section 6.4.1 with details of the interception
mechanism within Chameleon available in Section 6.4.2.

133

6.5 Realisation of a GISMO

6.5.3 Subscription

An interesting aspect of the subscription meta-model, illustrated in Figure 6.12, is its realisation
process. Only the client owning the subscription may change it. In order for the server to change
a subscription, it must request the client to perform the realisation using the OMIP. Given the
potential for a large quantity of subscriptions, the implementation of the subscription meta-level
uses a database to store subscription state. The information analysis and search capabilities of a
database also provide a useful mechanism to simplify meta-analysis.

Realisation

Realisation
Requests

Analysis &
State Requests

Client-Side Server-Side

O
M

IP
O

M
IP

State

Analysis

Figure 6.12 Subscription meta-model architecture

6.5.4 Reflective Engine

Within the reflective engine, illustrated in Figure 6.13, reflective computational logic is encapsu-
lated within pluggable reflective policies. These policies contain the reflective logic that direct
change within the meta-level. Reflective policies are stored within a repository and are created
and maintained by the policy manager. The policy manager is responsible for the loading and
unloading of policies from the policy container

Policy Container

Policy
Invoker

Invokes
Policies

Reflective Engine

Reflective
Policy

Repository

Policy
Manager

Global Sync Policies

Po
lic

y
1

…

Po
lic

y
N

Local Sync Policies

Po
lic

y
1

…

Po
lic

y
N

Global Asyn Policies

Po
lic

y
1

…

Po
lic

y
N

Local Asyn Policies

Po
lic

y
1

…

Po
lic

y
N

Cron Service

Persistance

Logging

Meta-Space
Access

Events /
Interceptions

Builds
Policy
Chains

Figure 6.13 GISMO reflective engine architecture

Once set up, policies are executed by the Policy Invoker. The invoker receives notification and

134

6.5 Realisation of a GISMO

interceptions from the base-level and executes the corresponding reflective policies. Within the
reflective engine, a number of policy support services are provided, including persistence, logging,
and cron triggers. Policies also have full access to the GISMO meta-level to perform inspections
and adaptations. With a high-level overview of the reflective architecture in place, the next section
provides a description of the structure of reflective policies.

Triggers for reflective policies are attained by placing interceptors at each interception point
within Chameleon to supply trigger information to the reflective engine. These interceptors inform
the PolicyInvoker within the reflective engine of the activity of the base-level. The PolicyInvoker
has responsibility for invoking reflective policies and facilitating policy execution synchronously or
asynchronously with base-level execution.

6.5.5 Event System

The implementation of the GISMO event system, illustrated in Figure 6.14, is similar to that of
the reflective engine. An interceptor is attached at each interception location and is responsible
for informing the event system of the activities of the base-level. The event engine is responsible
for maintaining a list of subscribers and the events in which they are interested. Upon receiving a
report from an interceptor, it is the responsibility of the event engine to inform the relevant local
subscribers of the event. In addition, the engine is also responsible for publishing the events to the
relevant destinations used by remote OMIP event listeners.

Interceptor
Notifications

Event Subscription

Event
Dispatcher

Subscription
Information

Subscription
Manager

Local Event
Consumer

OMIP Event
Consumer

Local Notification

OMIP via MOM
Destination

Figure 6.14 Event system architecture

6.5.6 OMIP Infrastructure

The infrastructure used to handle OMIP interactions follows the ARMAdA architecture, described
in Chapter 4, using an inbox listener to process incoming MOM-DSL requests. Once a message
is received, the request is evaluated and appropriate action is taken within the meta-level. The
Facade design pattern can be used to encapsulate OMIP interactions to simplify the process of
creating, sending, and receiving requests and responses. The facade is useful for both the GISMO
client and provider meta-levels. Chapter 5 provides further detail on the message format and
infrastructure used to exchange OMIP messages.

135

6.6 Summary

6.6 Summary

The Chameleon framework is designed to support the use of message handlers (interceptors) with
a JMS compatible MOM platform. Chameleon provides a non-invasive message-centric method
for augmenting any JMS compatible message service without needing access to its source code for
mass-refactoring and recompilation.

The Chameleon framework uses a call capture proxy to intercept MOM interaction and may
inject functionality with the use of interceptors. The framework was used to implement a full
GISMO meta-level with support for interception in a portable manner. The implementation is
also OMIP-compliant, facilitating interaction and coordination of self-management capabilities.

136

Part III

Evaluation

137

Chapter 7

Case Study – Coordination-Based

Integration

The objective of this case study is to evaluate the benefits of coordination between self-managed
systems and how it may improve the level of service delivered to an environment. In particular,
the case study examines the benefits of information exchange within the problem domain of system
integration.

7.1 Introduction

Integration is a common challenge within the software community. Whether connecting two simple
applications or a collection of complex distributed systems the process of integration is demanding.
Integrating two systems involves connecting together the outputs of one system to the inputs of
another system, and vice versa. Within distributed systems, Message Oriented-Middleware (MOM)
is an effective and flexible mechanism for interconnecting systems. A primary benefit of MOM is
loose coupling between participants in a system - the ability to link applications without having
to adapt the source and target systems to each other. This results in a highly cohesive, decoupled
approach to connecting multiple systems [56].

MOM has been very successful in reducing both interface and temporal forms of coupling ex-
perienced with synchronous Remote Procedure Call (RPC) based mechanisms. This simplifies the
integration of multiple applications and enables the creation of flexible and adaptable deployments.
However, many forms of coupling exist within the integration process, such as message format and
semantic coupling. MOM has even introduced its own form of coupling: Message Infrastructure
Coupling (MIC).

This case study examines the cause and effects of MIC to highlight the limitation of current
centralised solutions with respect to maintainability, scalability, and robustness. It then introduces
a new decentralised approach based on coordinated self-management and evaluates it against the
current solution.

138

7.2 Message Infrastructure Coupling

7.2 Message Infrastructure Coupling

Successfully integrating two systems requires that the semantics of both systems be reconciled or
bridged. Within a large-scale heterogeneous integration effort, this is one of the greatest challenges
faced. To achieve a successful integration, all participants must have a common conceptualisation
of the problem domain. David Orchard, a technical director at BEA Systems1 [122], provides a
description of the effects of semantic coupling on system integration:

Imagine a Purchase Order system. A sender sends Purchase Orders to a receiver,
who responds with successful completion of the order or failures. The receiver must
understand all the nuances and details of the purchase order messages. Any interface
or type change - such as changing the authentication structures, changing the timing of
the authentication step, changing the purchase order messages, etc - well require that
the sender change. And that means a programmer must perform the change.2

Semantics have an effect on a number of areas of application development. Most prominently
from an integration perspective, they direct the definition of messages used to exchange informa-
tion, which entity should receive the information, and how it should be received. However, semantic
coupling can extend beyond these concerns to include the infrastructure used to exchange the mes-
sages. This form of coupling is referred to as infrastructure coupling.

Within the MOM domain, a number of constructs such as queues, topics, journals, and destina-
tion hierarchies are used for message exchange. These constructs or destinations are configured to
meet the demands of a particular application domain. In many cases, the semantics of the domain
will heavily influence their configuration. The resulting configuration will dictate how applications
use the MOM to exchange messages, creating a tight coupling to a specific destination configura-
tion. In order for an application to utilise the MOM, a programmer must alter the application to
suit the chosen configuration, coupling the application to the MOM infrastructure. A motivational
scenario is presented to illustrate this form of coupling in more detail.

7.3 Motivational Scenario

MOM may be utilised within a diverse set of deployment environments such as news and weather
services, online auctions, marketplaces, enterprise application environments, and a wide range of
information dissemination systems. To illustrate infrastructure coupling an Enterprise Application
Integration (EAI) deployment scenario is examined, EAI is a domain where MOM is commonly
utilised. While this scenario is EAI specific, the issues faced are relevant within any messaging
scenario where an application developer is required to “wire up” the application to the messaging
infrastructure. The scenario assumes the presence of a message standard such as ebXML, Universal
Business Language (UBL), or RosettaNet to provide a common messaging format.

The scenario comprises two multi-national companies, Foo and Bar. Both companies operate
their own independent MOM for communications. In order for an application to communicate with
message consumers of either company, it must place its messages in the relevant destination within
the MOM of the respective company. When designing their communications infrastructure, both

1BEA Systems are a key player in the integration domain.
2 http://dev2dev.bea.com/pub/a/2004/02/orchard.html

139

7.3 Motivational Scenario

companies must create destinations relevant to the needs of their respective message consumers. In
order to maintain clarity within the scenario the interests of consumers are limited to the regional
division of messages. However, communications may be routed along a number of lines such as
departmental divisions, business units, document types (Invoice, Purchase Order, etc.), message
priorities, and so on. Each additional division increases the complexity of the infrastructure and
the effort required to connect to the system.

Application

Company Bar
Consumers

Company Foo
Consumers

Company Foo MOM

Company Bar MOM

North America

Europe

Asia

Rest of World

Europe

Rest of World

Figure 7.1 A sample deployment scenario

In this scenario, illustrated in Figure 7.1, the application on the left produces messages for the
consumers on the right; messages are delivered using the MOM. Company FOO has four possible
message destinations; one for each of Europe, North America, and Asia with a fourth catchall
destination for remaining messages. Company Bar has a simpler infrastructure with only two
destinations: one for Europe, and a catchall destination for all other regions.

As illustrated in Figure 7.2, the most straightforward method of integration available is to hard-
code the application to both communication infrastructures, connecting directly to the destinations
within the MOM. The main advantages of this solution are its straightforward implementation and
decentralised message delivery. Distributing message delivery responsibility to the message produc-
ers will increase the scalability of the overall deployment. While it may be trivial to hardcode two
simple messaging infrastructures, the complexity and cost of the process will grow geometrically as
the number and intricacy of the messaging infrastructures increase. Hard coding the application
directly to the MOM infrastructure creates tight coupling. Changes to the MOM infrastructure
will require reciprocal changes in the application. This act nullifies some of the benefits gained by
using an intermediary message exchange layer, effectively re-creating the interface-type coupling

140

7.4 Integration 101

experienced with RPC-based distribution, as infrastructure coupling within MOM.

Application

Company Bar
Consumers

Company Foo
Consumers

Company Foo MOM

Company Bar MOM

North America

Europe

Asia

Rest of World

Europe

Rest of World

Figure 7.2 Hard-coded integration

Application/business-logic is the main driving force in the configuration of the MOM infras-
tructures. Given that this form of logic can be prone to frequent changes to meet current business
demands, it is reasonable to assume that the MOM’s configuration will also need to change to meet
current needs. It is vital that the integration approach used can accommodate these changes in a
flexible manner. The challenge within this scenario is to integrate with each company’s infrastruc-
ture in an effective scalable manner while minimising infrastructure coupling.

7.4 Integration 101

To evaluate integration options for the motivational scenario, it is important to examine the latest
practice within integration. Experience gained within the EAI domain offers a number of important
lessons when integrating multiple systems.

A key lesson from the perspective of this case study is that integration should be configured
rather than coded. The latest practice within EAI is the development of Service-Oriented Architec-
ture (SOA) using an Enterprise Service Bus (ESB). SOA is message/document-centric architectural
style designed to achieve loose coupling amongst interacting software services; a service is a set
of input messages sent to a single or composition of objects, with the return of causally-related
output messages. An ESB is a messaging infrastructure designed to support the interconnection
of services within an SOA by providing cross-protocol messaging, message transformation, and
message routing capabilities. With these capabilities in place, it is possible to interconnect services

141

7.5 Integration solutions

within an SOA by configuring the ESB. The concepts behind ESBs are a mindset for developing
SOAs and are not specific to a particular product, although many do exist including Artix1, Sonic
ESB2, and BEA AquaLogic Service Bus.

Traditional integration involves programmatically connecting two systems. Configuration-
Oriented Integration (COI) works on the notion of connecting the inputs and outputs of two systems
by utilising configuration files to direct a middleware platform to provide the connection. The con-
cept of COI is an important lesson from the SOA/ESB approach to integration. COI can connect
multiple systems in a flexible manner that can accommodate changes in application/business-logic.
The second lesson is to minimise centralisation when integrating systems [123]; integration should
be an edge case solution. In particular, scalability within a messaging solution can be improved
by performing routing as close to the producer as possible [124].

7.5 Integration solutions

With COI in mind, a number of options are available for integrating the application within the
deployment scenario. A common integration solution is introduced to the scenario with its benefits
and limitations highlighted. An enhanced version of the solution is then presented. This new
approach captures infrastructure configuration information allowing its exchange between systems.
This exchange streamlines integration and reduces infrastructure coupling.

7.5.1 Centralised Content-Based Routing Integration Pattern

As a means to overcome the shortcomings of the hard-coded integration solution, a Content-Based
Routing (CBR) integration pattern is used to deliver messages between producers and consumers.
CBR transports messages to consumers based on the contents of the message. This is the equivalent
of COI within the messaging domain; the routing rules are the configuration mechanism used to
integrate applications.

CBR capabilities may be offered as a service via the MOM or by a message router within the
messaging solution. MOM-based CBR delivers message from the producer to consumer without
the use of a destination and is available in a limited number of MOM implementations using the
publish/subscribe messaging model, including SIENA [62], REBECCA [97], Elvin [125], and ECO
[104]. The main drawbacks with MOM-based CBR include its lack of support within the point-
to-point messaging model and a lack of support within messaging standards. The widely adopted
Java Message Service [78] only provides limited support for consumer-side CBR with message
selection on destination subscriptions; both consumers and producers must still locate the relevant
destination for their messages. Due to this lack of standardisation, MOM-based CBR can result
in lock-in to a proprietary MOM implementation. To avoid this lock-in, we exclude MOM-based
CBR as a viable option and focus on CBR provided within the messaging solution.

The CBR is a fundamental [16] design pattern commonly used within messaging solutions.
This pattern enhances the hard-coded approach with the inclusion of a message router. The
message router uses a rule-base to store routing instructions that direct messages to the relevant
destination(s). A number of variations on the pattern are available including the Dynamic Router

1 http://www.iona.com/products/artix/
2 http://www.sonicsoftware.com/products/sonic esb/index.ssp

142

7.5 Integration solutions

[15] and the more generic Message Router [14].

Application

Company Bar
Consumers

Company Foo
Consumers

Company Foo MOM

Company Bar MOM

Router

Rule Base

Router

Rule Base

1

2

2
3

3

1

4

4

North America

Europe

Asia

Rest of World

Europe

Rest of World

Figure 7.3 Centralised content-based routing integration pattern

In Figure 7.3, the CBR pattern is introduced within the motivational scenario. Messages within
the deployment take the following steps:

1. Application produces the message and sends it to the router

2. Router evaluates the message against its rule-base to match it to relevant destination(s)
based on its content

3. Router forwards the message to the relevant destination(s)

4. Message consumer receives the message

The centralisation of the routing responsibility relieves the tight coupling of the hard-coded
solution, decoupling the application from the destinations and allowing the messaging infrastruc-
ture to change without affecting the application. Integration from the application’s perspective is
simplified with the application delivering all messages to the router of the relevant company. The
cost of integrating the application with further companies is minimal; no matter how complex their
messaging infrastructure is the application simply forwards its messages to the message router of
the company.

Advantages of the pattern emanate from its centralisation of the message sorting process. How-
ever, centralisation is also a weakness when it comes to the scalability and robustness of the de-

143

7.5 Integration solutions

ployment. When examined from a message delivery perspective, a centralised delivery mechanism
has the potential to form a scalability bottleneck, and can affect the robustness of the messaging
solution by creating a single point of failure.

7.5.2 Decentralised Content-Based Routing Integration Pattern

The choice to centralise (router) or decentralise (hard-coded) the integration process has a major
impact on the characteristics of the messaging solution. Centralisation simplifies integration while
decentralisation improves performance. An ideal routing solution would maintain the benefits
of a both the centralised and decentralised approaches while minimising their limitations. Thus
providing the benefits of distributed message delivery, while preserving the maintenance benefits
of a centralised rule-base.

Such an approach would be possible if the centralised rule-base was shared with message pro-
ducers, enabling them to bypass a centralised router and distribute their messages directly to
relevant destinations. This could be achieved by expressing the routing rules in an open and
portable format, allowing the task of message sorting to be located at the edge (producer-side) of
an integration scenario. This enhancement to the CBR approach, known as Decentralised-Content
Based Routing (D-CBR), is illustrated in Figure 7.4.

Router

Company Bar
Consumers

Company Foo
Consumers

Company Foo MOM

Company Bar MOM

Application

Rule Base

Rule Base

1

1

2

2

4

4

North America

Europe

Asia

Rest of World

Europe

Rest of World

Figure 7.4 Decentralised content-based routing integration pattern

The motivational scenario utilising the new D-CBR pattern operates as follows:

1. Message producer receives routing rules from the centralised rule-base of each company

2. Message producer matches the message to the relevant destination(s) based on the rule-base

144

7.6 Achieving Decentralised-CBR

3. Producer sends message directly to destination(s) within each messaging infrastructure

4. Message consumer receives the message

This solution provides the best of both worlds by maintaining a centralised rule-base, increasing
scalability with decentralised message delivery, and removing the single point of failure from the
messaging solution. The major drawback of this integration solution is the initial setup of the
support framework needed to facilitate the exchange of routing information [126, 127]. Within
simple or low-volume messaging environments, this support framework may be overkill, negating
any benefits gained. In addition, the approach may not be suitable for mobile clients with limited
computational or power capabilities. These devices need to conserve their local capability and
place the burden on less restricted systems utilising an approach similar to the centralised CBR
integration pattern.

7.6 Achieving Decentralised-CBR

Evaluating the benefits gained from the D-CBR pattern requires the implementation and evalu-
ation of both integration solutions. The centralised CBR solution can be created using standard
messaging facilities and a rule-powered router. Decentralised-CBR has two additional require-
ments; routing rules must be expressed in a portable format, and a mechanism to exchange the
rules must be in place.

Implementing the CBR design pattern using a traditional closed self-managed system is pos-
sible. However, as demonstrated in Figure 7.5, implementing the D-CBR design pattern is not
feasible within a closed self-managed system as no mechanism exists to exchange rule information.

Router

Self-Managed MOM Server

Destination A

Meta-Level

Destination XApplication

Base-Level

Self-Managed MOM Client

Meta-Level
Rule Base

Base-Level

Rule Base

Rule Exchange?

Populates

Figure 7.5 D-CBR implemented within a closed self-managed MOM

The requirements needed to implement the D-CBR design pattern can be provided by an
open self-managed MOM platform such as the GenerIc Self-management for Message-Oriented
middleware (GISMO). The requirement for a portable rule format is easily solved as GISMO may
express its destination meta-model within the MOM-Domain Specific Language, an open XML
based format. The second requirement is fulfilled by the Open Meta-level Interaction Protocol
(OMIP), allowing MOM-DSL messages to be easily exchanged between participants within the
deployment, as illustrated in Figure 7.6.

145

7.7 Evaluation

Router

Self-Managed MOM Server

Destination A

Meta-Level

Destination XApplication

Base-Level

Self-Managed MOM Client

Meta-Level

Rule Base

Base-Level

Rule Base
OMIP-based

Rule Exchange

O
M

IP

O
M

IP

Populates

Figure 7.6 D-CBR implemented within an open self-managed MOM

This deployment demonstrates that a self-managed system’s ability to track meta-state is not
sufficient to implement the D-CBR pattern by itself. The key mechanism needed is an ability to
exchange management information (meta-information) between systems in an open manner. The
D-CBR design pattern demonstrates the benefits of an open interaction protocol such as OMIP
for the coordination of self-managed systems.

7.6.1 MOM-DSL Messages for Decentralised-CBR

Routing instructions for the rule-base are expressed with the condition attribute of the destination
state model within GISMO. Once captured in this model, the rule-base can be expressed within
the MOM-DSL format and exchanged between participants using the OMIP. A sample rule-base
for the deployment scenario expressed in MOM-DSL is provided in Table 7.1.

Using these MOM-DSL messages, producers within the deployment are able to obtain the pur-
pose of destinations with the MOM infrastructure of each company and route their messages to
the relevant destination. The D-CBR integration pattern demonstrates the possibility for infor-
mation exchange and coordination of message participants at the self-management level. However,
the exchange of routing rules is only one such example of information exchange, other forms of
information may also be exchanged to describe different aspects of a messaging solution.

7.7 Evaluation

In order to compare the integration solutions, both approaches are implemented and performance
evaluation test are executed. The motivational scenario is simulated using a test case with mes-
sage producers sending messages through the routing solution to message consumers. The test
cases replicate diversity within the deployment environment by adjusting the number of message
producers and consumers, varying their ratio, and adjusting the size of the rule base (number of
routing rules). The alternation of these characteristics produces a varied set of deployment en-
vironments to stretch the scalability of the routing solutions along each of these dimensions. A
full discussion of MOM benchmarking techniques, including a description of the testbed used, is
provided in Appendix A.

146

7.7 Evaluation

(a) Routing rules for company A expressed in destination meta-model

<MOM-DSL>

 <Reply replyID="1" response="accept">

 <DestinationState>

 <Single_Destinations>

 <Destination id="CompanyA_Inbox1" name="Europe" type="queue">

 <Condition attribute="Region" operator="=" value="Europe"/>

 </Destination>

 <Destination id="CompanyA_Inbox2" name="NorthAmerica" type="queue">

 <Condition attribute="Region" operator="=" value="North America"/>

 </Destination>

 <Destination id="CompanyA_Inbox3" name="Asia" type="queue">

 <Condition attribute="Region" operator="=" value="Asia"/>

 </Destination>

 <Destination id="CompanyA_Inbox4" name="RestOfWorld" type="queue">

 <Condition attribute="Region" operator="NOT IN"

 value="'Europe','North America', 'Asia'"/>

 </Destination>

 </Single_Destinations>

 </DestinationState>

 </Reply>

</MOM-DSL>

Europe

North

America

Asia

Rest Of

World

(b) Routing rules for company B expressed in destination meta-model

<MOM-DSL>

 <Reply replyID="1" response="accept">

 <DestinationState>

 <Single_Destinations>

 <Destination id="CompanyB_Inbox1" name="Europe" type="queue">

 <Condition attribute="Region" operator="=" value="Europe"/>

 </Destination>

 <Destination id="CompanyB_Inbox2" name="RestOfWorld" type="queue">

 <Condition attribute="Region" operator="NOT IN" value="Europe"/>

 </Destination>

 </Single_Destinations>

 </DestinationState>

 </Reply>

</MOM-DSL>

Europe

Rest Of

World

Table 7.1 Sample destination state model for deployment scenario

The benchmarking process used to evaluate the centralised and decentralised CBR integration
patterns was extensive. A total of sixty test cases were performed, each test was run with producer
and consumer clients evenly deployed across the client machines; each client was run under a
independent thread and connection. Benchmarking took over 34 hours to execute with the largest
test case involving 800 participants (400 producers and 400 consumers). The test cases investigate
the scalability of both integration patterns in a wide range of deployment scenarios. Each scenario
was careful selected to expose a variety of messaging requirements by adjusting the number of
producers, consumers, varying their ratio, and adjusting the size of the rule-base. Test cases used
the point-to-point messaging model (once-and-once-only delivery). The report metric chosen is the
total number of messages received by all consumers per second (msg/sec). The test case results
are detailed in Table 7.2, with the remainder of this section providing comprehensive analysis.

147

7.7 Evaluation

Test
Case

Sender Queue Receiver Filter CBR
(msg/s)

D-CBR
(msg/s)

Increase Increase
(%)

One-to-One

OtO-1 1 1 1 8 627.68 1,566.54 938.86 149.58%

OtO-2 1 1 1 16 602.96 1,507.07 904.11 149.95%

OtO-3 1 1 1 32 573.13 1,291.34 718.21 125.31%

OtO-4 50 50 50 8 5,488.75 36,774.69 31,285.94 570.00%

OtO-5 50 50 50 16 4,761.47 34,716.73 29,955.26 629.12%

OtO-6 50 50 50 32 4,252.82 32,032.17 27,779.35 653.20%

OtO-7 250 250 250 8 3,210.24 34,760.83 31,550.59 982.81%

OtO-8 250 250 250 16 2,889.58 31,596.91 28,707.33 993.48%

OtO-9 250 250 250 32 2,371.99 30,126.95 27,754.96 1170.11%

OtO-10 400 400 400 8 3,103.09 34,222.14 31,119.05 1002.84%

OtO-11 400 400 400 16 2,650.08 33,186.58 30,536.50 1152.29%

OtO-12 400 400 400 32 2,016.47 20,362.26 18,345.79 909.80%

Few-to-Many

FtM-1 1 1 5 8 3,141.40 8,142.15 5,000.75 159.19%

FtM-2 1 1 5 16 2,899.35 7,373.00 4,473.65 154.30%

FtM-3 1 1 5 32 2,794.35 6,382.15 3,587.80 128.39%

FtM-4 50 50 250 8 5,250.59 32,407.64 27,157.05 517.22%

FtM-5 50 50 250 16 4,650.14 29,706.42 25,056.28 538.83%

FtM-6 50 50 250 32 4,191.88 29,364.28 25,172.40 600.50%

FtM-7 100 100 500 8 4,491.64 35,552.29 31,060.65 691.52%

FtM-8 100 100 500 16 3,929.08 32,456.32 28,527.24 726.05%

FtM-9 100 100 500 32 3,275.32 30,605.27 27,329.95 834.42%

Many-to-Few

MtF-1 5 1 1 8 632.95 1,638.32 1,005.37 158.84%

MtF-2 5 1 1 16 595.59 1,556.07 960.48 161.27%

MtF-3 5 1 1 32 560.32 1,402.29 841.97 150.27%

MtF-4 250 50 50 8 4,664.75 29,906.83 25,242.08 541.12%

MtF-5 250 50 50 16 4,140.88 26,027.54 21,886.66 528.55%

MtF-6 250 50 50 32 3,659.33 25,168.73 21,509.40 587.80%

MtF-7 500 100 100 8 3,778.95 32,110.38 28,331.43 749.72%

MtF-8 500 100 100 16 3,381.29 27,982.82 24,601.53 727.58%

MtF-9 500 100 100 32 2,813.52 26,764.15 23,950.63 851.27%

Table 7.2 Coordination-based integration case study benchmark results

148

7.7 Evaluation

7.7.1 One-to-One Evaluation

The objective of the One-to-One test cases is to benchmark both integration patterns in a message
producer/consumer balanced deployment scenario. The twelve test cases for this evaluation are
test case OtO-1 to test case OtO-12. These tests expose the solutions to an ever-increasing quantity
of message participants with the largest test involving 800 participants (400 producers and 400
consumers).

(a) 1 Sender / 1 Queue / 1 Receiver (b) 50 Senders / 50 Queues / 50 Receivers

(c) 250 Senders / 250 Queues / 250 Receivers (d) 400 Senders / 400 Queues / 400 Receivers

Figure 7.7 Benchmark results integration patterns within the
one-to-one test cases

149

7.7 Evaluation

7.7.1.1 Results Summary

The minimum relative performance increase observed within the one-to-one benchmarks is ex-
perienced in test case OtO-3. In this test case, the CBR integration pattern processed 573.13
msg/sec (34,387.80 msg/min), while the D-CBR integration pattern processed 1,291.34 msg/sec
(77,480.4 msg/min), an increase of 718.21 msg/sec (43,092.6 msg/min) or a 125.31% improvement
in throughput.

The maximum relative performance increase was in test case OtO-9. During this test case,
the CBR integration pattern processed 2,371.99 msg/sec (142,319.40 msg/min) and the D-CBR
integration pattern processed 30,126.95 msg/sec (1,807,617 msg/min), an increase in throughput
of 27,754.96 msg/sec (1,665,297.60 msg/min) or an 1170.11% throughput improvement.

The results of these test cases, illustrated in Figure 7.7, show that the D-CBR integration
solution outperforms the centralised CBR solution in all test cases. As test cases become more
strenuous, the margin of improvement increases. This trend is sustained in each test until the last
three test case. In test cases OtO-10 and OtO-12, a small decrease is observed in the growth of
the overall performance increase trend within the test cases.

7.7.2 Few-to-Many Evaluation

The objective of the Few-to-Many benchmarks is to test the integration patterns in a message
consumer dense environment. The nine test cases for this evaluation are FtM-1 to FtM-9. These
tests expose the patterns to an increasing quantity of message consumers with the largest test
featuring 600 participants (100 producers and 500 consumers).

7.7.2.1 Results Summary

The minimum performance increase experienced within the benchmark set is in test case FtM-3.
During this test case, the centralised CBR integration pattern processed 558.87 msg/sec (33,532.20
msg/min) and the D-CBR integration pattern processed 1,276.43 msg/sec (76,585.80 msg/min),
an increase of 717.56 msg/sec (43,053.60 msg/min) or a 128.39% improvement.

The maximum relative performance increase was in test case FtM-9. Over the course of this
test case, the CBR integration pattern processed 3,275.32 msg/sec (196,519.20 msg/min) and the
D-CBR integration pattern processed 30,605.27 msg/sec (1,836,316.20 msg/min), an increase in
throughput of 27,329.95 msg/sec (1,639,797 msg/min) or an 834.42% improvement.

The D-CBR integration pattern performs well in this type of environment with an increase in
performance as demand intensifies with each successive test case. The trend is consistent for all
test cases within the set, illustrated in Figure 7.8.

150

7.7 Evaluation

(a) 1 Sender / 1 Queue / 5 Receivers (b) 50 Senders / 50 Queues / 250 Receivers

(c) 100 Senders / 100 Queues / 500 Receivers

Figure 7.8 Benchmark results for integration patterns within the
few-to-many test cases

151

7.7 Evaluation

7.7.3 Many-to-Few Evaluation

The purpose of the Many-to-Few test cases is to expose the integration patterns to message pro-
ducer centric environments. The nine test cases for this evaluation are MtF-1 to MtF-9. These
tests expose the solutions to an increasing quantity of message producers with the largest test
containing 600 participants (500 producers and 100 consumers).

(a) 5 Sender / 1 Queue / 1 Receivers (b) 250 Senders / 50 Queues / 50 Receivers

(c) 500 Senders / 100 Queues / 100 Receivers

Figure 7.9 Benchmark results for integration patterns within the
many-to-few test cases

7.7.3.1 Results Summary

The minimum relative performance increase experienced within these benchmarks is in test case
MtF-3. In this test case, the centralised CBR integration pattern processed 560.32 msg/sec

152

7.8 Summary

(33,619.20 msg/min) while the D-CBR integration pattern processed 1,402.29 msg/sec (841,37.40
msg/min), an increase of 841.97 msg/sec (50,518.2 msg/min) or an increase of 150.27%

The maximum relative performance increase was in test case MtF-9. During this test case
the CBR integration pattern processed 2,813.52 msg/sec (168,811.20 msg/min) and the D-CBR
integration pattern processed 26,764.15 msg/sec (1,605,849 msg/min), an increase in throughput
of 23,950.63 msg/sec (1,437,037.80 msg/min) improving performance by 851.27%.

These test cases once more demonstrate the dominance of the D-CBR integration pattern
in terms of scalability. The results of the many-to-few test cases, illustrated in Figure 7.9, in
conjunction with the one-to-one and few-to-many test cases, demonstrate the capacity of the D-
CBR integration to perform well under a wide range of challenging conditions.

7.7.4 Evaluation Summary and Discussion

The benchmarking process to evaluate the CBR and D-CBR integration patterns was extensive.
Sixty test cases were performed on a private network of 12 machines, taking over 34 hours to
execute. The test cases were designed to investigate the scalability of both patterns in a wide
range of deployment scenarios; carefully selected to expose the patterns to a variety of messaging
requirements.

In all the test cases executed, the Decentralised-CBR integration pattern outperformed the cen-
tralised CBR pattern. This was a predictable outcome of the benchmark process; decentralisation
of the distribution process increases the scalability of the overall deployment. However, the level
of performance increase was not expected, in almost all test cases the D-CBR pattern exhibited
over a five fold improvement; over six test cases demonstrated a nine fold improvement, with two
an eleven fold improvement.

The smallest scaled scenario was achieved in the few-to-many test cases. Test case FtM-3,
consisted of a single producer and consumer with 32 routing rules. In this test case, the centralised
CBR integration pattern consumed 558.87 msg/sec (33,532 msg/min, 2,011,920 msg/hour), and the
D-CBR integration solution consumed 1,276.43 msg/sec (76,586 msg/min, 4,595,160 msg/hour), a
throughput increase of 128.39%.

Test case OtO-4 produced the largest scaled scenario with the CBR integration pattern produc-
ing 5,488.75 msg/sec (329,325 msg/min, 19,759,500 msg/hour) and the D-CBR solution producing
36,774.69 msg/sec (2,206,481 msg/min, 132,388,860 msg/hour) an improvement in throughput of
31,285.94 msg/sec (1,877,156 msg/min, 112,629,360 msg/hour).

A comparison of the few-to-many and many-to-few test sets reveals that the few-to-many scenar-
ios produce larger scaled deployments, however the many-to-few scenarios produce greater relative
improvements when using the D-CBR integration pattern.

In conclusion, the evaluation process has validated the assertion of the benefits of the D-CBR
pattern and the benefits of an open interaction protocol for the coordination of self-managed
systems..

7.8 Summary

Message Infrastructure Coupling (MIC) can drastically affect the maintenance and performance of
a MOM-based distributed deployment. Content Based Routing (CBR) is a popular approach used

153

7.8 Summary

to minimise the affects of MIC. However, current approaches to CBR are based on a centralised
mindset that improves the maintainability but limits the scalability and robustness of a messaging
solution. The Decentralised-CBR (D-CBR) pattern developed in this case study maximises main-
tainability and scalability by combining the advantages of a centralised rule-base with a distributed
message delivery.

The key mechanism needed in the implementation of the D-CBR design pattern is the ability to
exchange management information (meta-information) between systems in an open manner. The
D-CBR design pattern demonstrates the benefits of an open interaction protocol such as Open
Meta-level Interaction Protocol (OMIP) for the coordination of self-managed systems.

The benchmarking process to evaluate the CBR and D-CBR integration patterns was extensive.
Sixty test cases were performed on a private network of 12 machines, taking over 34 hours to
execute. The test cases were designed to investigate the scalability of both patterns in a wide
range of deployment scenarios; carefully selected to expose the patterns to a variety of messaging
requirements. The Decentralised-CBR integration pattern significantly outperforms the centralised
CBR pattern. In almost all test cases the D-CBR pattern exhibited over a five fold improvement;
over six test cases demonstrated a nine fold improvement, with two an eleven fold improvement.
The evaluation process validates the assertion of the benefits of the D-CBR pattern and the benefits
of an open interaction protocol for the coordination of self-managed systems.

154

Chapter 8

Case Study – Coordinated

Self-Managed MOM

The purpose of the case study is to illustrate the benefits of self-management capabilities for MOM
and to support the case for the coordination of such capability. Within this case study, GISMO
adapts the configuration of a MOM destination hierarchy to efficiently service its deployment
environment. The resulting reflective destination hierarchy is then empirically compared to a
contemporary non-reflective destination hierarchy to reveal the more efficient and scalable solution.

8.1 Motivational Scenario

As a means to provide background rational for this case study, a motivational scenario of a factitious
“Movie Information Service” (MIS) is presented. The MIS provides information on newly released
movies, in-production movies, and a back-catalogue of classic films. Services such as the MIS can
potentially contain a large collection of information. To maintain clarity within this scenario the
MIS tracks a limited subset of information consisting of movie genera, cast, director, rating, and
release date as summarised in Table 8.1.

Information Description Sample Values

Name The title of the film Star Wars, Indiana Jones, Clerks, Dogma, James

Bond, Schindler’s List, Raising Arizona, The Lord

of the Rings, ...

Genera The classification of the

film

Horror, Sci-Fi, Action, Comedy, Drama, ...

Cast The leading actors and

co-actors in the movie

Harrison Ford, Sean Connery, Tom Hanks, David

Prowse, Liz Taylor, ...

Director The director of the

movie

George Lucas, Kevin Smith, The Coen Brothers,

Steven Spielberg, Peter Jackson, Michael Moore, ...

Rating Average critic rating (* | ** | *** | **** | *****)

Release Date Date of release 19/05/2005

Table 8.1 A sample movie service message structure

155

8.2 Routing Scenarios

The MIS requires a broad dissemination mechanism and is an ideal candidate for the pow-
erful one-to-many publish/subscribe-messaging model. Within this messaging model, message
consumers declare their interest in messages by providing a subscription to the MOM. Subscrip-
tions define a consumer’s interest in a particular type of message by defining a constraint on the
attributes of a message. Some sample subscriptions for the MIS are:

• All Sci-Fi movies (Genera = “Sci-Fi”)

• All movies that are director by Kevin Smith (Director = “Kevin Smith”)

• All Sci-Fi films that are directed by Steven Spielberg (Genera = “Sci-Fi” AND Director =
“Steven Spielberg”)

Providing a subscription to the MOM allows it to limit messages a consumer receives to ones
that match its interests, avoiding the delivery of any unwanted messages.

The MIS scenario is a common messaging challenge within the MOM domain. The main
challenges faced within these scenarios is balancing the expressability of the subscription with the
scalability of the messaging solution [65, 124]; the more expressive the subscription mechanism the
less scalable the solution.

A number of techniques can minimise this effect. One of these, filter covering, discussed in
Chapter 3, attempts to minimise subscription constraint evaluation by grouping common filters
together. Another approach to increase scalability is to filter the message as close to the message
producer as possible. Both of these techniques are natural characteristics of destination hierarchies.

Destination hierarchies are a destination grouping mechanism within the publish/subscribe
messaging model. This type of structure allows destinations to be defined in a hierarchical fashion,
so that they may be nested under other destinations. Each sub-destination offers a more granular
selection of the messages contained in its parent. Clients of destination hierarchies subscribe to
the most appropriate level of destination to receive the most relevant messages.

The objective of this case study is to investigate the combination of coordinated self-managed
techniques with a destination hierarchy. The next section introduces the current routing scenarios
for the test case, Section 8.2.3 introduces reflective destination hierarchies, and the remainder of
the chapter discusses the benchmark evaluation of both static and reflective destination hierarchies
and commentary on the results.

8.2 Routing Scenarios

To recreate a scenario like the MIS, the demands experienced within the deployment must be repli-
cated. These demands are dictated by the requirements of the message participants within the
deployment; the more diverse the requirements are the harder the messaging solution must work
to meet them. Requirements are replicated within the test case by using groups of consumers and
producers. To create diversity, message participants are assigned to an interest group with a pre-
defined set of messaging requirements (subscription constraints). Message producers of an interest
group produce messages that match the subscriptions of the group’s message consumers. The use
of multiple groups enables the creation of diverse deployment scenarios allowing a test case to
benchmark the proficiency of different routing solution in dealing with messages and subscriptions
of varying types.

156

8.2 Routing Scenarios

The proposed interest groups used within this case study employ an exponentially increasing
subscription complexity. To show the effect of filter covering, each group builds on the constraints
of the previous group(s). This relationship is illustrated as a Venn diagram in Figure 8.1. These
relationships and their effect on message delivery ratios are an important consideration when
examining the results of the case study. Not only does the size of the subscription increase with
each group but the ratio of messages delivered also increases.

A

C

B

Figure 8.1 Venn diagram of relationships between interest groups

Since this case study is run within the publish/subscribe messaging model, topics destinations
are used, resulting in a one-to-many message delivery. This has an effect on the number of messages
sent and delivered. Table 8.2 details the correlation with respect to message delivery ratios between
message groups.

Message
Producer

Simulated Messaging Requirements Message
Recipients

Group A Ability to cope with subscriptions of interest group A

(8 Filters = 8 new constraints)

Group A Only

Group B Ability to cope with subscriptions of interest group B

(16 Filters = Group A + 8 new constraints)

Groups A & B

Group C Ability to cope with subscriptions of interest group C

(32 Filters = Group A + Group B + 16 new constraints)

Groups A, B, & C

Table 8.2 Summary of message delivery relationships between interest
groups

The message delivery ratios between each interest group is broken down as:

• Group A messages will only be received by group A consumers. A 1:1 delivery ratio.

• Group B messages will be received by consumers from groups A & B. A 1:2 delivery ratio.

• Group C messages will be received by consumers from groups A, B, & C. A 1:3 delivery ratio.

With the messaging participants introduced, the remainder of this section discusses possible
routing solutions.

157

8.2 Routing Scenarios

8.2.1 Single Destination

The most straightforward routing solution available is to use a single destination to route messages.
This dissemination mechanism uses a single topic for all interest groups, forcing the maximum
amount of work on the MOM, requiring it to filter individual subscriptions on each message sent
to the topic. A single destination routing solution is illustrated in Figure 8.2.

Group A
Producer

Group B
Consumer

Group C
Producer

Group B
Producer

Group C
Consumer

Group A
Consumer

S
ingle

D
estination

To Destination From Destination

1 3
2

Figure 8.2 Single destination routing scenario

1. Each interest group’s message producers send their messages to the single destination.

2. Message consumers from each interest group subscribe to the single destination. Each group’s
subscription constraints are evaluated on the messages at the destination.

3. Messages that match subscription constraints are delivered to relevant consumers.

The single topic approach is a simple routing solution for a MIS type service. However, its
simplistic structure does not take advantage of techniques such as pre-filtering (source filtering) and
filter covering [124] to increase scalability and throughput. Such capability may be implemented
within a proprietary MOM but it is not a natural characteristic of the messaging solution. This
forces the maximum amount of exertion on the MOM provider limiting the scalability of the
deployment. To overcome this limitation more complex structures such as destination hierarchies
were developed.

8.2.2 Static Destination Hierarchy

Destination hierarchies are a key technique to facilitate an efficient message pre-filtering in a
provider neutral manner. Destination hierarchies alleviate the burden of extensive filtering within
large-scale deployments. This type of destination structure allows the definition of topics in a
hierarchical fashion, so that topics may be nested under other topics. Each sub-topic offers a
more granular selection of the messages contained in its parent topic (filter covering). Clients of
hierarchical destinations subscribe to the most appropriate level of destination to receive the most
relevant messages. In large-scale systems, the grouping of messages into related types (i.e. into
sub-topics) helps to manage large volumes of different messages [64].

Hierarchical destinations require that the destination namespace schema be both well defined
and universally understood by the participating parties. This requires the hierarchy to be pre-
defined to meet requirements for a specific deployment scenario. Due to this prerequisite, hier-

158

8.2 Routing Scenarios

archical destinations are used in routing situations that are more or less static and have limited
capabilities to deal with new messaging requirements.

Illustrated in Figure 8.3 is a static hierarchy routing solution. Within this routing solution, the
hierarchy has two destinations, “A” and “B”, designed for interest groups A and B respectively.
Interest group C has been omitted from the hierarchy design and is used to replicate an unan-
ticipated messaging requirement within the environment. Group C demonstrates the limitations
of a static hierarchy, enabling the observation of the hierarchy’s behaviour when it encounters an
unexpected requirement.

A

B
Group A
Producer

Group B
Consumer

Group C
Producer

Group B
Producer

Group C
Consumer

Group A
Consumer

To B

To A

To B

From B

From A

From B

1

1

3

2

2

4

Figure 8.3 Static destination hierarchy routing scenario

1. Interest group A & B’s message producers send their messages to their respective destinations
A and B within the hierarchy (pre filtering).

2. Message consumers from interest group A and B pre-empt constraint evaluation by subscrib-
ing directly to destinations A and B within the hierarchy.

3. Since the hierarchy is not designed for interest group C, no destination C exists. The most
appropriate destination within the hierarchy for messages from group C is destination B
(destination B provides filter covering for the constraints of group A & B which constitute
50% of C’s constraints).

4. Consumers from group C subscribe to destination B. Half of group Cs subscription constraints
are covered by the hierarchy, the remaining constraints of group C are evaluated on all
messages within destination B (all messages from group B & C). All messages that match
the group C subscriptions are delivered to group C consumers.

The pre-filtering associated with the static destination hierarchy is a very effective method for
minimising the workload associated with subscription evaluation for the pre-defined requirements
of groups A and B. However, once the unanticipated requirement of group C is encountered, the
hierarchy has no way of dealing with it and requires the MOM provider to supplement it with
constrain evaluation. Reflective destination hierarchies are designed to overcome this limitation.

8.2.3 Reflective Destination Hierarchy

A Reflective Destination Hierarchy (RDH) [33, 128] is designed with the ability to autonomously
self-adapt to its deployment environment. The objective of the adaptation is to maximise the ben-

159

8.3 Creating Reflective Destination Hierarchies

efits from pre-filtering and filter covering while minimising constraint evaluation. This is achieved
by creating appropriate sub-topics within the hierarchy at runtime to meet current operating con-
ditions.

The routing scenario in Figure 8.4 introduces a RDH. The initial configuration of the hierar-
chy (destinations A and B) is the same as the preceding static hierarchy. This enables a direct
comparison between the hierarchies to assess the benefits of reflective destination hierarchies.

A

B
Group A
Producer

Group B
Consumer

Group C
Producer

Group B
Producer

Group C
Consumer

Group A
Consumer

To B

To A

To C

From B

From A

From C

C

1

1

4

2

2

5

3

Figure 8.4 Reflective destination hierarchy routing scenario

1. As with the static hierarchy, interest group A & B’s message producers send their messages
to the destinations A and B within the hierarchy.

2. Again, message consumers from interest group A and B pre-empt constraint evaluation by
subscribing directly to destinations A and B within the hierarchy.

3. Unlike the static hierarchy, a reflective hierarchy will recognise a need for a destination for
interest group C and create destination C. Message participants are informed of this change.

4. Interest group C’s message producers send their messages to the newly created destination
C.

5. Message consumers from interest group C remove the need for constraint evaluation by
subscribing directly to destination C, improving the performance of the hierarchy.

The ability of a RDH to identify current operating conditions and adapt the hierarchy structure
to meet these requirements is vital to maximise the benefits of pre-filtering and filter covering,
minimising filter constraint evaluation. A RDH allows message participants to choose the criteria,
allowing a hierarchy to evolve (or grow) and constantly adapt into one customised specifically for
the deployment environment. Starting from a single destination (seed) a customised destination
hierarchy (tree) can grow based on the expressed requirements of the environment; relieving the
need to predefine the hierarchy. The design of a RDH is now discussed.

8.3 Creating Reflective Destination Hierarchies

The GISMO reflective framework provides an ideal foundation for the creation of RDH with its
support for coordinated self-managed MOM, a destination meta-model, and pluggable reflective
policies. All of these capabilities are necessary to implement RDHs.

160

8.3 Creating Reflective Destination Hierarchies

An important part of creating an effective reflective destination hierarchy is defining the criteria
that will direct the adaptation of the hierarchy. A number of potential reflective criteria were
identified for the creation of a reflective hierarchy. The criteria identified analysed different usage
metrics for hierarchy adaptation; these criteria included the analysis of message traffic submitted
to the service and consumer subscription analysis. When evaluating each potential candidate it is
important to consider the quantity of information that must be tracked and the cost associated
with its collection at runtime. As discussed in Chapter 2, the cost of the reflective process is closely
connected to its success.

Consumer subscription analysis was the metric chosen to prototype reflective hierarchies due to
its requiring a smaller amount of information tracking with simple runtime collection requirements,
offering a greater chance of success. The presence of a subscription meta-model within GISMO
was also a factor. Subscription monitoring alters the hierarchy based on current subscription
constrains. The remainder of this section discusses the design of the subscription monitoring
reflective policy including policy triggers, analysis process, adaptation algorithm, and the role of
coordination within the policy.

8.3.1 Subscription Monitoring Policy - Overview

The subscription monitoring policy observes consumer subscription constraints on destinations
within the hierarchy. The examination of subscriptions exposes common constraints and their
most frequent values. If a large number of similar constraints exist, the policy reacts by adapting
the destination hierarchy to provide a new destination for these constraints, pre-empting the need
for their evaluation, increasing the filter covering and pre-filtering range of the hierarchy.

8.3.2 Policy Triggers

Policy invocation can be achieved with the use of time-based triggers or by attaching the policy
to any of the subscription related reflective locations (Create and Delete). Once the trigger(s)
method is chosen, the next step is to decide how often the policy should be executed.

Self-managed systems aspire to reap the maximum benefit possible from the minimum amount
of cost (analysis and adaptation). Within this or any scenario, it would not be appropriate for the
policy to be executed every time a subscription is created or deleted. In order for the policy to
be effective, the state must have changed a reasonable amount for an adaptation to be of any real
benefit. With this in mind, the policy implementation allows the restriction of its execution to a
function of its invocation frequency; limiting its execution to every 10, 100, or N times it is invoked.
This allows a reasonable quantity of change to have occurred before any reflective activity executes,
increasing the likelihood of a beneficial adaptation to cover the cost of the reflective process.

8.3.3 Analysis Process

The primary analysis tool used by the policy examines the subscription and destination meta-
model to identify common subscription constrains for destinations within the hierarchy. With the
use of this information, it is possible to identify and create new sub-destinations to meet the needs
of common subscription constraints, such as the destination for group C in the test case. The next
section describes the reflective logic used within this decision making process.

161

8.3 Creating Reflective Destination Hierarchies

8.3.4 Adaptation Algorithm

With the analysis information on hand, the next action of the policy is to decide on suitable
adaptations to perform, if any. In many cases, it may not be appropriate to make an adaptation
and it is the responsibility of the adaptation algorithm to make this decision. This algorithm must
balance the cost against the potential benefits of the adaptation; the logic and control used for
this decision making process is illustrated in Figure 8.5.

Retrieve all
destinations

For each
destination

Invoke policy

Exceed creation
threshold?

Retrieve popular
subscription filters

Create sub-
destination

End

filters >=
destFilterTrigger

No

Yes

Yes

No

Figure 8.5 Reflective destination hierarchy adaptation algorithm

Within this algorithm, two control variables set the criteria for the creation of a new sub-
destination. The ‘destFilterTrigger’ control variable is use to specify the number of filter constraints
a destination must posses in order for it to be considered for adaptation. Once a destination
with a sufficient number of subscription constraints is identified, its subscriptions are examined to
expose common constraints. The common constraints exposed are evaluated against the ‘creation -
threshold’ control variable to decide if a new sub-destination is required.

Within the current implementation of this algorithm, the administrator specifies the value of

162

8.4 Benchmarking Dynamic Environments

both of the control variables. However, the algorithm could be enhanced with the use of artificial
intelligence techniques to self-optimise and refine the boundaries within the algorithm, possible
techniques include reinforcement learning [129] and collaborative reinforcement learning [27].

8.3.5 Realisation

The realisation process of the policy has two parts. The most obvious realisation involves changing
the destination hierarchy using the destination meta-model described in Chapter 5. The second
part of the realisation process involves informing relevant consumers and producers of any new sub-
destination(s). This is achieved with the use of MOM-DSL event notifications to inform external
participants when the destination meta-model changes.

8.3.6 Coordination

Coordination plays an important role in the realisation of RDH. As described in Chapter 7, co-
ordination can be used to reduce message infrastructure coupling, allowing the adjustment of the
hierarchy to suit the current environment. The role of coordination within RDH is to inform
message participants as to the structure and purpose of the hierarchy. Initial OMIP interactions
between participants exchange destination information to inform consumers and producers of the
structure and role of the hierarchy. Further interactions inform message participants of changes to
the hierarchy via MOM-DSL event notifications. When the destination hierarchy is adapted, any
participants subscribed to these events are informed of the change and can adjust their subscrip-
tions accordingly.

The coordination interactions with RDH provide an exemplar of how coordinated self-managed
systems can improve the overall service provision within an environment.

8.4 Benchmarking Dynamic Environments

The objective of this case study is to compare a reflective destination hierarchy against a static des-
tination hierarchy to reveal any performance benefits. As discussed in Appendix A, the traditional
approach to benchmarking MOM solutions is a test case with a fixed number of message producers
communicating through a MOM to a fixed number of messages consumers using a fixed number
of filters. These conditions are static (remaining constant) for the duration of the test case. This
is the common form of MOM test case and has been used by a number of industrial and academic
benchmarking efforts [92, 130, 131, 132, 133]. This approach is known as static benchmarking.

Static benchmarking is of limited use for evaluating reflection-based self-managed systems.
While it is possible to test the performance of a self-managed system under one set of conditions,
static benchmarking has no capacity to test the system for its ability to adapt to new and changing
conditions: the key objective of a self-managed system. With this deficiency in mind, a new
approach to test case design for self-managed systems is purposed.

The key to successfully benchmarking a reflection-based self-managed system is to gauge its
reflective capability. To achieve this, the test case must simulate varying conditions within dynamic
environments. An effective method of achieving this is to stage “environmental” changes over the
duration of the test case to replicate a non-static environment. With these environmental changes,
it is possible to gauge the ability of the self-managed system to deal with them, thus benchmarking

163

8.4 Benchmarking Dynamic Environments

the reflective ability. With this change in approach to test case design, a new metric is needed to
measure performance.

The common metric used within static benchmarks is the message-received per interval rate.
Typically, this is reported as an average for all time intervals during the duration of the test case, i.e.
15,543 msg/sec. However, within a dynamic benchmark, there is an important relationship between
an intervals message rate and the activity of the dynamic environment during that interval; a single
throughput figure for the test case does not represent this relationship. It is vital to observe the
reaction of a self-managed system to an environmental change; how it behaved before the change,
how it reacted to and during the change, and how it performed after the change. To capture these
characteristics a temporal performance trend may be used to highlight environmental changes and
the system’s reaction for the duration of the test case. Appendix A provides a full discussion of
MOM benchmarking techniques, including a description of the testbed used. The remainder of
this section provides a systematic walkthrough of the dynamic MOM test case developed for this
case study.

8.4.1 Dynamic MOM Test Case Walkthrough

In order to simulate a dynamic MOM environment, the dynamic conditions within the environment
must first be identified. From the perspective of the MOM, the three main dynamic conditions are
the number of message producers, message consumers, and subscription complexity.

Creating a dynamic test case for a self-managed MOM can be achieved by altering these con-
ditions at runtime with the staggered introduction of new message producers and consumers into
the environment. Messaging conditions can also be altered by varying the subscriptions (interests)
of message participants over the duration of the test case.

Within the test case scenario three interest groups exist, groups A, B, and C. To replicate a
dynamic environment these groups will join the benchmark in a staggered manner. This will allow
the observation of the messaging solutions proficiency in dealing with each group. Each test case
used for these benchmarks will execute for the duration of one hundred 60-second intervals. Test
cases are run with the following interest groups joining at staggered times:

• Interest Group A: Join at interval 1, participant until interval 100

• Interest Group B: Join at interval 25, participant until interval 100

• Interest Group C: Join at interval 50, participant until interval 100

The timeline for the test cases builds on the default test case timeline, discussed in Appendix
A. The dynamic test case timeline is enhanced with the staggered joining of interest groups; the
enhanced timeline is illustrated in Figure 8.6.

The test case is specifically designed to replicate operational conditions to benchmark both
hierarchies. Intervals 1-50 are limited to interest groups A and B to allow the examination of the
behaviour of both hierarchies under anticipated operating conditions. The test case then introduces
an unanticipated requirement, interest group C, from interval 50-100, to demonstrate their ability
to cope with unanticipated operating conditions.

164

8.5 Evaluation

Group A
Join

Interval 1

Group B
Join

Interval 25

Test
Expires

Interval 100

Ramp-up

Test Period
(Steady-State 100 Intervals)

Ramp-down

Group C
Join

Interval 50

Group A Intervals 1-100

Group B Intervals 25-100

Group C Intervals 50 -100

Figure 8.6 Dynamic test case timeline

8.5 Evaluation

With the use of the dynamic benchmark described in Section 8.4.1 it is possible to benchmark both
reflective and static destination hierarchies. However, to comprehensively test both hierarchies,
a range of test cases must be executed with varying numbers of message producers, message
consumers, and subscription complexity. In the evaluation a total of 26 test cases were executed,
each of these test cases follow the same timeline as described in the previous section. Listed in
Table 8.3 is a full list of all test cases within the evaluation. Within each test case, message
publishers and message subscribers are comprised of equal numbers from each interest group (i.e.
test case FtM-3 contains 20 publishers and 100 subscribers from interest group A, B, and C). The
remainder of this section provides a detailed analysis of the results from the benchmarking process.

8.5.1 One-to-One Evaluation

The one-to-one test cases benchmark both hierarchies in a producer-/consumer-balanced deploy-
ment. This set of tests contains five test cases ranging from 6 to 600 messaging participants.

8.5.1.1 3 Publishers / 3 Subscribers

500
450
400
350
300
250
200
150
100

50

10050
 Group C Joins

25
 Group B Joins

1
 Group A Joins

M
sg

 R
ec

ei
ve

 R
at

e
(in

 0
00

s)

Time Intervals

Static Hierarchy
Reflective Hierarchy

Figure 8.7 Result of test case OtO-1 (3 publishers and 3 subscribers)

165

8.5 Evaluation

Test Case ID Publishers Subscribers

One-to-One

OtO-1 3 3

OtO-2 30 30

OtO-3 90 90

OtO-4 150 150

OtO-5 300 300

Few-to-Many

FtM-1 3 15

FtM-2 30 150

FtM-3 60 300

FtM-4 90 450

Many-to-Few

MtF-1 15 3

MtF-2 150 30

MtF-3 300 60

MtF-4 450 90

Table 8.3 Coordinated self-management case study benchmark test
cases

The first of the one-to-one test cases, illustrated in Figure 8.7, is the smallest test case within
the evaluation process using only six participants. At the most basic stage of this test case, 0-
25 intervals with participants from only group A, the static hierarchy outperforms the reflective
hierarchy even though both hierarchies are identical. This performance difference disappears when
group B joins the test case at interval 25. Once group C joins at interval 50, the static hierarchy
outperforms the reflective hierarchy for the remainder of the test by an average for 40%. At this
very early stage of the benchmarking process, the prospects for a reflective hierarchy within a
small-scale environment do not look promising.

8.5.1.2 30 Publishers / 30 Subscribers

During this test case, shown in Figure 8.8, both hierarchies have near identical performances over
the first 50 intervals with an average deviation of –1.5% (intervals 0-25) and 0.5% (intervals 25-50).
When group C joins the test case at interval 50, the reflective hierarchy outperforms the static
hierarchy by an average of 26.96% for the duration of the test case. The amount of time taken by
the reflective hierarchy to reach optimal throughput is minimal.

166

8.5 Evaluation

10,000
9,000
8,000
7,000
6,000
5,000
4,000
3,000
2,000
1,000

10050
 Group C Joins

25
 Group B Joins

1
 Group A Joins

M
sg

 R
ec

ei
ve

 R
at

e
(in

 0
00

s)

Time Intervals

Static Hierarchy
Reflective Hierarchy

Figure 8.8 Result of test case OtO-2 (30 publishers and 30 subscribers)

8.5.1.3 90 Publishers / 90 Subscribers

10,000
9,000
8,000
7,000
6,000
5,000
4,000
3,000
2,000
1,000

10050
 Group C Joins

25
 Group B Joins

1
 Group A Joins

M
sg

 R
ec

ei
ve

 R
at

e
(in

 0
00

s)

Time Intervals

Static Hierarchy
Reflective Hierarchy

Figure 8.9 Result of test case OtO-3 (90 publishers and 90 subscribers)

In this 180 participant test case, presented in Figure 8.9, there is a slight difference between
the performances of both hierarchies over the first 50 intervals. The reflective hierarchy slightly
underperforms for 15 intervals between intervals 30 and 45, with an average underperformance of
–4.69% between intervals 25 to 50. When group C joins at interval 50, the reflective hierarchy
outperforms the static hierarchy by an average of 26.06% for the remainder of the test case.

8.5.1.4 150 Publishers / 150 Subscribers

During the first 50 intervals of this 300 participant test case, illustrated in Figure 8.10, both
hierarchies have near identical performance and an average deviation of less that 1%. At interval
50, when group C joins, the reflective hierarchy outperforms the static hierarchy by an average of
19.88%, reaching its optimal performance within 5-10 intervals.

167

8.5 Evaluation

10,000
9,000
8,000
7,000
6,000
5,000
4,000
3,000
2,000
1,000

10050
 Group C Joins

25
 Group B Joins

1
 Group A Joins

M
sg

 R
ec

ei
ve

 R
at

e
(in

 0
00

s)

Time Intervals

Static Hierarchy
Reflective Hierarchy

Figure 8.10 Result of test case OtO-4 (150 publishers and 150
subscribers)

8.5.1.5 300 Publishers / 300 Subscribers

10,000
9,000
8,000
7,000
6,000
5,000
4,000
3,000
2,000
1,000

10050
 Group C Joins

25
 Group B Joins

1
 Group A Joins

M
sg

 R
ec

ei
ve

 R
at

e
(in

 0
00

s)

Time Intervals

Static Hierarchy
Reflective Hierarchy

Figure 8.11 Result of test case OtO-5 (300 publishers and 300
subscribers)

The largest of the producer/consumer balanced test cases, with over 600 messaging participants,
is shown in Figure 8.11. Within this test case, both hierarchies provide a similar performance over
the first 50 intervals with a deviation of between 0.37% and 2.94%. Upon the introduction of group
C, the reflective hierarchy outperforms by an average of 11.73%. However, this test case reveals
more than a simple throughput increase. The static hierarchy has large spikes in the level of service
it is able to provide within this environment. During some intervals, the static hierarchy is able
to match the performance of the reflective hierarchy, at other intervals it is only able to provide
between 65% and 80% (62.27% at interval 83) of the service offered by the reflective hierarchy. In
contrast, the reflective hierarchy offers a smooth level of service for the duration of the test case
and reaches optimal performance at interval 60.

8.5.1.6 Summary of One-to-One Evaluation

Within the one-to-one test cases, the reflective approach outperforms the static hierarchy in all
but one small-scale test case, OtO-1. Performance increases range from 11.73% to 26.96%, a full
throughput comparison of these test cases in available in Table 8.4.

168

8.5 Evaluation

Participants Test Case Intervals 0-25 Intervals 25-50 Intervals 50-100

3/3
Static 6,421,565 4,339,314 10,728,557

Reflective 7,173,751 4,089,262 6,421,455

Difference 752,186 (11.71%) -250,052 (5.76%) -4,307,102 (40.15%)

30/30
Static 90,510,510 81,925,644 144,330,987

Reflective 89,158,339 82,168,329 183,239,234

Difference -1,352,171 (1.49%) 242,685 (0.30%) 38,908,247 (26.96%)

90/90
Static 93,883,811 79,926,804 124,898,961

Reflective 96,346,100 76,178,453 157,441,631

Difference 2,462,289 (2.62%) -3,748,351 (4.69%) 32,542,670 (26.06%)

150/150
Static 85,614,437 75,660,895 130,639,962

Reflective 86,007,078 74,561,951 156,617,335

Difference 392,641 (0.46%) -1,098,944 (1.45%) 25,977,373 (19.88%)

300/300
Static 165,259,616 143,267,485 272,929,447

Reflective 165,867,999 147,474,961 304,937,015

Difference 608,383 (0.37%) 4,207,476 (2.94%) 32,007,568 (11.73%)

Table 8.4 Message receive throughput comparisons for the one-to-one
set of test cases

8.5.2 Few-to-Many Evaluation

The few-to-many test cases evaluate the static and reflective hierarchies in a consumer heavy
deployment. The set contains four test cases ranging from 18 to 540 message participants.

8.5.2.1 3 Publishers / 15 Subscribers

5,000
4,500
4,000
3,500
3,000
2,500
2,000
1,500
1,000

500

10050
 Group C Joins

25
 Group B Joins

1
 Group A Joins

M
sg

 R
ec

ei
ve

 R
at

e
(in

 0
00

s)

Time Intervals

Static Hierarchy
Reflective Hierarchy

Figure 8.12 Result of test case FtM-1 (3 publishers and 15 subscribers)

The first of the consumer heavy environments, illustrated in Figure 8.12, results in a similar
throughput for both hierarchies throughout the entire 100 intervals. The effect of group C was

169

8.5 Evaluation

minimal with the static hierarchy slightly outperforming the reflective hierarchy by an average of
2.02%.

8.5.2.2 30 Publishers / 150 Subscribers

10,000
9,000
8,000
7,000
6,000
5,000
4,000
3,000
2,000
1,000

10050
 Group C Joins

25
 Group B Joins

1
 Group A Joins

M
sg

 R
ec

ei
ve

 R
at

e
(in

 0
00

s)

Time Intervals

Static Hierarchy
Reflective Hierarchy

Figure 8.13 Result of test case FtM-2 (30 publishers and 150
subscribers)

The second test case in this group, presented in Figure 8.13, shows both hierarchies performing
similarly, with less than a 1.17% deviation until group C is introduced. At this point, the reflective
hierarchy starts to outperform the static hierarchy by an average of 26.01%.

8.5.2.3 60 Publishers / 300 Subscribers

10,000
9,000
8,000
7,000
6,000
5,000
4,000
3,000
2,000
1,000

10050
 Group C Joins

25
 Group B Joins

1
 Group A Joins

M
sg

 R
ec

ei
ve

 R
at

e
(in

 0
00

s)

Time Intervals

Static Hierarchy
Reflective Hierarchy

Figure 8.14 Result of test case FtM-3 (60 publishers and 300
subscribers)

This test case also follows the pattern from the previous two tests of near identical performance
over intervals 0-50, even though the static hierarchy does tail off slightly around interval 20. Upon
the introduction of group C participants, as shown in Figure 8.14, the reflective hierarchy provides
an average increase of 13.22% in throughput over the static hierarchy.

8.5.2.4 90 Publishers / 450 Subscribers

The result of this 540 participant test case is illustrated in Figure 8.15. Within the test case, both
hierarchies perform alike for the first 50 intervals with a small spike for the reflective hierarchy

170

8.5 Evaluation

10,000
9,000
8,000
7,000
6,000
5,000
4,000
3,000
2,000
1,000

10050
 Group C Joins

25
 Group B Joins

1
 Group A Joins

M
sg

 R
ec

ei
ve

 R
at

e
(in

 0
00

s)

Time Intervals

Static Hierarchy
Reflective Hierarchy

Figure 8.15 Result of test case FtM-4 (90 publishers and 450
subscribers)

between intervals 20-25. When group C joins, the reflective hierarchy outperforms the static
hierarchy by an average of 11.15%, taking seven intervals to reach optimal performance.

8.5.2.5 Summary of Few-to-Many Evaluation

Participants Test Case Intervals 0-25 Intervals 25-50 Intervals 50-100

3/15
Static 59,842,913 53,983,997 83,082,569

Reflective 59,990,406 53,765,752 81,401,873

Difference 147,493 (0.25%) -218,245 (0.40%) -1,680,696 (2.02%)

30/150
Static 101,547,580 91,476,470 160,870,337

Reflective 100,359,240 91,120,011 202,717,099

Difference -1,188,340 (1.17%) -356,459 (0.39%) 41,846,762 (26.01%)

60/300
Static 186,905,713 152,224,346 257,563,307

Reflective 193,873,534 153,497,873 291,600,559

Difference 6,967,822 (3.73%) 1,273,527 (0.84%) 34,037,253 (13.22%)

90/450
Static 162,519,779 138,235,824 240,884,371

Reflective 164,687,640 138,431,858 267,753,562

Difference 2,167,862 (1.33%) 196,035 (0.14%) 26,869,191 (11.15%)

Table 8.5 Message receive throughput comparisons for the few-to-many
set of test cases

In all but one test case in the few-to-many scenarios, the reflective hierarchy outperforms the
static hierarchy. In the one test case it under performed, the reflective hierarchy had an average
throughput of 2.02% less than the static hierarchy did. In the remainder of the test case, the
reflective hierarchy out performed the static hierarchy from 11.15% to 26.01%. A full throughput
analysis is presented in Table Table 5 Throughput comparisons for the few-to-many set of .

171

8.5 Evaluation

8.5.3 Many-to-Few Evaluation

In this group of test cases, the converse of the few-to-many test cases are run, creating producer
rich environments ranging from 18 to 450 message participants.

8.5.3.1 15 Publishers / 3 Subscribers

500
450
400
350
300
250
200
150
100
50

10050
 Group C Joins

25
 Group B Joins

1
 Group A Joins

M
sg

 R
ec

ei
ve

 R
at

e
(in

 0
00

s)

Time Intervals

Static Hierarchy
Reflective Hierarchy

Figure 8.16 Result of test case MtF-1 (15 publishers and 3 subscribers)

As shown in Figure 8.16, this is the third test case in which the static hierarchy outperforms
the reflective hierarchy. In a similar fashion to the previous tests (OtO-1 and FtM-1), a small
number of message participants (less than 20) are involved. Both hierarchies perform similarly
with an average deviation of less than 1.57%, until the introduction of group C. At this stage, the
static hierarchy has an average improved performance of 13.23%.

8.5.3.2 150 Publishers / 30 Subscribers

10,000
9,000
8,000
7,000
6,000
5,000
4,000
3,000
2,000
1,000

10050
 Group C Joins

25
 Group B Joins

1
 Group A Joins

M
sg

 R
ec

ei
ve

 R
at

e
(in

 0
00

s)

Time Intervals

Static Hierarchy
Reflective Hierarchy

Figure 8.17 Result of test case MtF-2 (150 publishers and 30
subscribers)

The next test case, presented in Figure 8.17, produces a more positive result for the reflective
hierarchy. Over the first 50 intervals performance between both hierarchies deviated by less that
1.08%. During intervals 50 to 100, the reflective hierarchy has an average improvement of 31.59%,
the largest relevant improvement within this case study. The hierarchy quickly adjusts to the
demands of group C, reaching optimal operation within three intervals.

172

8.5 Evaluation

8.5.3.3 300 Publishers / 60 Subscribers

10,000
9,000
8,000
7,000
6,000
5,000
4,000
3,000
2,000
1,000

10050
 Group C Joins

25
 Group B Joins

1
 Group A Joins

M
sg

 R
ec

ei
ve

 R
at

e
(in

 0
00

s)

Time Intervals

Static Hierarchy
Reflective Hierarchy

Figure 8.18 Result of test case MtF-3 (300 publishers and 60
subscribers)

The outcome of this test case, illustrated in Figure 8.18, is much closer than the previous
test with only an average performance difference of 1.52% and 0.32% over the first two stages
respectively. The smoothness of the level of service provided by both hierarchies is slightly erratic
once group B joins the test case, once group C joins the reflective hierarchy outperforming the
static hierarchy by an average of 7.12%.

8.5.3.4 450 Publishers / 90 Subscribers

10,000
9,000
8,000
7,000
6,000
5,000
4,000
3,000
2,000
1,000

10050
 Group C Joins

25
 Group B Joins

1
 Group A Joins

M
sg

 R
ec

ei
ve

 R
at

e
(in

 0
00

s)

Time Intervals

Static Hierarchy
Reflective Hierarchy

Figure 8.19 Result of test case MtF-4 (450 publishers and 90
subscribers)

The final test case in this case study, shown in Figure 8.19, is a near dead heat between both
hierarchies. The static hierarchy is slightly superior over the first 50 intervals with an average
performance improvement of 2.22% for intervals 0-25 and 5.13% for intervals 25-50. Over the
remaining 50 intervals, the reflective hierarchy outperforms the static hierarchy by an average of
3.54%.

8.5.3.5 Summary of Many-to-Few Evaluation

When examining all the test cases used in this case study, the many-to-few scenarios are least
successful for the reflective hierarchy. However, it still outperformed the static hierarchy twice and

173

8.5 Evaluation

Participants Test Case Intervals 0-25 Intervals 25-50 Intervals 50-100

15/3
Static 4,897,920 4,376,909 8,815,674

Reflective 4,880,007 4,445,800 7,649,118

Difference -17,913 (-0.37%) 68,891 (1.57%) -1,166,556 (-13.23%)

150/30
Static 85,939,886 78,170,427 142,083,289

Reflective 85,919,309 79,012,941 186,965,072

Difference -20,577 (-0.02%) 842,514 (1.08%) 44,881,784 (31.59%)

300/60
Static 78,485,420 81,181,004 142,494,435

Reflective 79,674,712 80,924,279 152,644,509

Difference 1,189,292 (1.52%) -256,725 (-0.32%) 10,150,074 (7.12%)

450/90
Static 73,193,679 72,683,700 136,281,747

Reflective 71,568,068 68,954,010 141,108,670

Difference -1,625,612 (-2.22%) -3,729,690 (-5.13%) 4,826,923 (3.54%)

Table 8.6 Message receive throughput comparisons for the many-to-few
set of test cases

matched the performance of the static hierarchy to within 0.19% in the last test in the group.
In only one test case the static hierarchy significantly outperformed the reflective hierarchy, while
test case MtF-2 produced the biggest relative performance increase of any test case within the case
study with a 31.59% improvement over the last 50 intervals. A full throughput comparison for the
many-to-few test cases is available in Table 8.6.

8.5.4 Evaluation Summary and Discussion

A summary of the throughput figures for the test cases is provided in Table 8.7. The largest
test case within the case study is FtM-3 with over 638,971,967 messages sent using the reflective
hierarchy, an improvement of 42,278,602 messages, or 7.09%. The largest improvement was in
MtF-2 with a throughput improvement of 45,703,721 message or 14.93% over the duration of the
test case. Even though the many-to-few benchmarks experienced the largest improvement, these
test cases also experienced the lowest relative throughput increase within the case study; this is
due to the producer-centric nature of the test cases. In only two test cases, the static hierarchy
significantly (more than 1% performance difference) outperformed the reflective hierarchy. In eight
test cases, the reflective hierarchy had a performance improvement of greater that 5%.

The main factor that improves the performance of the reflective hierarchy is the removal of
the need for filter evaluation. This act normalises the effort required to deliver messages within
each group, improving the overall scalability of the deployment. This trend is apparent upon
examination of the group timeline. Within the static hierarchy test cases, messages from each group
are not delivered equally due to the filtering evaluation required. Examination of the reflective
hierarchy test cases show an equal delivery of messages from each interest group, this is achieved by
simplifying the delivery of messages from group C (removing the need for constraint evaluation)

174

8.5 Evaluation

Test
Case ID

Publishers Subscribers Static
Hierarchy
Through-
put

Reflective
Hierarchy
Through-
put

Reflective
/Static

Reflective
/Static
(percent-
age)

One-to-One

OtO-1 3 3 21,489,436 17,684,468 -3,804,968 -17.71%

OtO-2 30 30 316,767,141 354,565,902 37,798,761 11.93%

OtO-3 90 90 298,709,576 329,966,184 31,256,608 10.46%

OtO-4 150 150 291,915,294 317,186,363 25,271,070 8.66%

OtO-5 300 300 581,456,548 618,279,975 36,823,426 6.33%

Few-to-Many

FtM-1 3 15 196,909,479 195,158,031 -1,751,448 -0.89%

FtM-2 30 150 353,894,387 394,196,350 40,301,963 11.39%

FtM-3 60 300 596,693,365 638,971,967 42,278,602 7.09%

FtM-4 90 450 541,639,973 570,873,060 29,233,087 5.40%

Many-to-Few

MtF-1 15 3 18,090,503 16,974,925 -1,115,578 -6.17%

MtF-2 150 30 306,193,601 351,897,322 45,703,721 14.93%

MtF-3 300 60 302,160,859 313,243,501 11,082,641 3.67%

MtF-4 450 90 282,159,126 281,630,748 -528,378 -0.19%

Table 8.7 Summary of case study throughput analysis

allowing the MOM to deliver more messages. Further results on the level of throughput from
individual groups within the test cases are available in Appendix C.

The time it takes for the reflective solution to reach its optimum performance depends on a
number of factors. These include the time for the adaptation to take place, time for consumers and
producers to update their view of the hierarchy, and the time needed to clear messages currently
within the system.

In three test cases, the static hierarchy outperformed the reflective hierarchy. One reason for the
poor performance of the reflective hierarchy in these test cases may be attributed to the overhead
of the self-management framework. At low levels of demand, self-management techniques may not
be able to improve performance enough to cover associated overheads. In the three test cases in
which the static hierarchy outperforms the reflective hierarchy, less that 18 message participants
are involved:

• OtO-1, 6 participants, throughput comparison for RDH –17.71%

• FtM-1, 18 participants, throughput comparison for RDH –0.89%

• MtF-1, 18 participants, throughput comparison for RDH –6.17%

The MtF-1 test case indicates the difficulty in obtaining performance improvements within

175

8.6 Summary

producer-heavy environments. Given that fewer consumers exist within these deployments, there
is less opportunity to increase performance by optimising filtering. This is backed up by the fact
that the many-to-few scenarios are least successful for the RDH.

A major influence in determining the breakeven point for a RDH is the MOM provider used for
the base-level. Given that each MOM implements filtering and routing services in a proprietary
manner, the potential performance improvements of a RDH will be specific to each MOM. As such,
the breakeven point for each MOM will vary accordingly.

Based on these results an estimated RDH breakeven point exists in the region of 20 message
participants for the one-to-one and few-to-many deployments, with a slightly higher breakeven
point within the many-to-few deployments.

8.6 Summary

The purpose of this case study was to examine the benefits of self-management capabilities for
MOM and to support the case for the coordination of self-managed systems. The case study
recreates a typical information dissemination service implemented with both a traditional and
reflective destination hierarchy. The empirical evaluation of the benchmarking process reveals the
reflective hierarchy to outperform the static hierarchy in 9 of the 14 test cases, with 2 test cases
producing dead heats1, demonstrating the benefits of both coordinated self-managed systems and
the benefits of reflective techniques within the MOM domain.

Apart from the empirical benefits of reflective hierarchies, an additional benefit of reflective
messaging solutions is their ability to adapt to current operating conditions. The case study
demonstrated this capability with an existing hierarchy; however, it could also grow a hierarchy.
Static destination hierarchies must predefine criteria for every potential deployment scenario in
advance. A reflective destination hierarchy allows message participants to choose the criteria,
allowing a hierarchy to evolve (or grow) and constantly adapt into one customised specifically for
the deployment environment. Starting from a single destination (seed) a customised destination
hierarchy (tree) can grow based on the expressed requirements of the environment; relieving the
need to predefine the hierarchy.

1 Less than 1% performance difference.

176

Chapter 9

Conclusions

If the vision of autonomic computing [6] is to be realised, the need for increased coordination
between self-managed systems is a fundamental prerequisite. Middleware platforms may provide
different levels of service depending on environmental conditions, resource availability, and costs.
John Donne said ‘No man is an island’. Likewise, no self-managed middleware platform, service
or component is an island and each must be aware of both the individual consequences and group
consequences of its actions [134]. Next-generation middleware systems must coordinate/cooperate
with each other to maximise the available resources to meet the requirements encountered.

9.1 Thesis Summary

The focus of this research was to investigate the utility of coordinated behaviour within the domain
of self-managed middleware. Message-Oriented Middleware (MOM) was chosen as the problem
domain to investigate this hypothesis; MOM is interaction-centric making it an in ideal platform.
Reflective self-managed techniques have yet to be utilised within the MOM domain, creating an
additional research theme; investigating reflective self-management techniques within MOM.

The research commenced with an examination of current reflective self-managed systems to
highlight their capabilities, limitations, and design with respect to coordination. The examina-
tion revealed that current state-of-the-art self-managed systems do not provide full coordination
capabilities in an implementation agnostic, openly accessible manner.

The problem domain of MOM was examined to reveal its rudimentary theories and highlight
its differences from traditional distribution mechanisms. A number of MOM implementations
were scrutinised to highlight the diversity of the problem domain and to reveal any reflective self-
managed capabilities. The analysis revealed limited self-management capabilities within the MOM
domain.

With the motivation and background of the work in place, the next step was to outline the
prerequisites needed for coordinated self-managed systems. Following these guidelines the Open
Meta-level Interaction Protocol (OMIP) was developed to provide a mechanism to allow meta-level
interaction.

The next stage in this work was to provide a platform to investigate coordinated meta-levels.
To this end, the GenerIc Self-management for Message-Oriented middleware (GISMO) was defined
for the study of meta-level coordination within self-managed systems. A key step in the defini-

177

9.2 Contributions

tion of GISMO is the identification of common MOM characteristics (participants, behaviour, and
state) for inclusion. Once the design of GISMO was in place, a prototype implementation was de-
veloped using the Chameleon framework. Chameleon provides non-invasive techniques to augment
functionality onto a Java Message Service compliant MOM using interception capabilities.

With the development of the infrastructure complete, an extensive evaluation was required to
assess the benefits of coordination. A comprehensive benchmarking evaluation process was run on
a private network of 12 machines with the execution of 88 benchmark tests taking a combined total
of more than 85 hours of benchmarking time. The objective of the evaluation process was broken
down into two goals, evaluate coordination between self-managed systems, and evaluate reflective
self-managed techniques within MOM.

The first case study evaluated the benefit of coordination between self-managed systems by
examining the benefits of information exchange between interacting participants. The scenario
used in the case study is similar to the motivational scenario presented in Chapter 1. Within
this case study, a centralised routing solution is decentralised by exchanging management infor-
mation (routing rules) between interacting message participants. The key mechanism needed in
the decentralisation of the routing solution is the ability to exchange management information
(meta-information) between systems in an open manner. With such ability in place, the bench-
marks clearly show the advantages of coordination between self-managed systems and exemplify
its potential to foster the development of innovative message solutions within the MOM domain.

The second case study used to evaluate this research examined the benefits of reflective self-
management techniques for MOM within dynamic environments. Reflective techniques enable the
MOM to alter its runtime configuration to match the current demands of its environment. In this
case study, benchmarks of both reflective and non-reflective MOMs were run within a simulator
that recreates dynamic messaging environments. The execution of these benchmarks revealed
that self-management techniques could have a considerable affect on the performance of a MOM
provider, increasing the level of service provided by the MOM within dynamic environments.

The evaluation and benchmarking process is a clear validation of the benefit of coordination
between self-managed systems. Within dynamic operating environments, coordinated interaction
between self-managed systems can improve the ability of the individual and collective systems to
fulfil performance and autonomy requirements of the environment.

9.2 Contributions

This thesis addresses the lack of coordination between self-managed middleware systems. The
principal contributions of this work can be broken down along the following lines.

9.2.1 A Self-Managed MOM

A suitable platform was required to evaluate the research hypothesis. Given that no fully co-
ordinated self-managed platform currently existed, the decision was taken to develop one within
the MOM domain. The choice of problem domain for this platform provided the opportunity
to investigate self-management techniques within the MOM domain. To this end, the GenerIc
Self-management for Message-Oriented middleware (GISMO) was defined. The design of this
generic meta-level encompasses common MOM characteristics to make it applicable for multiple

178

9.2 Contributions

MOM implementations. The implementation of GISMO is achieved with Chameleon, a lightweight
framework to allow non-invasive augmentation of the meta-level onto multiple base-levels. Bench-
marks of GISMO illustrate the performance enhancement self-management techniques can provide
for MOM.

9.2.2 Coordination between Self-Managed Systems

The primary focus of this work was the investigation of the benefits of coordination between self-
managed systems. This was achieved by defining a protocol to facilitate access to self-management
services (state, adaptive capability, and analysis capacity) in a generic manner. A minimal set of
generic prerequisites to facilitate open interaction were identified. These required any interaction
protocol to maintain a participants independence and provide open accessibility and extensible
interaction in an implementation agnostic manner.

The central contribution was the definition of the Open Meta-level Interaction Protocol (OMIP)
that satisfies the requirements for meta-level interaction. This protocol defines a number of generic
interaction commands containing an associated message, expressed in a domain specific language,
used to describe the application/domain specific details of the request (i.e. security, hardware,
multimedia, telecoms, flight control, education, UI, etc.).

With a self-managed MOM supporting OMIP in place, coordinated self-managed solutions
could be developed to investigate the benefits of coordination. To this end, two solutions were
created to examine the capabilities of coordinated interaction and the benefits of self-management
techniques within the MOM domain. These solutions show how coordinated self-management can
play an important role in the development of new messaging solutions and the enhancement of
current messaging solutions. An extensive benchmarking was performed to verify and validate the
benefits of the coordination techniques, with all benchmarks performed under conditions compa-
rable to, or better than, standard industrial practices.

9.2.3 Additional Contributions

A number of additional contributions were also made in the design and benchmarking of self-
managed systems.

9.2.3.1 M-SAR Design Pattern

One of the key contributions was in the area of self-managed system design with the identification of
a design pattern for the development of portable meta-levels. The Meta-State-Analysis-Realisation
(M-SAR) design pattern proposes a separation of concerns within a meta-level by insolating the
three main roles of a meta-level, information, examination, and realisation into distinct encapsu-
lated entities, promoting a clearer separation of concerns within a meta-level.

9.2.3.2 Dynamic Benchmarking

The empirical evaluation process also produced contributions within the area of benchmarking
MOM platforms and recreating dynamic environments. These contributions were the identifica-
tion of requirements to benchmark self-managed systems and the design of a dynamic test case
to benchmark self-managed MOM systems within dynamic environments. With these in place,

179

9.3 Future Research Directions

a MOM benchmarking suite was developed to provide a unique simulator to recreate dynamic
messaging environments.

9.3 Future Research Directions

There is a wide range of possible research avenues for this work. Future research directions are
explored along two lines, technology transfer of current contributions and research opportunities
in which coordinated self-managed systems may continue to be explored.

9.3.1 Technology Transfer

The success of transferring contributions from this research to common practice will be one of the
metrics used to gauge the success of this work in years to come. The relevance and usefulness of
these contributions within a real world deployment will be the true measurement of their value.
This section highlights some possible efforts to initiate a technology transfer.

Generally speaking, one of the main obstacles when introducing a new technology into a pro-
duction environment is the level of interaction the technology requires with current system assets.
Non-functional concerns, such as under-the-hood performance optimisations, are simpler to intro-
duce than a functional concern such as a user rating service that requires extensive participant
interaction. Introducing an interaction-oriented technology requires the assets currently deployed
within the environment to be updated to utilise the new technology: potentially a very expensive
prospect. With this in mind, potential technology transfer is broken down along the functional
and non-functional lines.

9.3.1.1 Functional

Functional contributions of this research include coordinated meta-levels and novel routing solu-
tions; in order for these to be deployed within a production environment, they will require the
redeployment of participating entities. However, the possibility for complete redeployment within
large-scale deployments is limited. Within such environments, an incremental approach to the
deployment of these services is required, with the safe co-existence of both technologies critical to
the success of the process. The responsibility of ensuring co-existence falls on the self-managed
systems. These systems must ensure that their adaptations do not interfere with the operation of
other systems that rely on them or systems with which they interact.

To this end, a phased rollout of coordinated self-managed systems should be used to introduce
the technology slowly into the production environment. Once a significant number of clients possess
interaction capabilities, enhanced routing solutions may be introduced into the environment along
side the current routing solutions. Clients may then be migrated from the old to the new routing
solutions, thus introducing the technology in a controlled, phased manner. Given the need for
legacy support within productions environments it may take some time to phase out the older
technology, if indeed that is possible within the deployment.

9.3.1.2 Non-Functional

Fewer obstacles exist for the transfer of non-functional aspects of this research into production
environments. Non-functional contributions range from the design pattern used in the construction

180

9.3 Future Research Directions

of self-managed systems to a meta-level for self-managed MOM. While there is great potential for
the use of non-functional concerns within production environments, especially when one considers
there is no need for a large-scale redeployment, obstacles still exist with their inclusion.

Deployment of self-managed systems into production mission critical environments will require
these systems to reach a level of maturity where system administrators feel comfortable with such
platforms in their environment. Of utmost importance to reaching this goal is the safe adaptation
of the system with predictable results in the systems behaviour. The current practices used for
software testing and quality assurance are inadequate for self-managed systems. In order to gain
acceptance as a deployable technology, it is important for the research community to develop the
necessary practices and procedures to test these systems to ensure they perform predictably. Such
mechanisms will promote confidence in the technology.

9.3.2 Research Opportunities

Given the broad scope of this research, a number of interesting research opportunities have been
identified to extend this work. Six key directions for future investigation are now examined:

9.3.2.1 Standards Development

In order to further develop the concept of the Open Meta-level Interaction Protocol (OMIP), a
number of standards will need to be developed, including definitions for OMIP message encoding
formats, transportation protocols, Domain Specific Language (DSL) message formats, and the
definition of DSLs and relevant Interaction Commands (IC) for each domain

If any standardisation effort is to be successful, the self-managed (including adaptive and re-
flective) community needs to participate in the formation of an international group to develop
such standards in an open collaborative environment. Any such group should consist of a mixed
representation of international companies and academic institutions to reach a balanced common
specification.

9.3.2.2 Marketplaces / Resource Trading

With coordinated interaction capabilities in place, a number of interesting research possibilities are
exposed in the area of resource marketplaces. Within these marketplaces, resources may be traded
in a number of ways from simple barter between two services to complex auctions with multiple
participants, each with their own tradable resource budget, competing for the available resource.

In addition to the development of relevant negotiation protocols, trading participants also need
to understand the commodities they are trading. This will require a method of defining a resource,
its capabilities, and an assurance of the quality of service offered. Once a trade is finalised,
enforceable contracts are needed to ensure compliance with the trade agreement. This concept of
resource trading could be extended across organisational boundaries with the trading of unused or
surplus resources in exchange for monetary reimbursement

9.3.2.3 Self-Protection

One of the main goals of this research is to open up self-managed systems to interact with other
participants within their environment. The scope of this research has only considered friendly envi-

181

9.3 Future Research Directions

ronments where all systems strive for a mutually beneficial outcome for all participants. However,
self-managed systems will face both friendly and hostile environments within real-world deploy-
ments. Hostile environments can come in many flavours, with participants that interact in a purely
selfish manner to participants that perform Denial-of-Service (DoS) attacks. Any system that opens
its self-management process will be vulnerable to such attacks. In a similar fashion to autonomic
systems [6], coordinated self-managed system will need to have appropriate self-protection capa-
bilities to cope with attacks and use appropriate countermeasures to defeat or at least nullify the
attack within these environments.

9.3.2.4 Reinforcement Learning

The investigation of self-management MOM techniques within this work revealed their benefit
within the MOM domain. The reflective computation used within this work utilised a straightfor-
ward algorithm to adapt the MOM to suit runtime requirements. Reflective computation of this
nature could be enhanced with more intelligence to improve the accuracy of its outcome. One
technique that merits investigation is the use of reinforcement learning within self-managed plat-
forms. Reinforcement learning is the problem faced by an agent that learns behaviour through
trial-and-error interactions within a dynamic environment. While some promising work [27, 38]
has already been carried out with these techniques, many opportunities exist for the investigation
of these techniques within the MOM domain.

9.3.2.5 Application-Level Messaging Semantics

An open area of MOM research is the exchange of messaging semantics between producers and
consumers. Currently this exchange is performed at the developer-level with the exchange occurring
between the developers of the message consumers and producers. The next step in messaging
semantics is the autonomous exchange of information between participants. Much work is underway
on the development of semantically enhanced message integration. To this end, GISMO could be
extended to include additional messaging semantics.

This new sub-model would contain information on application-level messaging semantics. The
model would allow a client unfamiliar with an environment to dynamically discover the messaging
semantics of a destination. Information such as the format of the message payload, the properties
used to tag messages, and the interaction model used by the destination such as a Request-Response
or Inform (one-way | one-shot) protocol. Much work has been done on this form of semantic
information exchange within the agent-oriented community [107, 109, 135, 136] and some effort
has been made to introduce these techniques into the MOM domain by Cilia et al, using semantics
to simplify integration issues [137].

9.3.2.6 Broker Meta-Model

Broker networks are in common use within large and wide-area MOM deployments. A number of
the MOM implementations reviewed in Chapter 3 are deployable as a network of brokers. Broker
networks are vital to the development of massively scaled wide-area notification services. Many
research opportunities exist within these networks and provide ideal candidates for the investigation
of self-management capabilities with the inclusion of a broker meta-level within GISMO.

182

9.3 Future Research Directions

The broker model would contain information on broker networks for managing both central and
federated services. The model would contain information on the relationships and inter-connections
between brokers such as master/slave, client/server or peer-to-peer. An event model could also be
used to trigger events when certain conditions occur within the network, potential triggers include
broker additions and changes in broker routing tables. The large number of MOM platforms that
may be deployed as a network of brokers [62, 70, 74, 83], and the development of self-organising
broker networks [105, 106], support the development of the broker meta-level.

183

Part IV

Appendices

184

Appendix A

An Extensible MOM Test Suite

This appendix describes the benchmarking process used to measure the performance of the mes-
saging solutions within this research. The process builds on current approaches to benchmarking
messaging systems with additional techniques to benchmarking dynamic environments.

A.1 Introduction

Planning and executing appropriate benchmarks for a distributed messaging infrastructure is a
complex time-consuming, labour-intensive process. Pushing a messaging infrastructure to its lim-
its is vital to understand how it will perform under a heavy workload with large numbers of
message participants. Benchmarking for a sufficiently long duration with appropriate numbers of
senders and receivers can establish the limits of the messaging infrastructures scalability within an
environment.

The benchmark techniques within this work are forged by combining the strengths of a number
of academic and industrial benchmark practices, reports, and test suites [92, 130, 131, 132, 133,
138, 139]. These techniques were then extended with a number of enhancements to increase the
range and diversity of possible test environments. This appendix covers a number of aspects of
the benchmark process including test case design and testbed configuration, the software test suite
architecture, and the development of techniques to benchmark dynamic environments.

A.2 Test Case Design

Within any benchmarking process, the design of the test cases is a key factor affecting the endeav-
our’s success. When designing a test case, a number of aspects must be considered to create a
profile that accurately reflects a realistic deployment environment and recreates actual operating
conditions. This section introduces benchmarking within the MOM domain and discusses the fac-
tors that affect the benchmarking process, including messaging models, producer/consumer ratios,
configuration, reporting metrics, and the test case timeline.

185

A.2 Test Case Design

A.2.1 Messaging Models

Two main message models are commonly available with MOM implementations, the Point-to-
Point, and Publish/Subscribe models. From a benchmarking perspective, one must consider the
message delivery ratios that exist within both models.

When benchmarking the point-to-point model it is important to remember that each message
is delivered only once to only one receiver, known as ‘once-and-once-only’ message delivery. The
model allows multiple receivers to connect to the queue but only one of the receivers will consume
the message.

The publish/subscribe messaging model is a very powerful one-to-many and many-to-many
distribution mechanism, allowing a single producer to send a message to one user or potentially
hundreds of thousands of consumers. Clients producing messages ‘publish’ to a specific topic, these
topics are then ‘subscribed’ to by clients wishing to consume messages. The service routes the
messages to consumers based on the topics to which they have subscribed. When benchmarking
the publish/subscribe model, the number of subscribing clients has a significant impact on the
overall performance of the MOM. Where multiple consumers have the same subscription, any
message that matches the subscription will be distributed to each of the subscribers.

In summary:

• Point-to-Point - One message is sent, one message is received.

• Publish/Subscribe - One message is sent, but multiple messages may be received

Once the messaging model is chosen, the next step is to decide the number and ratio of message
producers and consumers within the test case.

A.2.2 Producer/Consumer Ratio

It is vital that a realistic benchmark reflects an actual deployment environment. The number and
ratio of message producers and consumers dictate the scalability tested within the test case. The
more message participants used, the higher the level of scalability the test case will attempt to
recreate. Another important factor to consider is the ratio between producers and consumers.

It is common for messages to be produced faster than they can be consumed. In such a scenario,
message congestion can occur at the server and it is important to test the server’s ability to handle
the build-up of messages in its queues. As a means of replicating such events, it is possible to
alter the ratio of message producers to message consumers, enabling the throttling of message
production and consummation rates. A summary of possible ratios and their affect is available
in Table A.1. These producer/consumer ratios create the same effect when used within both the
point-to-point and publish/subscribe messaging models.

A.2.3 Configuration

When comparing MOM implementations the configuration of message producers and consumers
will influence the outcome of the test. The configuration of message persistence, message filters,
and message acknowledgement modes can drastically affect the results of a test. Each of these
settings will test the MOM implementation in a different manner and care should be taken to
ensure the correct settings are chosen to expose the goal of the test. One configuration option that
heavily influences a test case is the delivery mode used for messages.

186

A.2 Test Case Design

Producer/Consumer
Ratio

Effect of Ratio

One-to-One Tests the ability of a server to handle large numbers of connections.

Few-to-Many Reduces the likelihood of queuing on the server.

Many-to-Few Increases the likelihood of queuing on the server.

Many-to-Many Same effect as one-to-one.

Table A.1 The effects of message producer/consumer ratios within
benchmarks

A.2.3.1 Delivery Modes

Delivery modes dictate the reliability of a messaging solution in the event of a server crash. When
a message is marked as persistent, the MOM is responsible for writing the message to a non-volatile
storage medium, such as a hard disk, before acknowledging its receipt, enabling it to retrieve the
message in the event of a crash. This task can drastically affect the throughput rate of a MOM.
The performance of the underlying hardware (CPU, memory bus, and persistent store) will often
be the bottleneck that limits the number of messages processed. Regardless of the efficiency of the
persistence mechanism, the speed of the physical medium (i.e. hard disk) is critical in persistent
message test cases [92, 131].

A.2.4 Reporting Metrics

When performing benchmarks, it is important to clearly define the objective of the test and measure
the correct metric to quantify the objective. Common metrics within MOM benchmarking tests
are described in Table A.2.

Metric Description

Message Throughput Rate The total number of messages received per time interval (i.e.

second, minute, etc.) by all message consumers during the

tests measurement window. Common time intervals for mes-

sage rates is message throughput per second or msg/sec.

Size Throughput Rate The total size of messages received per time interval (i.e. sec-

ond, minute, etc.) by all message consumers during the tests

measurement window. A common time interval for size rates is

byte throughput per second or byte/sec.

Number of Produc-

ers/Consumers

The number of connected message producers/consumers in the

test.

Table A.2 Possible benchmark reporting metrics

Message throughput rate is the primary measurement used in MOM benchmark tests. Unless
explicitly stated, a message rate is always a received rate (number of messages delivered to and
received by consumers) and not the send rate (the rate that producers are able to send messages
to queues/topics).

187

A.2 Test Case Design

Another metric used within MOM benchmarks is size throughput rate. This metric is appro-
priate for benchmarking the persistence mechanisms of a MOM and may also be used to test the
ability of the MOM to handle large message sizes.

Within a test case, the numbers of message producers/consumers tests the scalability of the
MOM, the more producers/consumers the greater the load. Given that the number of participants
within the test case will affect the message rate, it is common to use a combination of these metrics
to reveal different aspects of the MOMs performance. Some popular groupings include:

• Message Rate / Number of Consumers

• Message Rate / Number of Producers

Once an appropriate metric is chosen, the next task is to define how the test case will be
run. Important factors include the duration of the test case, the sampling rate of the metric, and
recreation of a realistic deployment scenario.

A.2.5 Timeline

In order to reach and evaluate the constant throughput level of the test case, it is necessary to take
multiple measurements over the duration of the benchmark. The longer a test is run for the more
likely it is to expose potential problems within the MOM including message congestion, memory
leaks, server stability, and server stress. Given the long-running nature of MOM platforms, these
problems are real and it is important to include them within the results of a benchmark.

Current benchmarks efforts have run tests cases for durations of 5 minutes [138] and 15 minutes
[92]. It is important that any test case is performed for a period of time that allows the benchmark
to reach this constant steady-state. If the test case is too short this steady-state will not be reached.

Measure Measure Measure Measure Measure Measure

Initialisation Terminate

First
Message

Sent

First
Message
Received

Test
Time

Expires

Ramp-up Periods
(exclude from test)

Test Periods
(Steady-State)

Ramp-down
Periods

(exclude from test)

Figure A.1 Test case timeline

A sample test case timeline is illustrated in Figure A.1. In this timeline, ramp-up and ramp-
down periods are used to ensure that the steady-state of the test is reached before test mea-
surements are taken. Ramping periods are a common practice [92, 131, 138, 139] within MOM

188

A.3 Testbed Configuration

benchmarking that ensure unpredictable behaviour (initialisation, object creation, message ramp-
up) during setup and shutdown periods do not contaminate test results.

A.3 Testbed Configuration

The testbed is fundamental to any benchmark process. It is vital that a testbed accurately reflects
a live deployment environment. At a minimum, message producers and message consumers, and
the message server, should be located on different machines. Running these test participants on
a single machine will not reveal any variations in the test results that occur due to the network.
Distributing the test case over a number of machines is vital to expose potential bottlenecks such
as network congestion, persistence overheads, and memory leaks that may not be apparent when
a benchmark is run on a single machine. In addition, spanning the benchmark across a number of
networked machines more accurately reflects an actual deployment environment.

The deployment infrastructure utilised for benchmarks within this work is illustrated in Figure
A.2. Within this deployment, test case message producers and consumers are distributed over 10
client machines, with messages exchanged through a MOM located on a separate server machine.
This configuration ensures that messages must travel over the network to be exchanged between
message producers and consumers.

MOM
Broker

Message
Producers

Client Machine

Message
Consumers

Message
Producers

Client Machine

Message
Consumers

Message
Producers

Client Machine

Message
Consumers

Message
Producers

Client Machine

Message
Consumers

Message
Producers

Client Machine

Message
Consumers

Server
Machine

Message
Producers

Client Machine

Message
Consumers

Message
Producers

Client Machine

Message
Consumers

Message
Producers

Client Machine

Message
Consumers

Message
Producers

Client Machine

Message
Consumers

Message
Producers

Client Machine

Message
Consumers

Figure A.2 The testbed deployment

189

A.4 Default Test Cases Setup

A.3.1 Hardware

The hardware and software specifications of the machines within the testbed are detailed in Table
A.3. Excluding benchmarks using only one message producer and one message consumer, all
test cases were run with message producers and consumers evenly deployed across the 10 client
machines. Producers and consumers deployed on the same client machine share the same JVM
but are run under different threads and use independent connections.

Server (x1) Clients (x10)

CPU Pentium 4 2.4 GHz Pentium 4 2.4 GHz

RAM 512MB 512MB

Bus Type EIDE EIDE

Network 100Mbits/s

Adapter running at 100mb in full-duplex

mode

100Mbits/s

Adapter running at 100mb in full-duplex

mode

OS Microsoft Windows 2000 Service Pack 4 Microsoft Windows 2000 Service Pack 4

JavaVM Sun 1.4.2 06 Sun 1.4.2 06

JMS
Providers

Chapter 7 case study: SonicMQ 6.1

Chapter 8 case study: ActiveMQ 1.3

Chapter 7 case study: SonicMQ 6.1

Chapter 8 case study: ActiveMQ 1.3

Table A.3 Testbed hardware and software specifications

A.3.2 Network

The network used in the testbed is a 100Base-T network. A network of this capacity reduces the
likelihood of the network forming an artificial bottleneck, such as one caused by a slower 10Base-T
network. The network is private and does not contain any additional traffic that may affect the
execution of the test cases. The network HUB used was an Extreme Networks Summit 481.

A.4 Default Test Cases Setup

This section details the default setup for all the test cases carried out in this work.

A.4.1 Test Conditions

All benchmarks were carried out under the following test conditions:

• Each client was run in a separate JMS connection.

• Each test includes a 2-minute ramp-up and a 2-minute ramp-down period that are not in-
cluded in the benchmark measurement period.

• All client connections are established and message consumer and producer (Senders/Receivers
– Publishers/Subscribers) objects are created before the ramp-up period begins.

1 http://www.extremenetworks.com/

190

A.5 Software – Extensible Mom Test Suite (EMiTS)

• Unless explicitly stated, each measurement window was 30 minutes in duration, with mea-
surements taken every 60 seconds.

• Performance was measured under maximum load by sending as many messages as possible
using default settings on both the client and server.

– All message consumers used auto-acknowledgement and asynchronous message receipt.

– Messages were non-persistent to ensure the persistence mechanism is not a bottleneck
for the benchmark.

• During the test no other applications were running. This reduces the ‘noise’ of a varying
CPU.

• Before each test the following housekeeping chores were performed to ensure each test started
with a clean slate and did not include any overhead or residue from a previous test.

– The server was rebooted.

– All client machines were rebooted.

– The MOM message store was emptied.

– Queues and topics were emptied, deleted, and recreated.

• Message producers produce messages as quickly as possible, there is no flow control on the
client-side between sent messages.

A.4.2 Desired Metrics

This research focuses on the improvements to the routing capability of a MOM. Since the through-
put of a MOM is often limited by its persistence mechanism, the message size throughput rate is
an inappropriate metric.

The most appropriate metric for the benchmarking tests performed is the message through-
put rate combined with the number of participants. This metric measures the throughput and
scalability of the MOM.

A.5 Software – Extensible Mom Test Suite (EMiTS)

The Extensible Mom Test Suite (EMiTS) is designed to evaluate JMS compatible MOM implemen-
tations across a collection of networked machines. EMiTS has a number of advances over current
benchmarking suites, including centralised configuration and reporting mechanisms, and stream-
lined management of test case execution across multi-machine testbeds. EMiTS also possesses
capabilities to recreate dynamic test case conditions to simulate dynamic messaging environments,
a capability vital to evaluate reflective self-managed MOM implementations.

The EMiTS test suite may be extended to test diverse messaging operations and capabilities
with the use of extensible drivers for message producers and consumers. The remainder of this sec-
tion provides a brief overview of the EMiTS architecture, highlighting its design and configuration
options available for test cases.

191

A.5 Software – Extensible Mom Test Suite (EMiTS)

A.5.1 Architecture

The architecture for EMiTS is broken down into a client and server. The server is responsible
for the coordination and management tasks associated with test case setup, and the aggregation
of client results once the test is complete. The client is responsible for the execution of message
participants and for recording their activity over the duration of the test case. The architecture
for EMiTS is illustrated in Figure A.3.

EMiTS Server-SideEMiTS Client-Side

Test Groups

Driver N
...

Driver 1
GUIClient

Configurator

Report
Manager

MOM
Administration

Client Manager

Client
Repository

Report
Manager

Group
Configurator

Test Case
Configurator

Figure A.3 EMiTS architecture

A.5.1.1 Server

The EMiTS server is primarily concerned with test case configuration and the collection and
aggregation of results once the test case has finished execution. Configuration of the test case may
be directed via the GUI and/or an XML configuration file. The server contains a client manager
to track client machines within the test case. The client manager has responsibility for informing
each client as to their role within the test case by transferring configuration information for their
test groups. Once test case execution has completed, clients return results to the report manager
for aggregation into a test case report. The last aspect of the server is the MOM administrator
with responsibilities for configuring the MOM provider for the test case, including destinations and
persistence requirements.

A.5.1.2 Client

The client of the test suite is responsible for the execution of test groups within the test case.
Once the test case configuration has been received from the server, the client must setup the
groups assigned. Each test group uses a driver to direct its messaging activity over the duration
of the test case. These drivers allow the extension of the test suite to test a variety of messaging
functionality. Once the test case has completed executed the results from the groups are sent to
the server where they are aggregated into a test case report.

Three groups of configurations are used to direct the test case. The first set of options, discussed
in Table A.4, details the type of connections used by message participants to connect to the MOM.

The second group, detailed in Table A.5, specifies general test case settings including the
number of test intervals, ramp-up intervals, and the drivers used by producers and consumers.

The last collection of settings directs the configuration of the test groups within the test case.
These settings are used to configure the client drivers.

192

A.5 Software – Extensible Mom Test Suite (EMiTS)

Property Description Sample Value

Broker URL The URL used by clients to connect to

the broker within the test case.

tcp://localhost:61616

Provider Initial Con-

text Factory

The initial context factory used by the

client.

org.codehaus.activemq.jndi.

ActiveMQInitialContextFactory

Connection Username

(optional)

Username for the broker connection. B.U.R.G.R.

Connection Password

(optional)

Password for the broker connection. CPE-1704-TKS

Table A.4 Client connection configuration settings

Property Description Sample Value

Test Case ID The ID for the test case. Test case

Client ID prefix The prefix for client IDs within the test case. Client-

Test Intervals The number of intervals in the test case. 30

Ramping Intervals The number of ramping intervals used in the test

case (not included within test intervals).

5

Interval Time The duration of each test interval (in seconds). 60

Rolling Intervals The number of intervals used for rolling total aver-

ages.

5

Producer Class The class used for the producers within the test case. DefaultMsgProducer

Consumer Class The class used for the consumers within the test case. DefaultMsgConsumer

Table A.5 General test case

A.5.2 Test Drivers

Test group drivers are based on the Strategy [113] design pattern to allow pluggable functionality.
Both message consumers and producers use test drivers within the test suite. The interfaces

for both of these test drivers, shown in Figure A.4, provide the ability to customise the messaging
activity of a test group. Of particular interest are the send() and onMessage(javax.jms.Message
aMessage) methods from the MsgProducer and MsgConsumer interfaces respectively. The tai-
loring of message send and receive actions allows the test suite to benchmark diverse messaging
functionality. The drivers also possess the ability to define the metrics collected during the test
case with the use of the clearCount() and getMsgCount() methods.

Test drivers may be configured for a test case by passing a collection of settings to the drivers
upon creation. Configuration options are limited to types compatible with java.util.Properties.
Eight mandatory configuration options are included, these are detailed in Table A.6.

A.5.2.1 Default Test Driver

The EMiTS default test driver allows the benchmarking of basic messaging functionality within
both the point-to-point and publish/subscribe messaging models. In addition to benchmarking ba-

193

A.6 Dynamic Environment Simulation

MsgProducer
MsgProducer(Properties props)
+start(int currentInterval) : boolean
+run() : void
+send() : void
+stopSender() : void
+clearCount() : void
+getMsgCount() : void

(a) Producer interface

MsgConsumer
MsgConsumer(Properties props)
+start(int currentInterval) : boolean
+onMessage(javax.jms.Message aMessage) : void
+stop() : void
+clearCount() : void
+getMsgCount() : void

(b) Consumer interface

Figure A.4 EMiTS test driver interfaces

Property Description Sample Value

Group ID Identification of test group. GroupAA

Participant Type Does the test group produce or consume messages? Producer,

Consumer

Message Model What message model does the test group use? Point-to-Point,

Publish/Subscribe

Number of Clients The quantity of client within the test group. 5

Number of

Connections

The number of connections used by clients within the

group.

5

Number of

Destinations

The number of destinations used by the group. 5

Destination Name

Prefix

The prefix of the destinations for the group. TestDest-

Start Interval The test case interval number in which the group will

commence messaging activity. (This setting is used to

stagger the introduction of test groups.)

0

Table A.6 Mandatory test driver settings

sic messaging exchange functionality, the driver can also benchmark transactions, filtering, delivery
modes, and acknowledgement modes within both models. A full listing of configuration options
for the default driver is provided in Table A.7.

A.5.3 Test Case Sequence

A full test case sequence within EMiTS is illustrated in Figure A.5. This sequence details the
interactions within the test suite over the course of a test case, from the initialisation of the suite
by the test case administrator to the return and aggregation of results from client machines.

A.6 Dynamic Environment Simulation

The traditional approach to benchmarking MOM solutions involves a test case with a fixed number
of message producers, communicating through a MOM to a fixed number of messages consumers,
using a fixed number (0-n) of filters.

194

A.6 Dynamic Environment Simulation

Property Description Sample Value

Is Transacted Are message interactions contained within a

transaction?

False

Messages Per

Transaction

The number of messages per transaction. 5

Filtered Does the test group use filters? True

Number of Filters The number of filters used. 4

Filter Name The prefix of the message attribute used for the

filter.

Prop

Delivery Mode Are messages persistent or non-persistent? NON PERSISTENT

Acknowledgement

Mode

The acknowledgement mode used for the test

group.

AUTO ACKNOWLEDGE

Message Size The size of messages used (in KB). 1

Table A.7 Default test driver settings

Test GroupServer Client

Configure MOM

Administrator

Assigned Unique ID
Test Case config

Config Client
Config Test Group

Test Group ReadyClient ReadyTest Case Ready

Start

Setup

Start

Group Results

Client Results Merge

Merge Client Results

Register with Server Setup

Setup

Test Case Report

Test Driver

Start

Execute
Poll Results

Setup Driver

Stop

Start

Figure A.5 EMiTS test case execution sequence

195

A.6 Dynamic Environment Simulation

These conditions are static and remain constant for the duration of the test. This is the common
form of test case and has been used by a number of industrial and academic benchmarking efforts
[92, 130, 131, 132, 133]. This approach is referred to as static benchmarking.

Static benchmarking is of limited use for evaluating reflection-based self-managed systems.
While it is possible to test the performance of a self-managed system under one set of conditions,
static benchmarking has no capacity to test the system for its ability to adapt to new and changing
conditions; the key objective of a self-managed system. With this deficiency in mind, the use of a
new approach to test case design for reflection-based self-managed MOM platforms is proposed.

The key to successfully benchmarking a self-managed system is to gauge its reflective capability.
To achieve this the test case must simulate the varying conditions experienced within dynamic
environments. An effective method of achieving this is to stage environmental changes over the
duration of the test case to replicate a non-static environment. With these environmental changes,
it is possible to gauge the ability of the self-managed system to deal with dynamic requirements.
The remainder of this section provides a systematic walkthrough of the dynamic MOM test case
developed for this research and discusses reporting metrics within dynamic benchmarks.

A.6.1 Dynamic MOM Test Case Walkthrough

Simulating a dynamic MOM environment requires that the dynamic conditions within the en-
vironment are first identified. Within the MOM domain, the main dynamic conditions within
deployment environments are the number of message producers, message consumers, and associ-
ated subscription constraints.

Creating a dynamic test case for a self-managed MOM can be achieved by altering these condi-
tions at runtime and staggering the introduction of new message producers and consumers into the
environment. Messaging conditions can also be altering by altering the subscriptions (interests)
of message participants over the duration of the test case. In order to demonstrate this action an
example test case is presented with the following three events simulated:

• Simulation Event A: 10 Producers and 10 Consumers with 5 filters join at interval 1, partic-
ipating until interval 100

• Simulation Event B: 10 Consumers with 15 filters join at interval 33, participating until
interval 100

• Simulation Event C: 5 Producers and 5 Consumers with 20 filters join at interval 66, partic-
ipating until interval 100

The timeline for the test cases builds on the default timeline, discussed in Section A.2.5. This
dynamic test case timeline is enhanced with the environmental simulation events and is illustrated
in Figure A.6.

This test case has been specifically designed to replicate dynamic operational conditions with
three specific events taking place within the environment over the duration of the test case. As
each of these events take place, it is possible to observe how the MOM reacts to them and gauge
its ability to cope with these dynamic conditions. In order to capture the MOMs reaction over the
duration of a dynamic test case a different reporting metric is needed.

196

A.7 Summary

Simulation
Event A

Interval 1

Simulation
Event B

Interval 33

Test
Expires

Interval 100

Ramp-up

Test Period
(Steady-State 100 Intervals)

Ramp-down

Simulation
Event C

Interval 66

10 Producers / 10 Consumers / 5 Filters

10 Consumers / 15 Filters

5 Producers / 5 Consumers / 20 Filters

Figure A.6 Dynamic test case timeline

A.6.2 Dynamic Report Metric

The common metric used within static benchmarks is a message-received per interval rate. Typi-
cally, this is reported as an average for all intervals of the test case i.e. 15,543 msg/sec. However,
within a dynamic benchmark, there is an important relationship between an intervals message
rate and the activity of the dynamic environment during that interval. This relationship is not
represented with a single throughput figure for the test case. It is vital to observe the reaction
of a self-managed system to an environmental change: how it behaved before the change, how
it reacted to and during the change, and how it performed after the change. To capture these
characteristics a temporal performance trend is used to highlight environmental changes and the
system’s reaction to the changes. A sample trend result for the test case described in this section
is shown in Figure A.7.

10,000
9,000
8,000
7,000
6,000
5,000
4,000
3,000
2,000
1,000

10066
 Event C

33
 Event B

1
 Event A

M
sg

 R
at

e
(in

 0
00

s)

Time Intervals

Total
Event A
Event B
Event C

Figure A.7 Sample trend result for dynamic test case

A.7 Summary

Benchmarking messaging infrastructures is not a trivial task. This appendix describes the bench-
marking process used to evaluate this research. The process was developed by combining the

197

A.7 Summary

strengths of a number of academic and industrial benchmarking practices, with additional tech-
niques to benchmark dynamic environments.

The Extensible Mom Test Suite (EMiTS) was developed to evaluate JMS compatible MOM
implementations across a collection of networked machines. In addition to a number of advan-
tages over current test suites, EMiTS also possesses capabilities to recreate dynamic test case
conditions to simulate dynamic messaging environments, a capability vital to evaluating reflective
self-managed MOM implementations.

198

Appendix B

XML Schemas

199

B.1 Multimedia-DSL

B.1 Multimedia-DSL

B.1.1 Capability Request Schema

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:include schemaLocation="multimedia_dsl_types.xsd"/>

<xs:element name="Multimedia-Capability-Request">

<xs:annotation>

<xs:documentation>Request for multimedia capability.</xs:documentation>

</xs:annotation>

</xs:element>

</xs:schema>

B.1.2 Capability Request Example

<?xml version="1.0" encoding="UTF-8"?>

<Multimedia-Capability-Request/>

B.1.3 Capability Reply Schema

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:include schemaLocation="multimedia_dsl_types.xsd"/>

<xs:annotation>

<xs:documentation>Capability types for the Multimedia DSL.</xs:documentation>

</xs:annotation>

<!-- Defination of root element -->

<xs:element name="Multimedia-Capability-Reply">

<xs:annotation>

<xs:documentation>Structure used to store multimedia service capabilities. Contains

a list of service descriptions.</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element ref="ServiceDescription" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="ServiceDescription">

<xs:annotation>

<xs:documentation>Structure used to store service descriptions. Service description

includes lists of Possible capabilities for available media types, encoding

formats, bit rates, and delivery mechanisms.</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:attribute name="media" type="MediaTypeList" use="required"/>

<xs:attribute name="encodingFormat" type="EncodingFormatTypeList" use="required"/>

<xs:attribute name="bitrate" type="BitrateTypeList" use="required"/>

<xs:attribute name="deliveryMechanism" type="DeliveryMechanismTypeList"

use="required"/>

200

B.1 Multimedia-DSL

</xs:complexType>

</xs:element>

</xs:schema>

B.1.4 Capability Reply Example

<?xml version="1.0" encoding="UTF-8"?>

<Multimedia-Capability-Reply>

<!-- Available multimedia services -->

<ServiceDescription media="audio_only" encodingFormat="mp3 ogg wav" bitrate="128kbps

256kbps 512kbps" deliveryMechanism="download"/>

<ServiceDescription media="video_only" encodingFormat="ram avi" bitrate="512kbps"

deliveryMechanism="stream"/>

</Multimedia-Capability-Reply>

B.1.5 Service Request Schema

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:include schemaLocation="multimedia_dsl_types.xsd"/>

<xs:annotation>

<xs:documentation>Request structures for specifying multimedia

services.</xs:documentation>

</xs:annotation>

<!-- Defination of root element -->

<xs:element name="Multimedia-Service-Request">

<xs:annotation>

<xs:documentation>Structure used to request specific multimedia services. Contains a

list of service requests. Each request must contain an

unique ID.</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element ref="ServiceRequest" minOccurs="1" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<!-- RequestID must be unique -->

<xs:key name="requestIDKey">

<xs:selector xpath="ServiceRequest"/>

<xs:field xpath="@requestID"/>

</xs:key>

</xs:element>

<xs:element name="ServiceRequest">

<xs:annotation>

<xs:documentation>Structure used to specify multimedia service request. Contains a

requestID and description of the multimedia service requested including its media

type, encoding format, bit rate, and delivery mechanism.</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:attribute name="requestID" type="xs:string" use="required"/>

<xs:attribute name="media" type="MediaType" use="required"/>

<xs:attribute name="encodingFormat" type="EncodingFormatType" use="required"/>

<xs:attribute name="bitrate" type="BitrateType" use="required"/>

<xs:attribute name="deliveryMechanism" type="DeliveryMechanismType" use="required"/>

201

B.1 Multimedia-DSL

</xs:complexType>

</xs:element>

</xs:schema>

B.1.6 Service Request Example

<?xml version="1.0" encoding="UTF-8"?>

<Multimedia-Service-Request>

<ServiceRequest requestID="1" media="audio_only" encodingFormat=" wma" bitrate="128kbps"

deliveryMechanism="download"/>

</Multimedia-Service-Request>

B.1.7 Service Reply Schema

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:include schemaLocation="multimedia_dsl_types.xsd"/>

<xs:annotation>

<xs:documentation>Defines the reply used for multimedia service

requests.</xs:documentation>

</xs:annotation>

<!-- Defination of root element -->

<xs:element name="Multimedia-Service-Reply">

<xs:annotation>

<xs:documentation>Structure used to store the reply to multimedia service requests.

Contains a list of replies with a unique request ID.</xs:documentation>

</xs:annotation>

<!-- Defination of complex types -->

<xs:complexType>

<xs:sequence>

<xs:element ref="ServiceReply" minOccurs="1" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<!-- RequestID must be unique -->

<xs:key name="requestIDKey">

<xs:selector xpath="ServiceReply"/>

<xs:field xpath="@requestID"/>

</xs:key>

</xs:element>

<xs:element name="ServiceReply">

<xs:annotation>

<xs:documentation>Reply to a service request. Contains the request ID, response, and

URL of service (if applicable).</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:attribute name="requestID" type="xs:string" use="required"/>

<xs:attribute name="response" type="ServiceResposneType" use="required"/>

<xs:attribute name="URL" type="xs:string"/>

</xs:complexType>

</xs:element>

</xs:schema>

202

B.1 Multimedia-DSL

B.1.8 Service Reply Example

<?xml version="1.0" encoding="UTF-8"?>

<Multimedia-Service-Reply>

<ServiceReply requestID="1" response="accept" URL="http://url"/>

</Multimedia-Service-Reply>

B.1.9 Common Type Schema

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:annotation>

<xs:documentation>Common types used within the Multimedia DSL.</xs:documentation>

</xs:annotation>

<xs:simpleType name="ServiceResposneType">

<xs:annotation>

<xs:documentation>Possible responses to a service request.</xs:documentation>

</xs:annotation>

<xs:restriction base="xs:string">

<xs:enumeration value="accept"/>

<xs:enumeration value="refuse"/>

<xs:enumeration value="bestEffort"/>

</xs:restriction>

</xs:simpleType>

<!-- Types used within service descriptions -->

<xs:simpleType name="MediaTypeList">

<xs:annotation>

<xs:documentation>A list of Possible media types.</xs:documentation>

</xs:annotation>

<xs:list itemType="MediaType"/>

</xs:simpleType>

<xs:simpleType name="EncodingFormatTypeList">

<xs:annotation>

<xs:documentation>A list of Possible encoding formats.</xs:documentation>

</xs:annotation>

<xs:list itemType="EncodingFormatType"/>

</xs:simpleType>

<xs:simpleType name="BitrateTypeList">

<xs:annotation>

<xs:documentation>A list of Possible bit rates.</xs:documentation>

</xs:annotation>

<xs:list itemType="BitrateType"/>

</xs:simpleType>

<xs:simpleType name="DeliveryMechanismTypeList">

<xs:annotation>

<xs:documentation>A list of Possible delivery mechanisms.</xs:documentation>

</xs:annotation>

<xs:list itemType="DeliveryMechanismType"/>

</xs:simpleType>

<xs:simpleType name="MediaType">

<xs:annotation>

<xs:documentation>Possible media formats.</xs:documentation>

</xs:annotation>

<xs:restriction base="xs:string">

<xs:enumeration value="audio_only"/>

<xs:enumeration value="video_only"/>

203

B.2 MOM-DSL

<xs:enumeration value="audio_video"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="EncodingFormatType">

<xs:annotation>

<xs:documentation>Possible encoding formats.</xs:documentation>

</xs:annotation>

<xs:restriction base="xs:string">

<xs:enumeration value="aac"/>

<xs:enumeration value="avi"/>

<xs:enumeration value="mp3"/>

<xs:enumeration value="mpg"/>

<xs:enumeration value="ram"/>

<xs:enumeration value="ogg"/>

<xs:enumeration value="wav"/>

<xs:enumeration value=" wma"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="BitrateType">

<xs:annotation>

<xs:documentation>Possible bit rates.</xs:documentation>

</xs:annotation>

<xs:restriction base="xs:string">

<xs:enumeration value="28kbps"/>

<xs:enumeration value="56kbps"/>

<xs:enumeration value="128kbps"/>

<xs:enumeration value="256kbps"/>

<xs:enumeration value="512kbps"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="DeliveryMechanismType">

<xs:annotation>

<xs:documentation>Possible delivery mechanisms.</xs:documentation>

</xs:annotation>

<xs:restriction base="xs:string">

<xs:enumeration value="stream"/>

<xs:enumeration value="download"/>

</xs:restriction>

</xs:simpleType>

</xs:schema>

B.2 MOM-DSL

B.2.1 Destination Type Schema

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:include schemaLocation="mom_dsl_common_types.xsd"/>

<xs:annotation>

<xs:documentation>Destination meta-state structures.</xs:documentation>

</xs:annotation>

<!-- Destination root element -->

<xs:complexType name="DestinationStateType">

<xs:annotation>

<xs:documentation> The Destination state type is used to store destination state. The

top level of the structure contains two groupings to store destinations:

204

B.2 MOM-DSL

- Single_Destinations (stores standalone destinations)

- DestinationHierarchy (stores destination hierarchies)

</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="Single_Destinations" type="DestinationListType" minOccurs="1"

maxOccurs="1">

<xs:annotation>

<xs:documentation>A collection of standalone destinations. Each destination

within the collection has a unique key.</xs:documentation>

</xs:annotation>

<xs:key name="destKey">

<xs:selector xpath="Destination"/>

<xs:field xpath="@id"/>

</xs:key>

</xs:element>

<xs:element name="Hierarchys">

<xs:annotation>

<xs:documentation>A collection of destination hierarchies.</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name="DestinationHierarchy" type="DestinationHierarchyType"

minOccurs="0" maxOccurs="unbounded">

<xs:annotation>

<xs:documentation>A destination hierarchy. Each node within the hierarchy

must contain a unique key. This key is then used in linking references

within the hierarchy to maintain a consistent

structure.</xs:documentation>

</xs:annotation>

<xs:key name="nodeKey">

<xs:selector xpath="HierarchyNode"/>

<xs:field xpath="@id"/>

</xs:key>

<xs:keyref name="rootRef" refer="nodeKey">

<xs:selector xpath="DestinationHierarchy"/>

<xs:field xpath="@root"/>

</xs:keyref>

<xs:keyref name="parentRef" refer="nodeKey">

<xs:selector xpath="HierarchyNode"/>

<xs:field xpath="@parentNode"/>

</xs:keyref>

<xs:keyref name="childRef" refer="nodeKey">

<xs:selector xpath="HierarchyNode/ChildNode"/>

<xs:field xpath="@childID"/>

</xs:keyref>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

<!-- Basic destination elements -->

<xs:complexType name="DestinationType">

<xs:annotation>

<xs:documentation>Structure used to track basic destination state. Contains the ID,

name, and type of the destination. Optional routing conditions may also be tracked

for the destination.</xs:documentation>

</xs:annotation>

<xs:sequence>

205

B.2 MOM-DSL

<xs:element name="condition" type="FilterType" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="id" type="xs:string" use="required"/>

<xs:attribute name="name" type="xs:string" use="required"/>

<xs:attribute name="type" type="DestType"/>

</xs:complexType>

<xs:simpleType name="DestType">

<xs:annotation>

<xs:documentation>Specifies the destination type.</xs:documentation>

</xs:annotation>

<xs:restriction base="xs:string">

<xs:enumeration value="queue"/>

<xs:enumeration value="topic"/>

</xs:restriction>

</xs:simpleType>

<xs:complexType name="DestinationListType">

<xs:annotation>

<xs:documentation>A collection of destinations.</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="Destination" type="DestinationType" minOccurs="0"

maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<!-- Destination hierarchy element -->

<xs:complexType name="DestinationHierarchyType">

<xs:annotation>

<xs:documentation>Structure used to track hierarchy state. The hierarchy contains a

ID and a reference to the ID of its root node.</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="HierarchyNode" type="HierarchyNodeType" minOccurs="0"

maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="hierarchyID" type="xs:string" use="required"/>

<xs:attribute name="root" type="xs:string" use="required"/>

</xs:complexType>

<xs:complexType name="HierarchyNodeType">

<xs:annotation>

<xs:documentation>Structure used to track an individual node within a hierarchy. The

node structure extends the basic destination structure with additional information

to reference links to parent and child nodes.</xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="DestinationType">

<xs:sequence>

<xs:element name="ChildNode" type="ChildNodeType" minOccurs="0"

maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="parentNode" type="xs:string"/>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="ChildNodeType">

<xs:attribute name="childID" type="xs:string" use="required">

<xs:annotation>

<xs:documentation>Specify the unique ID for the child node.</xs:documentation>

</xs:annotation>

</xs:attribute>

</xs:complexType>

206

B.2 MOM-DSL

<!-- Destination Analysis -->

<xs:complexType name="DestinationSearchRequestType">

<xs:annotation>

<xs:documentation>Structure to store a destination analysis request. Specify the

destination name to search for, wildcards allowed.</xs:documentation>

</xs:annotation>

<xs:attribute name="destinationName" type="xs:string" use="required"/>

</xs:complexType>

</xs:schema>

B.2.2 Subscription Type Schema

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:include schemaLocation="mom_dsl_common_types.xsd"/>

<xs:annotation>

<xs:documentation>Subscription meta-state structures.</xs:documentation>

</xs:annotation>

<!-- Basic subscription type -->

<xs:complexType name="SubscriptionType">

<xs:annotation>

<xs:documentation>Structure used to track subscription state. Contains a ID, a

collection of filters and the target destination.</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="filter" type="FilterType" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="id" type="xs:ID"/>

<xs:attribute name="destinationName" type="xs:string" use="required"/>

</xs:complexType>

<!-- Subscription analysis types -->

<xs:complexType name="SubscriberCountRequestType">

<xs:annotation>

<xs:documentation>Structure used to express a subscription count analysis request.

Contains the target destination to count subscribers for, wildcards

allowed.</xs:documentation>

</xs:annotation>

<xs:attribute name="destinationName" type="xs:string" use="required"/>

</xs:complexType>

<xs:complexType name="SubscriberCountReplyType">

<xs:annotation>

<xs:documentation>Result of the subscriber count analysis.</xs:documentation>

</xs:annotation>

<xs:attribute name="subscriberCount" type="xs:int" use="required"/>

</xs:complexType>

<xs:complexType name="DestinationFilterCountRequestType">

<xs:annotation>

<xs:documentation>Structure to specify the destination count filter

request.</xs:documentation>

</xs:annotation>

<xs:attribute name="destinationName" type="xs:string" use="required"/>

</xs:complexType>

<xs:complexType name="DestinationFilterCountReplyType">

<xs:annotation>

<xs:documentation>Contains the results from the filter count

analysis.</xs:documentation>

</xs:annotation>

207

B.2 MOM-DSL

<xs:sequence>

<xs:element name="filter" type="FilterCountType" minOccurs="0" maxOccurs="unbounded"

/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="FilterCountType">

<xs:annotation>

<xs:documentation>Structure used to count filters. Extends the basic filter type

with a count attribute.</xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="FilterType">

<xs:attribute name="count" type="xs:int" use="required"/>

</xs:extension>

</xs:complexContent>

</xs:complexType>

</xs:schema>

B.2.3 Interception Type Schema

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:include schemaLocation="mom_dsl_common_types.xsd"/>

<xs:annotation>

<xs:documentation>Interception meta-state structures.</xs:documentation>

</xs:annotation>

<!-- Basic Interceptior element -->

<xs:complexType name="InterceptorType">

<xs:annotation>

<xs:documentation>Structure used to track interception state. Contains the name,

interception point, classname, and scope of an interceptor. An optional collection

of configuration options may also be tracked.</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="Option" type="OptionType" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="name" type="xs:string" use="required"/>

<xs:attribute name="interceptionPont" type="InterceptionPointTypeList" use="required"/>

<xs:attribute name="className" type="xs:string" use="required"/>

<xs:attribute name="scope" type="xs:string" use="required">

<xs:annotation>

<xs:documentation>Specify the scope of the interceptor. If left blank a global

scope is assumed. Otherwise specify local destination scope.</xs:documentation>

</xs:annotation>

</xs:attribute>

</xs:complexType>

<xs:complexType name="InterceptionType">

<xs:annotation>

<xs:documentation>Structure used to track a collection of

interceptors.</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="Interceptor" type="InterceptorType" minOccurs="0"

maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:simpleType name="InterceptionPointTypeList">

208

B.2 MOM-DSL

<xs:annotation>

<xs:documentation>A list of interception points.</xs:documentation>

</xs:annotation>

<xs:list itemType="InterceptionPointType"/>

</xs:simpleType>

<xs:simpleType name="InterceptionPointType">

<xs:annotation>

<xs:documentation>Possible locations for interception.</xs:documentation>

</xs:annotation>

<xs:restriction base="xs:string">

<xs:enumeration value="CreateDestination"/>

<xs:enumeration value="UpdateDestination"/>

<xs:enumeration value="DeleteDestination"/>

<xs:enumeration value="CreateSubscription"/>

<xs:enumeration value="DeleteSubscription"/>

<xs:enumeration value="SendMessage"/>

<xs:enumeration value="ReceiveMessage"/>

</xs:restriction>

</xs:simpleType>

</xs:schema>

B.2.4 Reflective Type Schema

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:include schemaLocation="mom_dsl_common_types.xsd"/>

<xs:annotation>

<xs:documentation>Reflective meta-state structures.</xs:documentation>

</xs:annotation>

<!-- Basic reflective policy element -->

<xs:complexType name="ReflectivePolicyType">

<xs:annotation>

<xs:documentation>Structure used to track a reflective policy. Contains the name,

reflective location, classname, scope, and synchronisation of a policy. An

optional collection of configuration options may also be

tracked.</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="Option" type="OptionType" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="name" type="xs:string" use="required"/>

<xs:attribute name="location" type="ReflectiveLocationTypeList" use="required"/>

<xs:attribute name="className" type="xs:string" use="required"/>

<xs:attribute name="scope" type="xs:string" use="required">

<xs:annotation>

<xs:documentation>Specify the scope of the interceptor. If left blank a global

scope is assumed. Otherwise specify local destination scope.</xs:documentation>

</xs:annotation>

</xs:attribute>

<xs:attribute name="synchronisation" type="synchronisationType" use="required"/>

</xs:complexType>

<xs:complexType name="ReflectivePoliciesType">

<xs:annotation>

<xs:documentation>Structure used to track a collection of reflective

policies.</xs:documentation>

</xs:annotation>

<xs:sequence>

209

B.2 MOM-DSL

<xs:element name="Policy" type="ReflectivePolicyType" minOccurs="0" maxOccurs="1"/>

</xs:sequence>

</xs:complexType>

<xs:simpleType name="ReflectiveLocationTypeList">

<xs:annotation>

<xs:documentation>A list of possible reflective locations.</xs:documentation>

</xs:annotation>

<xs:list itemType="ReflectiveLocationType"/>

</xs:simpleType>

<xs:simpleType name="ReflectiveLocationType">

<xs:annotation>

<xs:documentation>Possible locations for reflective policy

attachment.</xs:documentation>

</xs:annotation>

<xs:restriction base="xs:string">

<xs:enumeration value="CreateDestination"/>

<xs:enumeration value="UpdateDestination"/>

<xs:enumeration value="DeleteDestination"/>

<xs:enumeration value="CreateSubscription"/>

<xs:enumeration value="DeleteSubscription"/>

<xs:enumeration value="SendMessage"/>

<xs:enumeration value="ReceiveMessage"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="synchronisationType">

<xs:annotation>

<xs:documentation>Synchronisation options available to policies.</xs:documentation>

</xs:annotation>

<xs:restriction base="xs:string">

<xs:enumeration value="sync"/>

<xs:enumeration value="asyn"/>

</xs:restriction>

</xs:simpleType>

</xs:schema>

B.2.5 Event Type Schema

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:annotation>

<xs:documentation>Event model structures.</xs:documentation>

</xs:annotation>

<!-- Basic event element -->

<xs:complexType name="EventLocationType">

<xs:annotation>

<xs:documentation>Structure to store event location information. </xs:documentation>

</xs:annotation>

<xs:attribute name="event" type="EventSelectionType" use="required"/>

<xs:attribute name="location" type="xs:string" use="required"/>

</xs:complexType>

<xs:simpleType name="EventSelectionType">

<xs:annotation>

<xs:documentation>Available event types.</xs:documentation>

</xs:annotation>

<xs:restriction base="xs:string">

<xs:enumeration value="CreateDestination"/>

<xs:enumeration value="UpdateDestination"/>

210

B.2 MOM-DSL

<xs:enumeration value="DeleteDestination"/>

<xs:enumeration value="CreateSubscription"/>

<xs:enumeration value="DeleteSubscription"/>

<xs:enumeration value="SendMessage"/>

<xs:enumeration value="ReceiveMessage"/>

</xs:restriction>

</xs:simpleType>

</xs:schema>

B.2.6 Capability Type Schema

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:include schemaLocation="mom_dsl_event_types.xsd"/>

<xs:annotation>

<xs:documentation>Capability types for the MOM-DSL.</xs:documentation>

</xs:annotation>

<!--Basic capability structure -->

<xs:complexType name="CapabilityType">

<xs:annotation>

<xs:documentation>Structure to store capability state. Includes access information

for Destination, Subscription, Interception and Reflective meta-spaces. Also

includes information on event model and meta-analyses.</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="Destination" type="MetaAccessCapabilityType" minOccurs="0"

maxOccurs="1"/>

<xs:element name="Subscription" type="MetaAccessCapabilityType" minOccurs="0"

maxOccurs="1"/>

<xs:element name="Interception" type="MetaAccessCapabilityType" minOccurs="0"

maxOccurs="1"/>

<xs:element name="Reflective" type="MetaAccessCapabilityType" minOccurs="0"

maxOccurs="1"/>

<xs:element name="AvailableEvents" minOccurs="0" maxOccurs="1">

<xs:complexType>

<xs:sequence>

<xs:element name="EventLocation" type="EventLocationType" minOccurs="0"

maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="AvailableAnalysis" minOccurs="0" maxOccurs="1">

<xs:complexType>

<xs:sequence>

<xs:element name="Analysis" type="AnalysisType" minOccurs="0"

maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

<xs:complexType name="MetaAccessCapabilityType">

<xs:annotation>

<xs:documentation>Generic structure containing access information for a meta-space.

Specifies access to state, creation, update, and deletion capabilities.

</xs:documentation>

</xs:annotation>

211

B.2 MOM-DSL

<xs:attribute name="state" type="xs:boolean" use="required"/>

<xs:attribute name="create" type="xs:boolean" use="required"/>

<xs:attribute name="update" type="xs:boolean" use="required"/>

<xs:attribute name="delete" type="xs:boolean" use="required"/>

</xs:complexType>

<!-- Analysis types -->

<xs:complexType name="AnalysisType">

<xs:annotation>

<xs:documentation>Structure to specific access to meta-analysis.</xs:documentation>

</xs:annotation>

<xs:attribute name="analysis" type="AnalysisOperationType" use="required"/>

<xs:attribute name="access" type="xs:boolean"/>

</xs:complexType>

<xs:simpleType name="AnalysisOperationType">

<xs:annotation>

<xs:documentation/>

</xs:annotation>

<xs:restriction base="xs:string">

<xs:enumeration value="DestinationSearch"/>

<xs:enumeration value="SubscriptionCount"/>

<xs:enumeration value="DestinationFilterCount"/>

</xs:restriction>

</xs:simpleType>

</xs:schema>

B.2.7 Common Type Schema

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:annotation>

<xs:documentation>Common types for the MOM-DSL.</xs:documentation>

</xs:annotation>

<!-- Common types -->

<xs:complexType name="OptionType">

<xs:annotation>

<xs:documentation>Option element used for reflective policies and interceptors.

Contain a name to identify the option and a value.</xs:documentation>

</xs:annotation>

<xs:attribute name="name" type="xs:string" use="required"/>

<xs:attribute name="value" type="xs:string" use="required"/>

</xs:complexType>

<xs:complexType name="FilterType">

<xs:annotation>

<xs:documentation>Structure used to track filter state. Contains a name to identify

the attribute, the operator use in comparison and the valued

compared.</xs:documentation>

</xs:annotation>

<xs:attribute name="attribute" type="xs:string" use="required"/>

<xs:attribute name="operator" type="operatorType" use="required"/>

<xs:attribute name="value" type="xs:string" use="required"/>

</xs:complexType>

<xs:simpleType name="operatorType">

<xs:annotation>

<xs:documentation>Operators available within comparisons.</xs:documentation>

</xs:annotation>

<xs:restriction base="xs:string">

<xs:enumeration value="NOT IN"/>

212

B.2 MOM-DSL

<xs:enumeration value="="/>

<xs:enumeration value=">"/>

<xs:enumeration value=">="/>

<xs:enumeration value="<"/>

<xs:enumeration value="<="/>

<xs:enumeration value="<>"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="AvailableStateType">

<xs:annotation>

<xs:documentation>Available meta-states.</xs:documentation>

</xs:annotation>

<xs:restriction base="xs:string">

<xs:enumeration value="Destination"/>

<xs:enumeration value="Subscription"/>

<xs:enumeration value="Interception"/>

<xs:enumeration value="Reflective"/>

</xs:restriction>

</xs:simpleType>

</xs:schema>

B.2.8 Generic MOM-DSL Request/Reply Schema

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<!-- Import type schemas -->

<xs:include schemaLocation="mom_dsl_common_types.xsd"/>

<xs:include schemaLocation="mom_dsl_capability_types.xsd"/>

<xs:include schemaLocation="mom_dsl_destination_types.xsd"/>

<xs:include schemaLocation="mom_dsl_subscription_types.xsd"/>

<xs:include schemaLocation="mom_dsl_interception_types.xsd"/>

<xs:include schemaLocation="mom_dsl_reflective_types.xsd"/>

<xs:include schemaLocation="mom_dsl_event_types.xsd"/>

<xs:annotation>

<xs:documentation>Generic request/reply structure for MOM-DSL.</xs:documentation>

</xs:annotation>

<!-- Root element -->

<xs:element name="MOM-DSL">

<xs:annotation>

<xs:documentation>Root element that contains a collection of Request and/or reply

actions. Each request/reply must contain a unique request ID.</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:choice>

<xs:element name="Request" type="RequestType" minOccurs="1" maxOccurs="unbounded"/>

<xs:element name="Reply" type="ReplyType" minOccurs="1" maxOccurs="unbounded"/>

</xs:choice>

</xs:complexType>

<xs:key name="requestIDKey">

<xs:selector xpath="Request"/>

<xs:field xpath="@requestID"/>

</xs:key>

<xs:key name="replyIDKey">

<xs:selector xpath="Reply"/>

<xs:field xpath="@replyID"/>

</xs:key>

</xs:element>

213

B.2 MOM-DSL

<xs:complexType name="RequestType">

<xs:annotation>

<xs:documentation>Structure used to specify a request. May be used to request

capabilities, state, change to state (create, update, delete), or analysis. Each

request must contain a unique request ID. </xs:documentation>

</xs:annotation>

<xs:choice>

<xs:element name="Capability-Request">

<xs:annotation>

<xs:documentation>Request capabilities. Optional username and

password.</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:attribute name="username" type="xs:string"/>

<xs:attribute name="password" type="xs:string"/>

</xs:complexType>

</xs:element>

<xs:element name="State-Request">

<xs:annotation>

<xs:documentation>Request State. Specify state request (Destination,

Subscription, Interception, Reflective).</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:attribute name="state" type="AvailableStateType" use="required"/>

</xs:complexType>

</xs:element>

<!-- State editing structures -->

<xs:element name="Create">

<xs:annotation>

<xs:documentation>Request the creation of state. Contains the new state

structure (Destination, Subscription, Interception,

Reflective).</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:choice>

<xs:element name="Destination" type="DestinationType" minOccurs="1"

maxOccurs="1"/>

<xs:element name="HierarchyNode" type="HierarchyNodeType" minOccurs="1"

maxOccurs="1"/>

<xs:element name="Subscription" type="SubscriptionType" minOccurs="1"

maxOccurs="1"/>

<xs:element name="Interceptor" type="InterceptorType" minOccurs="1"

maxOccurs="1"/>

<xs:element name="ReflectivePolicy" type="ReflectivePolicyType" minOccurs="1"

maxOccurs="1"/>

</xs:choice>

</xs:complexType>

</xs:element>

<xs:element name="Update">

<xs:annotation>

<xs:documentation>Request state to be updated. Contains the old and new state

structures (Destination, Subscription, Interception,

Reflective).</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:choice>

<xs:element name="UpdateDestination">

<xs:complexType>

<xs:sequence>

<xs:element name="CurrentDestination" type="DestinationType"

214

B.2 MOM-DSL

minOccurs="1" maxOccurs="1"/>

<xs:element name="NewDestination" type="DestinationType" minOccurs="1"

maxOccurs="1"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="UpdateHierarchy">

<xs:complexType>

<xs:sequence>

<xs:element name="CurrentHierarchyNode" type="HierarchyNodeType"

minOccurs="1" maxOccurs="1"/>

<xs:element name="NewHierarchyNode" type="HierarchyNodeType"

minOccurs="1" maxOccurs="1"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="UpdateSubscription">

<xs:complexType>

<xs:sequence>

<xs:element name="CurrentSubscription" type="SubscriptionType"

minOccurs="1" maxOccurs="1"/>

<xs:element name="NewSubscription" type="SubscriptionType" minOccurs="1"

maxOccurs="1"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="UpdateInterceptor">

<xs:complexType>

<xs:sequence>

<xs:element name="CurrentInterceptor" type="InterceptorType"

minOccurs="1" maxOccurs="1"/>

<xs:element name="NewInterceptor" type="InterceptorType" minOccurs="1"

maxOccurs="1"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="UpdateReflectivePolicy">

<xs:complexType>

<xs:sequence>

<xs:element name="CurrentReflectivePolicy" type="ReflectivePolicyType"

minOccurs="1" maxOccurs="1"/>

<xs:element name="NewReflectivePolicy" type="ReflectivePolicyType"

minOccurs="1" maxOccurs="1"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:choice>

</xs:complexType>

</xs:element>

<xs:element name="Delete">

<xs:annotation>

<xs:documentation>Request the deletion of state. Contains the state structure

(Destination, Subscription, Interception, Reflective) to be

removed.</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:choice>

<xs:element name="Destination" type="DestinationType" minOccurs="1"

maxOccurs="1"/>

<xs:element name="HierarchyNode" type="HierarchyNodeType" minOccurs="1"

215

B.2 MOM-DSL

maxOccurs="1"/>

<xs:element name="Subscription" type="SubscriptionType" minOccurs="1"

maxOccurs="1"/>

<xs:element name="Interceptor" type="InterceptorType" minOccurs="1"

maxOccurs="1"/>

<xs:element name="ReflectivePolicy" type="ReflectivePolicyType" minOccurs="1"

maxOccurs="1"/>

</xs:choice>

</xs:complexType>

</xs:element>

<!-- Analysis structures -->

<xs:element name="Analysis">

<xs:annotation>

<xs:documentation>Request Analysis. Specify the analysis type with associated

parameters.</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:choice>

<xs:element name="DestinationSearch" type="DestinationSearchRequestType"/>

<xs:element name="SubscriberCount" type="SubscriberCountRequestType"/>

<xs:element name="DestinationFilterCount"

type="DestinationFilterCountRequestType"/>

</xs:choice>

</xs:complexType>

</xs:element>

</xs:choice>

<xs:attribute name="requestID" type="xs:string" use="required">

<xs:annotation>

<xs:documentation>Specify a required unique ID for this request.</xs:documentation>

</xs:annotation>

</xs:attribute>

</xs:complexType>

<xs:complexType name="ReplyType">

<xs:annotation>

<xs:documentation>Structure used to specify a reply. May be used to reply to

requests for capabilities, state, change to state (create, update, delete), or

analysis. Each reply must contain a unique ID and a response type.

</xs:documentation>

</xs:annotation>

<xs:choice>

<xs:element name="Capability" type="CapabilityType" minOccurs="0" maxOccurs="1"/>

<xs:element name="DestinationState" type="DestinationStateType" minOccurs="0"

maxOccurs="1"/>

<xs:element name="ReflectivePolicies" type="ReflectivePoliciesType" minOccurs="0"

maxOccurs="1"/>

<xs:element name="Interception" type="InterceptionType" minOccurs="0" maxOccurs="1"/>

<xs:element name="AnalysisResult" type="AnalysisResultType" minOccurs="0"

maxOccurs="1"/>

</xs:choice>

<xs:attribute name="replyID" type="xs:string" use="required"/>

<xs:attribute name="response" type="ResposneType" use="required"/>

</xs:complexType>

<xs:simpleType name="ResposneType">

<xs:annotation>

<xs:documentation>Possible responses to a service request.</xs:documentation>

</xs:annotation>

<xs:restriction base="xs:string">

<xs:enumeration value="accept"/>

<xs:enumeration value="refuse"/>

</xs:restriction>

216

B.2 MOM-DSL

</xs:simpleType>

<xs:complexType name="AnalysisResultType">

<xs:annotation>

<xs:documentation>Possible responses to a analysis request.</xs:documentation>

</xs:annotation>

<xs:choice>

<xs:element name="DestinationSearchResults" type="DestinationListType"/>

<xs:element name="SubscriberCountResults" type="SubscriberCountReplyType"/>

<xs:element name="DestinationFilterCountResults"

type="DestinationFilterCountReplyType"/>

</xs:choice>

</xs:complexType>

</xs:schema>

217

Appendix C

Additional Results from Chapter 8

218

C.1 One-to-One Results

C.1 One-to-One Results

C.1.1 3 Producers / 3 Consumers

500
450
400
350
300
250
200
150
100
50

10050
 Group C Joins

25
 Group B Joins

1
 Group A Joins

M
sg

 R
ec

ei
ve

 R
at

e
(in

 0
00

s)

Time Intervals

Total
Group A
Group B
Group C

(a) Static hierarchy

500
450
400
350
300
250
200
150
100
50

10050
 Group C Joins

25
 Group B Joins

1
 Group A Joins

M
sg

 R
ec

ei
ve

 R
at

e
(in

 0
00

s)

Time Intervals

Total
Group A
Group B
Group C

(b) Reflective hierarchy

500
450
400
350
300
250
200
150
100
50

10050
 Group C Joins

25
 Group B Joins

1
 Group A Joins

M
sg

 R
ec

ei
ve

 R
at

e
(in

 0
00

s)

Time Intervals

Static Hierarchy
Reflective Hierarchy

(c) Static hierarchy vs. reflective hierarchy

Figure C.1 One-to-one 3 / 3

219

C.1 One-to-One Results

C.1.2 30 Producers / 30 Consumers

10,000
9,000
8,000
7,000
6,000
5,000
4,000
3,000
2,000
1,000

10050
 Group C Joins

25
 Group B Joins

1
 Group A Joins

M
sg

 R
ec

ei
ve

 R
at

e
(in

 0
00

s)

Time Intervals

Total
Group A
Group B
Group C

(a) Static hierarchy

10,000
9,000
8,000
7,000
6,000
5,000
4,000
3,000
2,000
1,000

10050
 Group C Joins

25
 Group B Joins

1
 Group A Joins

M
sg

 R
ec

ei
ve

 R
at

e
(in

 0
00

s)

Time Intervals

Total
Group A
Group B
Group C

(b) Reflective hierarchy

10,000
9,000
8,000
7,000
6,000
5,000
4,000
3,000
2,000
1,000

10050
 Group C Joins

25
 Group B Joins

1
 Group A Joins

M
sg

 R
ec

ei
ve

 R
at

e
(in

 0
00

s)

Time Intervals

Static Hierarchy
Reflective Hierarchy

(c) Static hierarchy vs. reflective hierarchy

Figure C.2 One-to-one 30 / 30

220

C.1 One-to-One Results

C.1.3 90 Producers / 90 Consumers

10,000
9,000
8,000
7,000
6,000
5,000
4,000
3,000
2,000
1,000

10050
 Group C Joins

25
 Group B Joins

1
 Group A Joins

M
sg

 R
ec

ei
ve

 R
at

e
(in

 0
00

s)

Time Intervals

Total
Group A
Group B
Group C

(a) Static hierarchy

10,000
9,000
8,000
7,000
6,000
5,000
4,000
3,000
2,000
1,000

10050
 Group C Joins

25
 Group B Joins

1
 Group A Joins

M
sg

 R
ec

ei
ve

 R
at

e
(in

 0
00

s)

Time Intervals

Total
Group A
Group B
Group C

(b) Reflective hierarchy

10,000
9,000
8,000
7,000
6,000
5,000
4,000
3,000
2,000
1,000

10050
 Group C Joins

25
 Group B Joins

1
 Group A Joins

M
sg

 R
ec

ei
ve

 R
at

e
(in

 0
00

s)

Time Intervals

Static Hierarchy
Reflective Hierarchy

(c) Static hierarchy vs. reflective hierarchy

Figure C.3 One-to-one 90 / 90

221

C.1 One-to-One Results

C.1.4 150 Producers / 150 Consumers

10,000
9,000
8,000
7,000
6,000
5,000
4,000
3,000
2,000
1,000

10050
 Group C Joins

25
 Group B Joins

1
 Group A Joins

M
sg

 R
ec

ei
ve

 R
at

e
(in

 0
00

s)

Time Intervals

Total
Group A
Group B
Group C

(a) Static hierarchy

10,000
9,000
8,000
7,000
6,000
5,000
4,000
3,000
2,000
1,000

10050
 Group C Joins

25
 Group B Joins

1
 Group A Joins

M
sg

 R
ec

ei
ve

 R
at

e
(in

 0
00

s)

Time Intervals

Total
Group A
Group B
Group C

(b) Reflective hierarchy

10,000
9,000
8,000
7,000
6,000
5,000
4,000
3,000
2,000
1,000

10050
 Group C Joins

25
 Group B Joins

1
 Group A Joins

M
sg

 R
ec

ei
ve

 R
at

e
(in

 0
00

s)

Time Intervals

Static Hierarchy
Reflective Hierarchy

(c) Static hierarchy vs. reflective hierarchy

Figure C.4 One-to-one 150 / 150

222

C.1 One-to-One Results

C.1.5 300 Producers / 300 Consumers

10,000
9,000
8,000
7,000
6,000
5,000
4,000
3,000
2,000
1,000

10050
 Group C Joins

25
 Group B Joins

1
 Group A Joins

M
sg

 R
ec

ei
ve

 R
at

e
(in

 0
00

s)

Time Intervals

Total
Group A
Group B
Group C

(a) Static hierarchy

10,000
9,000
8,000
7,000
6,000
5,000
4,000
3,000
2,000
1,000

10050
 Group C Joins

25
 Group B Joins

1
 Group A Joins

M
sg

 R
ec

ei
ve

 R
at

e
(in

 0
00

s)

Time Intervals

Total
Group A
Group B
Group C

(b) Reflective hierarchy

10,000
9,000
8,000
7,000
6,000
5,000
4,000
3,000
2,000
1,000

10050
 Group C Joins

25
 Group B Joins

1
 Group A Joins

M
sg

 R
ec

ei
ve

 R
at

e
(in

 0
00

s)

Time Intervals

Static Hierarchy
Reflective Hierarchy

(c) Static hierarchy vs. reflective hierarchy

Figure C.5 One-to-one 300 / 300

223

C.2 Few-to-Many Results

C.2 Few-to-Many Results

C.2.1 3 Producers / 15 Consumers

5,000
4,500
4,000
3,500
3,000
2,500
2,000
1,500
1,000

500

10050
 Group C Joins

25
 Group B Joins

1
 Group A Joins

M
sg

 R
ec

ei
ve

 R
at

e
(in

 0
00

s)

Time Intervals

Total
Group A
Group B
Group C

(a) Static hierarchy

5,000
4,500
4,000
3,500
3,000
2,500
2,000
1,500
1,000

500

10050
 Group C Joins

25
 Group B Joins

1
 Group A Joins

M
sg

 R
ec

ei
ve

 R
at

e
(in

 0
00

s)

Time Intervals

Total
Group A
Group B
Group C

(b) Reflective hierarchy

5,000
4,500
4,000
3,500
3,000
2,500
2,000
1,500
1,000

500

10050
 Group C Joins

25
 Group B Joins

1
 Group A Joins

M
sg

 R
ec

ei
ve

 R
at

e
(in

 0
00

s)

Time Intervals

Static Hierarchy
Reflective Hierarchy

(c) Static hierarchy vs. reflective hierarchy

Figure C.6 Few-to-many 3 / 15

224

C.2 Few-to-Many Results

C.2.2 30 Producers / 150 Consumers

10,000
9,000
8,000
7,000
6,000
5,000
4,000
3,000
2,000
1,000

10050
 Group C Joins

25
 Group B Joins

1
 Group A Joins

M
sg

 R
ec

ei
ve

 R
at

e
(in

 0
00

s)

Time Intervals

Total
Group A
Group B
Group C

(a) Static hierarchy

10,000
9,000
8,000
7,000
6,000
5,000
4,000
3,000
2,000
1,000

10050
 Group C Joins

25
 Group B Joins

1
 Group A Joins

M
sg

 R
ec

ei
ve

 R
at

e
(in

 0
00

s)

Time Intervals

Total
Group A
Group B
Group C

(b) Reflective hierarchy

10,000
9,000
8,000
7,000
6,000
5,000
4,000
3,000
2,000
1,000

10050
 Group C Joins

25
 Group B Joins

1
 Group A Joins

M
sg

 R
ec

ei
ve

 R
at

e
(in

 0
00

s)

Time Intervals

Static Hierarchy
Reflective Hierarchy

(c) Static hierarchy vs. reflective hierarchy

Figure C.7 Few-to-many 30 / 150

225

C.2 Few-to-Many Results

C.2.3 60 Producers / 300 Consumers

10,000
9,000
8,000
7,000
6,000
5,000
4,000
3,000
2,000
1,000

10050
 Group C Joins

25
 Group B Joins

1
 Group A Joins

M
sg

 R
ec

ei
ve

 R
at

e
(in

 0
00

s)

Time Intervals

Total
Group A
Group B
Group C

(a) Static hierarchy

10,000
9,000
8,000
7,000
6,000
5,000
4,000
3,000
2,000
1,000

10050
 Group C Joins

25
 Group B Joins

1
 Group A Joins

M
sg

 R
ec

ei
ve

 R
at

e
(in

 0
00

s)

Time Intervals

Total
Group A
Group B
Group C

(b) Reflective hierarchy

10,000
9,000
8,000
7,000
6,000
5,000
4,000
3,000
2,000
1,000

10050
 Group C Joins

25
 Group B Joins

1
 Group A Joins

M
sg

 R
ec

ei
ve

 R
at

e
(in

 0
00

s)

Time Intervals

Static Hierarchy
Reflective Hierarchy

(c) Static hierarchy vs. reflective hierarchy

Figure C.8 Few-to-many 60 / 300

226

C.2 Few-to-Many Results

C.2.4 90 Producers / 450 Consumers

10,000
9,000
8,000
7,000
6,000
5,000
4,000
3,000
2,000
1,000

10050
 Group C Joins

25
 Group B Joins

1
 Group A Joins

M
sg

 R
ec

ei
ve

 R
at

e
(in

 0
00

s)

Time Intervals

Total
Group A
Group B
Group C

(a) Static hierarchy

10,000
9,000
8,000
7,000
6,000
5,000
4,000
3,000
2,000
1,000

10050
 Group C Joins

25
 Group B Joins

1
 Group A Joins

M
sg

 R
ec

ei
ve

 R
at

e
(in

 0
00

s)

Time Intervals

Total
Group A
Group B
Group C

(b) Reflective hierarchy

10,000
9,000
8,000
7,000
6,000
5,000
4,000
3,000
2,000
1,000

10050
 Group C Joins

25
 Group B Joins

1
 Group A Joins

M
sg

 R
ec

ei
ve

 R
at

e
(in

 0
00

s)

Time Intervals

Static Hierarchy
Reflective Hierarchy

(c) Static hierarchy vs. reflective hierarchy

Figure C.9 Few-to-many 90 / 450

227

C.3 Many-to-Few Results

C.3 Many-to-Few Results

C.3.1 15 Producers / 3 Consumers

500
450
400
350
300
250
200
150
100
50

10050
 Group C Joins

25
 Group B Joins

1
 Group A Joins

M
sg

 R
ec

ei
ve

 R
at

e
(in

 0
00

s)

Time Intervals

Total
Group A
Group B
Group C

(a) Static hierarchy

500
450
400
350
300
250
200
150
100
50

10050
 Group C Joins

25
 Group B Joins

1
 Group A Joins

M
sg

 R
ec

ei
ve

 R
at

e
(in

 0
00

s)

Time Intervals

Total
Group A
Group B
Group C

(b) Reflective hierarchy

500
450
400
350
300
250
200
150
100
50

10050
 Group C Joins

25
 Group B Joins

1
 Group A Joins

M
sg

 R
ec

ei
ve

 R
at

e
(in

 0
00

s)

Time Intervals

Static Hierarchy
Reflective Hierarchy

(c) Static hierarchy vs. reflective hierarchy

Figure C.10 Many-to-few 15 / 3

228

C.3 Many-to-Few Results

C.3.2 150 Producers / 30 Consumers

10,000
9,000
8,000
7,000
6,000
5,000
4,000
3,000
2,000
1,000

10050
 Group C Joins

25
 Group B Joins

1
 Group A Joins

M
sg

 R
ec

ei
ve

 R
at

e
(in

 0
00

s)

Time Intervals

Total
Group A
Group B
Group C

(a) Static hierarchy

10,000
9,000
8,000
7,000
6,000
5,000
4,000
3,000
2,000
1,000

10050
 Group C Joins

25
 Group B Joins

1
 Group A Joins

M
sg

 R
ec

ei
ve

 R
at

e
(in

 0
00

s)

Time Intervals

Total
Group A
Group B
Group C

(b) Reflective hierarchy

10,000
9,000
8,000
7,000
6,000
5,000
4,000
3,000
2,000
1,000

10050
 Group C Joins

25
 Group B Joins

1
 Group A Joins

M
sg

 R
ec

ei
ve

 R
at

e
(in

 0
00

s)

Time Intervals

Static Hierarchy
Reflective Hierarchy

(c) Static hierarchy vs. reflective hierarchy

Figure C.11 Many-to-few 150 / 30

229

C.3 Many-to-Few Results

C.3.3 300 Producers / 60 Consumers

10,000
9,000
8,000
7,000
6,000
5,000
4,000
3,000
2,000
1,000

10050
 Group C Joins

25
 Group B Joins

1
 Group A Joins

M
sg

 R
ec

ei
ve

 R
at

e
(in

 0
00

s)

Time Intervals

Total
Group A
Group B
Group C

(a) Static hierarchy

10,000
9,000
8,000
7,000
6,000
5,000
4,000
3,000
2,000
1,000

10050
 Group C Joins

25
 Group B Joins

1
 Group A Joins

M
sg

 R
ec

ei
ve

 R
at

e
(in

 0
00

s)

Time Intervals

Total
Group A
Group B
Group C

(b) Reflective hierarchy

10,000
9,000
8,000
7,000
6,000
5,000
4,000
3,000
2,000
1,000

10050
 Group C Joins

25
 Group B Joins

1
 Group A Joins

M
sg

 R
ec

ei
ve

 R
at

e
(in

 0
00

s)

Time Intervals

Static Hierarchy
Reflective Hierarchy

(c) Static hierarchy vs. reflective hierarchy

Figure C.12 Many-to-few 300 / 60

230

C.3 Many-to-Few Results

C.3.4 450 Producers / 90 Consumers

10,000
9,000
8,000
7,000
6,000
5,000
4,000
3,000
2,000
1,000

10050
 Group C Joins

25
 Group B Joins

1
 Group A Joins

M
sg

 R
ec

ei
ve

 R
at

e
(in

 0
00

s)

Time Intervals

Total
Group A
Group B
Group C

(a) Static hierarchy

10,000
9,000
8,000
7,000
6,000
5,000
4,000
3,000
2,000
1,000

10050
 Group C Joins

25
 Group B Joins

1
 Group A Joins

M
sg

 R
ec

ei
ve

 R
at

e
(in

 0
00

s)

Time Intervals

Total
Group A
Group B
Group C

(b) Reflective hierarchy

10,000
9,000
8,000
7,000
6,000
5,000
4,000
3,000
2,000
1,000

10050
 Group C Joins

25
 Group B Joins

1
 Group A Joins

M
sg

 R
ec

ei
ve

 R
at

e
(in

 0
00

s)

Time Intervals

Static Hierarchy
Reflective Hierarchy

(c) Static hierarchy vs. reflective hierarchy

Figure C.13 Many-to-few 450 / 90

231

References

[1] K. Geihs, “Middleware Challenges Ahead,” IEEE Computer, vol. 34, no. 6, pp. 24–31, 2001.

[2] M. Weiser, “Some Computer Science Issues in Ubiquitous Computing,” Communications of the ACM,

vol. 36, no. 7, pp. 74–84, 1993.

[3] L. Kleinrock, “Nomadic Computing,” in Information Network and Data Communication, IFIP/ICCC

International Conference on Information Network and Data Communication, F. A. Aagesen, H. Bot-

nevik, and D. Khakhar, Eds. Trondheim, Norway: Kluwer, 1996, pp. 223–233.

[4] F. P. Brooks, The Mythical Man-month: Essays on Software Engineering, 20th Anniversary Edition.

Reading, MA: Addison-Wesley, 1995.

[5] R. N. Charette, “Why Software Fails,” IEEE Spectrum, September 2005.

[6] A. Ganek and T. Corbi, “The Dawning of the Autonomic Computing Era,” IBM Systems Journal,

vol. 42, no. 1, pp. 5–18, 2003.

[7] G. S. Blair, G. Coulson, A. Andersen, L. Blair, M. Clarke, F. Costa, H. Duran-Limon, T. Fitzpatrick,

L. Johnston, R. Moreira, N. Parlavantzas, and K. Saikoski, “The Design and Implementation of Open

ORB 2,” IEEE Distributed Systems Online, vol. 2, no. 6, 2001.

[8] F. Kon, M. Romn, P. Liu, J. Mao, T. Yamane, L. C. Magalhes, and R. H. Campbell, “Monitoring,

Security, and Dynamic Configuration with the dynamicTAO Reflective ORB,” in IFIP/ACM Inter-

national Conference on Distributed Systems Platforms and Open Distributed Processing (Middleware

2000), ser. Lecture Notes in Computer Science, J. S. Sventek and G. Coulson, Eds., vol. 1795. New

York, USA: Springer, 2000, pp. 121–143.

[9] A. Andersen, G. S. Blair, T. Stabell-Kulo, P. H. Myrvang, and T.-A. N. Rost, “Reflective Middleware

and Security: OOPP meets Obol,” in 2nd Workshop on Reflective and Adaptive Middleware at

Middleware 2003. Rio de Janeiro, Brazil: PUC-Rio, 2003, pp. 100–104.

[10] R. Karlsen and A.-B. A. Jakobsen, “Transaction Service Management: An Approach Towards a Re-

flective Transaction Service,” in 2nd Workshop on Reflective and Adaptive Middleware at Middleware

2003. Rio de Janeiro, Brazil: PUC-Rio, 2003, pp. 135–138.

[11] F. Favarim, F. Siqueira, and J. Fraga, “Adaptive Fault-Tolerant CORBA Components,” in 2nd

Workshop on Reflective and Adaptive Middleware at Middleware 2003. Rio de Janeiro, Brazil:

PUC-Rio, 2003, pp. 144–148.

[12] R. E. Schantz and D. C. Schmidt, “Middleware for Distributed Systems: Evolving the Common

Structure for Network-centric Applications,” in Encyclopedia of Software Engineering. New York:

John Wiley and Sons, 2001, pp. 801–813.

232

References

[13] J. Donne, Devotions upon Emergent Occasions. Oxford University Press, 1987.

[14] G. Hohpe and B. Woolf, “Message Router,” in Enterprise Integration Patterns: Designing, Building,

and Deploying Messaging Solutions. Addison-Wesley Professional, 2003, pp. 78–84.

[15] G. Hohpe and B. Woolf, “Dynamic Router,” in Enterprise Integration Patterns: Designing, Building,

and Deploying Messaging Solutions. Addison-Wesley Professional, 2003, pp. 243–248.

[16] G. Hohpe and B. Woolf, “Content-Based Router,” in Enterprise Integration Patterns: Designing,

Building, and Deploying Messaging Solutions. Addison-Wesley Professional, 2003, pp. 230–236.

[17] G. S. Blair, F. M. Costa, G. Coulson, H. A. Duran, N. Parlavantzas, F. Delpiano, B. Dumant,

F. Horn, and J.-B. Stefani, “The Design of a Resource-Aware Reflective Middleware Architecture,”

in Second International Conference on Meta-Level Architectures and Reflection (Reflection’99), ser.

Lecture Notes in Computer Science, P. Cointe, Ed., vol. 1616. St. Malo, France: Springer, 1998,

pp. 115–134.

[18] J. Loyall, R. Schantz, J. Zinky, P. Pal, R. Shapiro, C. Rodrigues, M. Atighetchi, D. Karr, J. M.

Gossett, and C. D. Gill, “Comparing and Contrasting Adaptive Middleware Support in Wide-Area

and Embedded Distributed Object Applications,” in 21st International Conference on Distributed

Computing Systems. Mesa, AZ: IEEE Computer Society, 2001, pp. 625–635.

[19] B. C. Smith, “Procedural Reflection in Programming Languages,” Ph.D. Thesis, Laboratory of

Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA, 1982.

[20] G. Coulson, “What is Reflective Middleware?” 2002. [Online]. Available: http://dsonline.computer.

org

[21] F. Kon, F. Costa, G. Blair, and R. H. Campbell, “The Case for Reflective Middleware,” Communi-

cations of the ACM, vol. 45, no. 6, pp. 33–38, 2002.

[22] W. Cazzola, A. Savigni, A. Sosio, and F. Tisato, “Architectural Reflection. Realising Software Ar-

chitectures via Reflective Activities,” in 2nd International Workshop on Engineering Distributed

Objects (EDO 2000), ser. Lecture Notes in Computer Science, W. Emmerich and S. Tai, Eds., vol.

1999. Davis, USA: Springer, 2000, pp. 102–115.

[23] J. Dowling and V. Cahill, “The K-Component Architecture Meta-model for Self-Adaptive Software,”

in Third International Conference on Metalevel Architectures and Separation of Crosscutting Con-

cerns (Reflection 2001), ser. Lecture Notes in Computer Science, A. Yonezawa and S. Matsuoka,

Eds., vol. 2192. Kyoto, Japan: Springer, 2001, pp. 81–88.

[24] S. Chiba, “A Metaobject Protocol for C++,” in 10th ACM Conference on Object-Oriented Program-

ming Systems, Languages, and Applications (OOPSLA’95), ser. SIGPLAN. Austin, Texas: ACM

Press, 1995, pp. 285–299.

[25] M. Tatsubori, S. Chiba, M.-O. Killijian, and K. Itano, “OpenJava: A Class-Based Macro System for

Java,” in Reflection and Software Engineering, ser. Lecture Notes in Computer Science, W. Cazzola,

R. J. Stroud, and F. Tisato, Eds., vol. 1826. Springer, 2000, pp. 117–133.

[26] J. McAffer, “Meta-level programming with CodA,” in 9th European Conference on Object-Oriented

Programming (ECOOP’95), ser. Lecture Notes in Computer Science, W. G. Olthoff, Ed., vol. 952.

Aarhus, Denmark: Springer, 1995, pp. 190–214.

233

http://dsonline.computer.org
http://dsonline.computer.org

References

[27] J. Dowling, “The Decentralised Coordination of Self-Adaptive Components for Autonomic Dis-

tributed Systems,” Ph.D. thesis, Department of Computer Science, University of Dublin, Trinity

College, Dublin, Ireland, 2004.

[28] G. Kiczales, J. d. Rivieres, and D. G. Bobrow, The Art of the Metaobject Protocol. Cambridge,

Massachusetts: The MIT Press, 1991.

[29] D. Parnas, “On the Criteria To Be Used in Decomposing Systems into Modules,” Communications

of the ACM, vol. 15, no. 12, pp. 1053–1058, 1972.

[30] H. Okamura, Y. Ishikawa, and M. Tokoro, “AL-1/D: A Distributed Programming System with Multi-

Model Reflection Framework,” in International Workshop on Reflection and Meta-Level Architecture,

A. Yonezawa and B. C. Smith, Eds. Japan: ACM Press, 1992, pp. 36–47.

[31] R. Vanegas, J. A. Zinky, J. P. Loyall, D. Karr, R. E. Schantz, and D. E. Bakken, “QuO’s Runtime Sup-

port for Quality of Service in Distributed Objects,” in IFIP International Conference on Distributed

Systems Platforms and Open Distributed Processing (Middleware ’98), N. Davies, K. Raymond, and

J. Seitz, Eds. The Lake District, England: Springer, 1998.

[32] W. Cazzola and M. Ancona, “mChaRM: a Reflective Middleware for Communication-Based Reflec-

tion,” IEEE Distributed System On-Line, vol. 3, no. 2, 2002.

[33] E. Curry, D. Chambers, and G. Lyons, “Reflective Channel Hierarchies,” in 2nd Workshop on Re-

flective and Adaptive Middleware at Middleware 2003. Rio de Janeiro, Brazil: PUC-Rio, 2003, pp.

105–109.

[34] J. Dowling, T. Schaefer, and V. Cahill, “Using Reflection to Support Dynamic Adaptation of System

Software: A Case Study Driven Evaluation,” in Software Engineering and Reflection 2000, ser.

Lecture Notes in Computer Science, W. Cazzola, R. J. Stroud, and F. Tisato, Eds., vol. 1826.

Denver, Colorado: Springer, 2000, pp. 169–188.

[35] G. Coulson, G. Blair, and P. Grace, “On the Performance of Reflective Systems Software,” in In-

ternational Workshop on Middleware Performance (MP 2004): Satellite workshop of the IEEE In-

ternational Performance, Computing and Communications Conference (IPCCC 2004). Phoenix,

Arizona: IEEE Press, 2004, pp. 763–71.

[36] B. Garbinato, R. Guerraoui, and K. R. Mazouni, “Distributed Programming in GARF,” in ECOOP

Workshop on Object-Based Distributed Programming, R. Guerraoui, O. Nierstrasz, and M. Riveill,

Eds., vol. Lecture Notes In Computer Science. Kaiserslautern, Germany: Springer, 1993, pp. 225–

239.

[37] B. Garbinato, R. Guerraoui, and K. R. Mazouni, “Implementation of the GARF Replicated Object

Plateform,” Distributed Systems Engineering Journal, vol. 2, no. 1, pp. 14–27, 1995.

[38] J. Dowling and V. Cahill, “Self-Managed Decentralised Systems using K-Components and Col-

laborative Reinforcement Learning,” in 1st ACM SIGSOFT Workshop on Self-managed Systems

(WOSS’04). Newport Beach, CA, USA: ACM Press, 2004, pp. 39–43.

[39] J. Zinky, R. Schantz, J. Loyall, K. Anderson, and J. Megquier, “The Quality Objects (QuO) Mid-

dleware Framework,” in IFIP/ACM (Middleware2000) Workshop on Reflective Middleware. New

York, USA: Springer, 2000.

234

References

[40] P. Pal, J. Loyall, R. Schantz, J. Zinky, R. Shapiro, and J. Megquier, “Using QDL to Specify QoS

Aware Distributed (QuO) Application Configuration,” in Third IEEE International Symposium on

Object-Oriented Real Time Distributed Computing. Newport Beach, California, USA: IEEE Com-

puter Society, 2000, pp. 310–319.

[41] N. Wang, C. Gill, D. Schmidt, A. Gokhale, B. Natarajan, J. Loyall, R. Schantz, and C. Rodrigues,

“QoS-enabled Middleware,” in Middleware for Communications, Q. H. Mahmoud, Ed. Chichester,

England: John Wiley and Sons, 2004, pp. 131–188.

[42] G. Duzan, J. Loyall, R. Schantz, R. Shapiro, and J. Zinky, “Building Adaptive Distributed Applica-

tions with Middleware and Aspects,” in 3rd International Conference on Aspect-Oriented Software

Development (AOSD 04). Lancaster, UK: ACM Press, 2004, pp. 66–73.

[43] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier, and J. Irwin,

“Aspect-Oriented Programming,” in 11th European Conference on Object-Oriented Programming

(ECOOP’97), ser. Lecture Notes in Computer Science, M. Aksit and S. Matsuoka, Eds., vol. 1241.

Jyväskylä, Finland: Springer, 1997, pp. 220–242.

[44] L. Bergmans and M. Aksit, “Aspects and crosscutting in layered middleware systems,” in IFIP/ACM

(Middleware2000) Workshop on Reflective Middleware. New York, USA: Springer, 2000.

[45] S. Williams and C. Kindel, “The Component Object Model: Technical Overview,” Dr. Dobbs Journal,

December 1994.

[46] N. Parlavantzas, G. Blair, and G. Coulson, “A Resource Adaptation Framework for Reflective Mid-

dleware,” in 2nd Workshop on Reflective and Adaptive Middleware at Middleware 2003. Rio de

Janeiro, Brazil: PUC-Rio, 2003, pp. 163–168.

[47] N. Parlavantzas, G. Coulson, and G. Blair, “An Extensible Binding Framework for Component-

based Middleware,” in 7th IEEE International Enterprise Distributed Object Computing Conference

(EDOC’03). Brisbane, Australia: IEEE Computer Society, 2003, pp. 252–263.

[48] D. C. Schmidt and C. Cleeland, “Applying Patterns to Develop Extensible ORB Middleware,” IEEE

Communications Special Issue on Design Patterns, vol. 37, no. 4, pp. 54–63, 1999.

[49] F. Kon, B. Gill, M. Anand, R. H. Campbell, and M. D. Mickunas, “Secure Dynamic Reconfiguration

of Scalable CORBA Systems with Mobile Agents,” in IEEE Joint Symposium on Agent Systems and

Applications / Mobile Agents (ASA/MA’2000), ser. Lecture Notes in Computer Science, D. Kotz

and F. Mattern, Eds., vol. 1882. Zurich, Switzerland: Springer, 2000, pp. 86–98.

[50] R. T. Fielding, “Architectural Styles and the Design of Network-based Software Architectures,” Ph.D.

thesis, Deprtment of Information and Computer Science, University of California, Irvine, California,

2000.

[51] R. Glassey, G. Stevenson, M. Richmond, P. Nixon, S. Terzis, F. Wang, and I. Ferguson, “Towards

a Middleware for Generalised Context Management,” in 1st International Workshop on Middleware

for Pervasive and Ad-Hoc Computing at Middleware 2003. Rio de Janeiro, Brazil: PUC-Rio, 2003,

pp. 45–52.

[52] A. R. Portillo, S. Walker, G. Kirby, and A. Dearle, “A Reflective Approach to Providing Flexibility

in Application Distribution,” in 2nd Workshop on Reflective and Adaptive Middleware at Middleware

2003. Rio de Janeiro, Brazil: PUC-Rio, 2003, pp. 95–99.

235

References

[53] A. Maurino, S. Modaeri, and B. Pernici, “Reflective Architectures for Adaptive Information Sys-

tems,” in International Conference on Service-Oriented Computing, ser. Lecture Notes in Computer

Science, M. E. Orlowska, S. Weerawarana, M. P. Papazoglou, and J. Yang, Eds., vol. 2910. Trento,

Italy: Springer, 2003, pp. 115–131.

[54] J. E. White, “A High-Level Framework for Network-Based Resource Sharing,” in AFIPS National

Computer Conference, 1976, pp. 561–570.

[55] A. D. Birrell and B. J. Nelson, “Implementing Remote Procedure Calls,” ACM Transactions on

Computer Systems, vol. 2, no. 1, pp. 39–54, 1984.

[56] G. Banavar, T. Chandra, R. E. Strom, and D. C. Sturman, “A Case for Message Oriented Middle-

ware,” in 13th International Symposium on Distributed Computing, ser. Lecture Notes In Computer

Science, P. Jayanti, Ed., vol. 1693. Bratislava, Slovak Republic: Springer, 1999, pp. 1–18.

[57] A. S. Tanenbaum and M. v. Steen, Distributed Systems: Principles and Paradigms, 1st ed. Prentice

Hall, January 15, 2002.

[58] B. Naughton, S. Cranton, C. King, N. Nagarajaya, T. Schmal, D. Vleugels, and D. Winstone,

“Deployment Strategies focusing on Massive Scalability,” Massive Scalability Focus Group -

Operations Support Systems (OSS) through Java Initiative, Tech. Rep., 25 April 2003. [Online].

Available: http://java.sun.com/products/oss/pdf/MassiveScalability-1.0.pdf

[59] E. Curry, D. Chambers, and G. Lyons, “A JMS Message Transport Protocol for the JADE Platform,”

in 2003 IEEE/WIC International Conference on Intelligent Agent Technology (IAT’03). Halifax,

Canada: IEEE Computer Society, 2003, pp. 596–600.

[60] B. Stroustrup, The C++ Programming Language. Addison-Wesley, 1991.

[61] A. Hinze and S. Bittner, “Efficient Distribution-Based Event Filtering,” in 1st International Work-

shop on Distributed Event-Based Systems (DEBS’02). Vienna, Austria: IEEE Computer Society,

2002, pp. 525–532.

[62] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, “Design and Evaluation of a Wide-Area Event

Notification Service,” ACM Transactions on Computer Systems, vol. 19, no. 3, pp. 332–383, 2001.

[63] E. Curry, D. Chambers, and G. Lyons, “Enterprise Service Facilitation within Agent Environments,”

in 8th IASTED International Conference on Software Engineering and Applications (SEA 2004),

M. Hamza, Ed. MIT Cambridge, MA, USA: IASTED Press, 2004.

[64] P. R. Pietzuch and J. M. Bacon, “Hermes: A Distributed Event-Based Middleware Architecture,”

in 1st International Workshop on Distributed Event-Based Systems (DEBS’02). Vienna, Austria:

IEEE Computer Society, 2002, pp. 611–618.

[65] G. Mühl and L. Fiege, “Supporting Covering and Merging in Content-Based Publish/Subscribe

Systems: Beyond Name/Value Pairs,” IEEE Distributed Systems Online, vol. 2, no. 7, 2001.

[66] P. R. Pietzuch, B. Shand, and J. Bacon, “A Framework for Event Composition in Distributed

Systems,” in ACM/IFIP/USENIX International Middleware Conference (Middleware 2003), ser.

Lecture Notes in Computer Science, M. Endler and D. C. Schmidt, Eds., vol. 2672. Rio de Janeiro,

Brazil: Springer, 2003, pp. 62–82.

[67] A. Carzaniga, “Architectures for an Event Notification Service Scalable to Wide-area Networks,”

Ph.D. thesis, Dipartimento di Elettronica e Informazione, Politecnico di Milano, Milano, Italy, 1998.

236

http://java.sun.com/products/oss/pdf/ MassiveScalability-1.0.pdf

References

[68] G. Mühl, “Generic constraints for content-based publish/subscribe systems,” in 6th International

Conference on Cooperative Information Systems (CoopIS 2001), ser. Lecture Notes In Computer

Science, C. Batini, F. Giunchiglia, P. Giorgini, and M. Mecella, Eds., vol. 2172. Trento, Italy:

Springer, 2001, pp. 211–225.

[69] G. Mühl, L. Fiege, and A. P. Buchmann, “Filter Similarities in Content-Based Publish/Subscribe

Systems,” in International Conference on Architecture of Computing Systems (ARCS’02): Trends in

Network and Pervasive Computing, ser. Lecture Notes In Computer Science, vol. 2299. Karlsruhe,

Germany: Springer, 2002, pp. 224–240.

[70] L. Gilman and R. Schreiber, Distributed Computing with IBM MQSeries. New York: John Wiley,

1996.

[71] D. Skeen, “An Information Bus Architecture for Large-Scale, Decision-Support Environments,” in

Proceedings of the Winter 1992 USENIX Conference. San Francisco, California: USENIX Associa-

tion, 1992, pp. 183–195.

[72] “Sonic MQ,” 2005. [Online]. Available: http://www.sonicmq.com

[73] L. F. Cabrera, M. B. Jones, and M. Theimer, “Herald: Achieving a Global Event Notification

Service,” in 8th Workshop on Hot Topics in Operating Systems. Elmau, Germany: IEEE Computer

Society, 2001, pp. 87–94.

[74] R. Strom, G. Banavar, T. Chandra, M. Kaplan, K. Miller, B. Mukherjee, D. Sturman, and M. Ward,

“Gryphon: An Information Flow Based Approach to Message Brokering,” in International Sympo-

sium on Software Reliability Engineering. Paderborn, Germany: IEEE Press, 1998.

[75] G. Cugola, E. D. Nitto, and A. Fuggetta, “The JEDI Event-Based Infrastructure and Its Application

to the Development of the OPSS WFMS,” IEEE Transactions on Software Engineering, vol. 27, no. 9,

pp. 827–850, 2001.

[76] L. Fiege and G. Mühl, “REBECA,” 2005. [Online]. Available: http://www.gkec.informatik.

tu-darmstadt.de/rebeca/

[77] “OpenJMS,” 2005. [Online]. Available: http://openjms.sourceforge.net/

[78] M. Hapner, R. Burridge, R. Sharma, J. Fialli, and K. Stout, “Java Message Service Specification,”

Sun Microsystems, Inc., std. 1.1, 2002.

[79] K. Haase, “The Java Message Service (JMS) Tutorial,” 2002. [Online]. Available: http:

//java.sun.com/products/jms/tutorial/

[80] R. Monson-Haefel and D. A. Chappell, Java Message Service. Sebastopol, CA: O’Reilly and Asso-

ciates, 2001.

[81] E. Curry, “Message-Oriented Middleware,” in Middleware for Communications, Q. H. Mahmoud,

Ed. Chichester, England: John Wiley and Sons, 2004, pp. 1–28.

[82] S. Tai, T. A. Mikalsen, and I. M. Rouvellou, “Transaction Middleware,” in Middleware for Commu-

nications, Q. H. Mahmoud, Ed. Chichester, England: John Wiley and Sons, 2004, pp. 53–80.

[83] P. R. Pietzuch, “Hermes: A Scalable Event-Based Middleware,” Ph.D. thesis, Computer Laboratory,

Queens’ College, University of Cambridge, Cambridge, England, 2004.

[84] SonicMQ V6.1 Administrative Programming Guide. Sonic Software, 2004.

237

http://www.sonicmq.com
http://www.gkec.informatik.tu-darmstadt.de/rebeca/
http://www.gkec.informatik.tu-darmstadt.de/rebeca/
http://openjms.sourceforge.net/
http://java.sun.com/products/jms/tutorial/
http://java.sun.com/products/jms/tutorial/

References

[85] “ActiveMQ,” 2005. [Online]. Available: http://activemq.codehaus.org/

[86] “CORBA: Event Service Specification,” Object Management Group, std. 1.2, 2004. [Online].

Available: http://www.omg.org/technology/documents/formal/event service.htm

[87] “CORBA: Notification Service Specification,” Object Management Group, std. 1.1, 2004. [Online].

Available: http://www.omg.org/technology/documents/formal/notification service.htm

[88] “TIBCO Rendezvous: Concepts 7.3,” TIBCO Software, Tech. Rep., 2004. [Online]. Available:

http://developer.tibco.com/

[89] B. Ban, “JGroups,” 2005. [Online]. Available: http://www.jgroups.org/

[90] “Java Reliable Multicast Service,” 2005. [Online]. Available: http://www.experimentalstuff.com/

Technologies/JRMS/

[91] H. Hrasna, “Java 2 Platform, Enterprise Edition Management Specification JSR-77,” Sun

Microsystems, std. 1.0, 2002. [Online]. Available: http://jcp.org/jsr/detail/77.jsp

[92] “High Performance Messaging with JMS: A Benchmark Comparison of SonicMQ. 4.0 vs.

IBM MQSeries. 5.2,” Jahming Technologies, Tech. Rep. 1.0, 2001. [Online]. Available:

http://www.sonicsoftware.com/products/whitepapers/docs/sonic40 vs mqseries52.pdf

[93] “Clustering and DRA in SonicMQ,” Sonic Software, Tech. Rep. 1.0, 2004. [Online]. Available:

http://www.sonicsoftware.com/solutions/learning center/whitepapers

[94] G. Mühl, “Large-Scale Content-Based Publish/Subscribe Systems,” Ph.D. thesis, Department of

Computer Science, Darmstadt University of Technology, Darmstadt, Germany, 2002.

[95] L. Fiege, G. Mühl, and F. C. Grtner, “A modular approach to build structured event-based systems,”

in Proceedings of the 2002 ACM Symposium on Applied Computing (SAC’02). Madrid, Spain: ACM

Press, 2002, pp. 385–392.

[96] L. Fiege, M. Mezini, G. Mühl, and A. P. Buchmann, “Engineering Event-Based Systems with

Scopes,” in 16th European Conference on Object-Oriented Programming (ECOOP’02), ser. Lecture

Notes in Computer Science, B. Magnusson, Ed., vol. 2374. Malaga, Spain: Springer, 2002, pp.

309–333.

[97] L. Fiege, F. C. Grtner, O. Kasten, and A. Zeidler, “Supporting Mobility in Content-Based Pub-

lish/Subscribe Middleware,” in ACM/IFIP/USENIX International Middleware Conference (Middle-

ware 2003), ser. Lecture Notes in Computer Science, M. Endler and D. C. Schmidt, Eds., vol. 2672.

Rio de Janeiro, Brazil: Springer, 2003, pp. 103–122.

[98] E. McManus, “Java Management Extensions Instrumentation and Agent Specification,” Sun Mi-

crosystems, Inc., std. 1.2, 2002.

[99] L. Fiege, “REBECA Management Infrastructure,” 2005, personal correspondence.

[100] G. Banavar, T. D. Chandra, B. Mukherjee, J. Nagarajarao, R. E. Strom, and D. C. Sturman, “An

Efficient Multicast Protocol for Content-Based Publish-Subscribe Systems,” in 9th International

Conference on Distributed Computing Systems (ICDS’99). Austin, Texas, USA: IEEE Computer

Society, 1999, pp. 262–272.

[101] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and T. D. Chandra, “Matching Events

in a Content-based Subscription System,” in 18th ACM Symposium on Principles of Distributed

Computing. Atlanta, Georgia, USA: ACM Press, 1999, pp. 53–61.

238

http://activemq.codehaus.org/
http://www.omg.org/technology/documents/formal/event_service.htm
http://www.omg.org/technology/documents/formal/notification_service.htm
http://developer.tibco.com/
http://www.jgroups.org/
http://www.experimentalstuff.com/Technologies/JRMS/
http://www.experimentalstuff.com/Technologies/JRMS/
http://jcp.org/jsr/detail/77.jsp
http://www.sonicsoftware.com/products/whitepapers/docs/sonic40_vs_mqseries52.pdf
http://www.sonicsoftware.com/solutions/learning_center/whitepapers

References

[102] P. R. Pietzuch and S. Bhola, “Congestion Control in a Reliable Scalable Message-Oriented Middle-

ware,” in ACM/IFIP/USENIX International Middleware Conference (Middleware 2003), ser. Lec-

ture Notes in Computer Science, M. Endler and D. C. Schmidt, Eds., vol. 2672. Rio de Janeiro,

Brazil: Springer, 2003, pp. 202–221.

[103] J. Bacon, K. Moody, J. Bates, R. Hayton, C. Ma, A. McNeil, O. Seidel, and M. Spiter, “Generic

Support for Distributed Applications,” IEEE Computer, vol. 33, no. 3, pp. 68–76, 2000.

[104] M. Haahr, R. Meier, P. Nixon, V. Cahill, and E. Jul, “Filtering and Scalability in the ECO Distributed

Event Model,” in International Symposium on Software Engineering for Parallel and Distributed

Systems (PDSE2000). Limerick, Ireland: IEEE CS Press, 2000, pp. 83–92.

[105] M. A. Jaeger, “Self-Organizing Publish/Subscribe,” IEEE Distributed Systems Online, vol. 7, no. 2,

2006.

[106] M. A. Jaeger, “Self-Organizing Publish/Subscribe,” in 2nd International Doctoral Symposium on

Middleware, ser. ACM International Conference Proceeding, vol. 114. Grenoble, France: ACM

Press, 2005, pp. 1–5.

[107] FIPA, “FIPA - Foundation for Intelligent Physical Agents.” [Online]. Available: www.fipa.org

[108] “FIPA Agent Message Transport Service Specification,” Foundation for Intelligent Physical Agents,

std. SC00067F, 2002. [Online]. Available: http://www.fipa.org/specs/fipa00067/SC00067F.pdf

[109] “FIPA Request Interaction Protocol Specification,” Foundation for Intelligent Physical Agents, std.

SC00026H, 2002. [Online]. Available: http://www.fipa.org/specs/fipa00026/SC00026H.pdf

[110] “FIPA RDF Content Language Specification,” Foundation for Intelligent Physical Agents, std.

XC00011B, 2001. [Online]. Available: http://www.fipa.org/specs/fipa00011/XC00011B.pdf

[111] E. Curry and E. Ridge, “The Collective: A Common Information Service for Self-Managed Mid-

dleware,” in 4th Workshop on Adaptive and Reflective Middleware at Middleware 2005, ser. ACM

International Conference Proceeding Series, vol. 116. Grenoble, France: ACM Press, 2005, pp. 1–6.

[112] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, Pattern-Oriented Software Architecture:

Patterns for Concurrent and Networked Objects. John Wiley and Sons, 2000, vol. 2.

[113] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable Object-

Oriented Software. Addison-Wesley, 1995.

[114] M. Fleury and F. Reverbel, “The JBoss Extensible Server,” in ACM/IFIP/USENIX International

Middleware Conference (Middleware 2003), ser. Lecture Notes in Computer Science, M. Endler and

D. C. Schmidt, Eds., vol. 2672. Rio de Janeiro, Brazil: Springer, 2003, pp. 344–373.

[115] G. Booch, “Through the Looking Glass,” Software Development, July 2001.

[116] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. r. Palm, and W. G. Griswold, “An Overview of

AspectJ,” in The 15th European Conference on Object-Oriented Programming (ECOOP 2001), ser.

Lecture Notes In Computer Science, J. L. Knudsen, Ed., vol. 2072. Budapest, Hungary: Springer,

2001, pp. 327–353.

[117] H. Ossher and P. Tarr, “Using multidimensional separation of concerns to (re)shape evolving soft-

ware,” Communications of the ACM, vol. 44, no. 10, pp. 43–50, 2001.

[118] S. Vinoski, “A Time for Reflection,” IEEE Internet Computing, vol. 9, no. 1, pp. 86–89, 2005.

239

www.fipa.org
http://www.fipa.org/specs/fipa00067/SC00067F.pdf
http://www.fipa.org/specs/fipa00026/SC00026H.pdf
http://www.fipa.org/specs/fipa00011/XC00011B.pdf

References

[119] K. Czarnecki and U. Eisenecker, Generative Programming: Methods, Tools, and Applications. New

York: Addison-Wesley, 2000.

[120] C. Cleaveland, Program Generators with XML and Java. Upper Saddle River, New Jersy: Prentice

Hall, 2001.

[121] D. M. Chess, “Security issues in mobile code systems,” in Mobile Agents and Security, ser. Lecture

Notes in Computer Science, G. Vigna, Ed. Springer, 1998, vol. 1419, pp. 1–14.

[122] “BEA Systems,” 2005. [Online]. Available: http://www.bea.com/

[123] D. A. Chappell, Enterprise Service Bus. Sebastopol, CA: O’Reilly and Associates, 2004.

[124] P. T. Eugster, P. Felber, R. Guerraoui, and S. B. Handurukande, “Event Systems: How to Have Your

Cake and Eat It Too,” in International Workshop on Distributed Event-Based Systems (DEBS’02).

Vienna, Austria: IEEE Computer Society, 2002, pp. 625–632.

[125] B. Segall, D. Arnold, J. Boot, M. Henderson, and T. Phelps, “Content Based Routing with Elvin4,”

in The Australian UNIX and Open Systems Users Group (AUUG2K). Canberra, Australia: ACM

Press, 2000.

[126] E. Curry, D. Chambers, and G. Lyons, “Extending Message-Oriented Middleware using Intercep-

tion,” in Third International Workshop on Distributed Event-Based Systems (DEBS ’04) at ICSE

’04, A. Carzaniga and P. Fenkam, Eds. Edinburgh, Scotland, UK: IEEE Computer Society, 2004,

pp. 32–37.

[127] E. Curry, D. Chambers, and G. Lyons, “ARMAdA: Creating a Reflective Fellowship (Options for

Interoperability),” in 3rd Workshop on Adaptive and Reflective Middleware at Middleware 2004.

Toronto, Canada: Springer, 2004, pp. 226–231.

[128] E. Curry, D. Chambers, and G. Lyons, “Could Message Hierarchies Contemplate?” in 17th European

Conference on Object-Oriented Programming (ECOOP 2003), Darmstadt, Germany, 2003, (poster).

[129] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. Cambridge, MA: The

MIT Press, 1998.

[130] A. Carzaniga and A. L. Wolf, “A Benchmark Suite for Distributed Publish/Subscribe Systems,”

Department of Computer Science, University of Colorado, Tech. Rep. CU-CS-927-02, 2002.

[131] “Benchmarking E-Business Messaging Providers,” Sonic Software, Tech. Rep. 1.0, 2004. [Online].

Available: http://www.sonicsoftware.com/solutions/learning center/whitepapers

[132] M. Pang and P. Maheshwari, “Benchmarking Message-Oriented Middleware – TIB/RV vs. Son-

icMQ,” in Workshop on Foundations of Middleware Technologies, Irvine, CA, 2002.

[133] P. Maheshwari and M. Pang, “Benchmarking Message-Oriented Middleware – TIB/RV vs. Son-

icMQ,” Concurrency and Computation: Practice and Experience, vol. 17, no. 12, pp. 1507–1526,

2005.

[134] E. Curry, “Adaptive and Reflective Middleware,” in Middleware for Communications, Q. H. Mah-

moud, Ed. Chichester, England: John Wiley and Sons, 2004, pp. 29–52.

[135] F. Bellifemine, A. Poggi, and G. Rimassa, “JADE - A FIPA-Compliant Agent Framework,” in 4th

International Conference on the Practical Applications of Agents and Multi-Agent Systems (PAAM-

99). London, England: The Practical Application Company Ltd., 1999, pp. 97–108.

240

http://www.bea.com/
http://www.sonicsoftware.com/solutions/learning_center/whitepapers

References

[136] “FIPA Subscribe Interaction Protocol Specification,” Foundation for Intelligent Physical Agents,

std. SC00035, 2002. [Online]. Available: http://www.fipa.org/specs/fipa00035/SC00035H.pdf

[137] M. Cilia, M. Antolliniy, C. Bornhovdz, and A. Buchmann, “Dealing with Heterogeneous Data in

Pub/Sub Systems:The Concept-Based Approach,” in Third International Workshop on Distributed

Event-Based Systems (DEBS ’04) at ICSE ’04, A. Carzaniga and P. Fenkam, Eds. Edinburgh,

Scotland, UK: IEEE Computer Society, 2004, pp. 26–31.

[138] “FioranoMQ 7.1 vs. SonicMQ 5.0.2: A comprehensive technical evaluation of SonicMQ 5.0.2,”

Fiorano Software, Tech. Rep. 1.0, 2003. [Online]. Available: http://www.fiorano.com/whitepapers/

performance comparision sonic.pdf

[139] “SonicMQ vs. TIBCO Enterprise for JMS: Performance Comparison: Publish/Subscribe

Messaging,” Sonic Software, Tech. Rep. 1.0, 2003. [Online]. Available: http://www.sonicsoftware.

com/products/whitepapers/docs/jms comparison tibco.pdf

241

http://www.fipa.org/specs/fipa00035/SC00035H.pdf
http://www.fiorano.com/whitepapers/performance_comparision_sonic.pdf
http://www.fiorano.com/whitepapers/performance_comparision_sonic.pdf
http://www.sonicsoftware.com/products/whitepapers/docs/jms_comparison_tibco.pdf
http://www.sonicsoftware.com/products/whitepapers/docs/jms_comparison_tibco.pdf

	 Dedication
	 Acknowledgements
	 Abstract
	 List of Publications
	Contents
	 List of Illustrations
	 List of Tables
	I Background
	1 Introduction
	1.1 Motivation and Problem Domain
	1.2 Motivational Scenario
	1.3 Research Hypothesis
	1.4 Research Methodology
	1.5 Principal Contributions
	1.6 Thesis Organisation
	1.7 Summary of Conclusions

	2 Adaptive and Reflective Middleware Essentials
	2.1 Introduction
	2.2 Adaptive Middleware
	2.3 Reflective Middleware
	2.4 Are Adaptive and Reflective Techniques the Same?
	2.5 Triggers of Adaptive and Reflective Behaviour
	2.6 Adaptive and Reflective Techniques
	2.6.1 Structural Reflection (Programmatic)
	2.6.2 Behavioural Reflection
	2.6.3 Architectural Reflection
	2.6.4 Synchronous Reflection
	2.6.5 Asynchronous Reflection

	2.7 Meta-levels
	2.7.1 Operation Overview
	2.7.2 In-Line and Out-of-Line Execution
	2.7.3 Concern Separation
	2.7.4 Performance
	2.7.5 Openness to Coordination

	2.8 Current Reflective Research
	2.8.1 mChaRM
	2.8.2 QuO
	2.8.3 OpenCOM & Open ORB
	2.8.4 dynamicTAO (UIC/2K)
	2.8.5 K-Components
	2.8.6 Other Reviewed Systems

	2.9 Comparison of Reviewed Systems
	2.9.1 Coordination Capability
	2.9.2 Interaction Protocol
	2.9.3 Meta-Level Access Capabilities
	2.9.4 Review Summary

	2.10 Summary

	3 Rudimentary Message-Oriented Middleware
	3.1 Introduction
	3.2 Interaction Models
	3.2.1 Synchronous Communication
	3.2.2 Asynchronous Communication

	3.3 Introduction to the Remote Procedure Call (RPC)
	3.3.1 Coupling
	3.3.2 Reliability
	3.3.3 Scalability
	3.3.4 Availability

	3.4 Introduction to Message-Oriented Middleware (MOM)
	3.4.1 Coupling
	3.4.2 Reliability
	3.4.3 Scalability
	3.4.4 Availability

	3.5 When to use MOM or RPC
	3.6 Message Queues
	3.7 Messaging Models
	3.7.1 Point-to-Point
	3.7.2 Publish/Subscribe
	3.7.3 Comparison of Messaging Models

	3.8 Message Filtering
	3.8.1 Covering & Merging

	3.9 Java Message Service
	3.9.1 Programming using the JMS API

	3.10 Current MOM Platforms
	3.10.1 CORBA Event Service & Notification Service
	3.10.2 TIBCO Rendezvous
	3.10.3 OpenJMS
	3.10.4 ActiveMQ
	3.10.5 SonicMQ
	3.10.6 SIENA
	3.10.7 REBECA
	3.10.8 Hermes
	3.10.9 WebSphere MQ (formerly MQSeries)
	3.10.10 Other Reviewed Systems

	3.11 Comparison of Reviewed Systems
	3.11.1 Message Capabilities
	3.11.2 Administration Capabilities

	3.12 Summary

	II Contribution
	4 Meta-level Coordination
	4.1 Introduction
	4.2 Motivational Scenario
	4.3 Opening the Meta-Level
	4.4 A Vision of Coordination and Cooperation
	4.5 Protocol Prerequisites
	4.6 Open Meta-level Interaction Protocol (OMIP)
	4.6.1 Interaction Commands
	4.6.2 OMIP Walkthrough
	4.6.3 Domain Specific Languages
	4.6.4 OMIP Message Definition Format
	4.6.5 ARMAdA -- A Sample Participant Architecture

	4.7 Summary

	5 Definition of GenerIc Self-management for Message-Oriented middleware
	5.1 Introduction
	5.2 Identification of Generic MOM Elements
	5.2.1 MOM Participants
	5.2.2 MOM Behaviour Identification
	5.2.3 MOM State Identification

	5.3 Designing a Portable Meta-Level
	5.3.1 The Role of a Meta-Level
	5.3.2 Monolithic Meta-Level Design
	5.3.3 The Model-View-Controller Design Pattern
	5.3.4 Meta-State Analysis Realisation (M-SAR) Design Pattern
	5.3.5 Benefits of a Separated Meta-Model Design

	5.4 GISMO: GenerIc Self-management for Message-Oriented middleware
	5.4.1 Client and Provider Roles
	5.4.2 Destination Meta-Model
	5.4.3 Subscription Meta-Model
	5.4.4 Interception Meta-Model
	5.4.5 Meta-Level Event-Model
	5.4.6 Reflective Engine
	5.4.7 Extending the Meta-Level

	5.5 MOM-DSL: Opening GISMO
	5.5.1 Message Exchange Infrastructure
	5.5.2 State Structure
	5.5.3 Available Actions
	5.5.4 Capabilities Request

	5.6 Example Interactions
	5.6.1 Request Capabilities
	5.6.2 Request Destination State
	5.6.3 Update Destination
	5.6.4 Request Filter Analysis

	5.7 Summary

	6 Implementation of a GISMO
	6.1 Introduction
	6.2 Challenges in System Extension
	6.3 Options for Extension
	6.3.1 Interceptor Design Pattern
	6.3.2 Aspect-Oriented Programming (AOP)
	6.3.3 Dynamic AOP for Reflective Middleware
	6.3.4 Multi-Dimensional Separation of Concerns
	6.3.5 Programmatic Reflection
	6.3.6 Generative Programming
	6.3.7 Evaluation

	6.4 Chameleon
	6.4.1 Call Capture Proxy
	6.4.2 Interception
	6.4.3 Non-Invasive Extension of Functionality

	6.5 Realisation of a GISMO
	6.5.1 Destination Realisation
	6.5.2 Interception Provision
	6.5.3 Subscription
	6.5.4 Reflective Engine
	6.5.5 Event System
	6.5.6 OMIP Infrastructure

	6.6 Summary

	III Evaluation
	7 Case Study -- Coordination-Based Integration
	7.1 Introduction
	7.2 Message Infrastructure Coupling
	7.3 Motivational Scenario
	7.4 Integration 101
	7.5 Integration solutions
	7.5.1 Centralised Content-Based Routing Integration Pattern
	7.5.2 Decentralised Content-Based Routing Integration Pattern

	7.6 Achieving Decentralised-CBR
	7.6.1 MOM-DSL Messages for Decentralised-CBR

	7.7 Evaluation
	7.7.1 One-to-One Evaluation
	7.7.2 Few-to-Many Evaluation
	7.7.3 Many-to-Few Evaluation
	7.7.4 Evaluation Summary and Discussion

	7.8 Summary

	8 Case Study -- Coordinated Self-Managed MOM
	8.1 Motivational Scenario
	8.2 Routing Scenarios
	8.2.1 Single Destination
	8.2.2 Static Destination Hierarchy
	8.2.3 Reflective Destination Hierarchy

	8.3 Creating Reflective Destination Hierarchies
	8.3.1 Subscription Monitoring Policy - Overview
	8.3.2 Policy Triggers
	8.3.3 Analysis Process
	8.3.4 Adaptation Algorithm
	8.3.5 Realisation
	8.3.6 Coordination

	8.4 Benchmarking Dynamic Environments
	8.4.1 Dynamic MOM Test Case Walkthrough

	8.5 Evaluation
	8.5.1 One-to-One Evaluation
	8.5.2 Few-to-Many Evaluation
	8.5.3 Many-to-Few Evaluation
	8.5.4 Evaluation Summary and Discussion

	8.6 Summary

	9 Conclusions
	9.1 Thesis Summary
	9.2 Contributions
	9.2.1 A Self-Managed MOM
	9.2.2 Coordination between Self-Managed Systems
	9.2.3 Additional Contributions

	9.3 Future Research Directions
	9.3.1 Technology Transfer
	9.3.2 Research Opportunities

	IV Appendices
	A An Extensible MOM Test Suite
	A.1 Introduction
	A.2 Test Case Design
	A.2.1 Messaging Models
	A.2.2 Producer/Consumer Ratio
	A.2.3 Configuration
	A.2.4 Reporting Metrics
	A.2.5 Timeline

	A.3 Testbed Configuration
	A.3.1 Hardware
	A.3.2 Network

	A.4 Default Test Cases Setup
	A.4.1 Test Conditions
	A.4.2 Desired Metrics

	A.5 Software -- Extensible Mom Test Suite (EMiTS)
	A.5.1 Architecture
	A.5.2 Test Drivers
	A.5.3 Test Case Sequence

	A.6 Dynamic Environment Simulation
	A.6.1 Dynamic MOM Test Case Walkthrough
	A.6.2 Dynamic Report Metric

	A.7 Summary

	B XML Schemas
	B.1 Multimedia-DSL
	B.1.1 Capability Request Schema
	B.1.2 Capability Request Example
	B.1.3 Capability Reply Schema
	B.1.4 Capability Reply Example
	B.1.5 Service Request Schema
	B.1.6 Service Request Example
	B.1.7 Service Reply Schema
	B.1.8 Service Reply Example
	B.1.9 Common Type Schema

	B.2 MOM-DSL
	B.2.1 Destination Type Schema
	B.2.2 Subscription Type Schema
	B.2.3 Interception Type Schema
	B.2.4 Reflective Type Schema
	B.2.5 Event Type Schema
	B.2.6 Capability Type Schema
	B.2.7 Common Type Schema
	B.2.8 Generic MOM-DSL Request/Reply Schema

	C Additional Results from Chapter 8
	C.1 One-to-One Results
	C.1.1 3 Producers / 3 Consumers
	C.1.2 30 Producers / 30 Consumers
	C.1.3 90 Producers / 90 Consumers
	C.1.4 150 Producers / 150 Consumers
	C.1.5 300 Producers / 300 Consumers

	C.2 Few-to-Many Results
	C.2.1 3 Producers / 15 Consumers
	C.2.2 30 Producers / 150 Consumers
	C.2.3 60 Producers / 300 Consumers
	C.2.4 90 Producers / 450 Consumers

	C.3 Many-to-Few Results
	C.3.1 15 Producers / 3 Consumers
	C.3.2 150 Producers / 30 Consumers
	C.3.3 300 Producers / 60 Consumers
	C.3.4 450 Producers / 90 Consumers

	References

