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ABSTRACT
Event-based systems follow a decoupled mode of interac-
tion between event producers and consumers in space, time,
and synchronization to enable scalability within distributed
systems. We recognize a fourth dimension of coupling due
to the need for mutual agreements on terms that describe
event types, attributes, and values. Semantic coupling is
challenging in large-scale, open, and heterogeneous environ-
ments such as the Internet of Things (IoT). It requires event
producers and consumers to agree on event semantics and
can limit scalability due to the difficulties in establishing
such agreements. In this paper we propose a new thematic
event processing approach based on enhancing events and
subscriptions with terms representing their themes to clar-
ify their domains and meanings in addition to their pay-
load. Experiments conducted using large heterogeneous sets
of smart-city and energy management events suggest up to
85% of matching accuracy at a rate of 500 events/sec of
throughput. This represents around 15% improvement in
accuracy and 150% in throughput over non-thematic ap-
proaches. This suggests the viability of thematic event pro-
cessing to scale to environments such as the IoT.

Categories and Subject Descriptors
C.2.5 [Computer-Communication Networks]: Local and
Wide-Area Networks—Internet ; H.3.3 [Information Stor-
age and Retrieval]: Information Search and Retrieval—
information filtering ; H.3.4 [Information Storage and
Retrieval]: Systems and Software—Distributed systems

General Terms
Algorithms, Experimentation, Performance, Languages

Keywords
Approximate matching, distributional semantics, event pro-
cessing, Internet of Things, semantic matching, theme tags,
uncertainty
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1. INTRODUCTION
It is estimated that 50 billion devices will be connected

to the Internet by 2020 [21] forming the Internet of Things
(IoT). IoT builds upon the success story of Internet tech-
nologies to connect physical things to the world wide Inter-
net [3]. IoT projects such as the SmartSantander smart city
have already deployed tens of thousands of Internet con-
nected sensors in large cities [23] to monitor temperature,
noise, traffic, parking, and others.

IoT is based on an infrastructure of communication stan-
dards such as the 6LoWPAN and the CoAP protocols [3].
Higher up the stack, it will enable a plethora of applications
including assisted driving, augmented reality, smart homes,
etc [3]. In-between, there is a need for middleware to ab-
stract application developers from underlying technologies
to facilitate the adoption of IoT applications [3]. Event-
based technology has played an important role in the mid-
dleware space, specifically in enterprise application integra-
tion, and enabling Internet scale distributed systems [7].

Event-based technology is based on a loosely coupled in-
teraction model which supports scalability. Nevertheless, it
assumes a high level of semantic agreement between event
producers and consumers. Small and controlled environ-
ments have: a small number of event sources and types, a low
degree of event data heterogeneity, a small number of users,
and event consumers who understand the environment. It
is possible to establish agreements on event semantics and
maintain rules that can cover the heterogeneity of events.
However, this will be challenging in large and open environ-
ments such as IoT smart cities due to thousands of potential
event sources and types, many systems which publish and
consume events, and difficulties to establish top-down se-
mantic agreements or maintain all possible rules that can
cover all potential events heterogeneity.

We believe that event-based middleware needs to support
data management functionalities at such large scales. This
paper proposes a thematic event processing model where
approximations of events meanings are exchanged to com-
plement attributes and values. The model requires loose se-
mantic agreements between participants and a small amount
of subscriptions to cover events heterogeneity while achiev-
ing satisfactory matching quality and throughput results.

1.1 Background
In the event-based paradigm, event sources fire instanta-

neous and atomic information items called events. Event
consumers use rules or subscriptions to detect events and
react to them. Events are the only means of interaction
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between sources and consumers. This results in decoupling
the production and consumption of events and thus increases
scalability by “removing explicit dependencies between the
interacting participants” [9]. Event-based systems decouple
participants on three dimensions as shown in Figure 1:

• Space decoupling suggests that participants do not need
to know each other.

• Time decoupling means that participants do not need
to be active at the same time.

• Synchronization decoupling suggests that event pro-
ducers and consumers are not blocked while producing
or consuming events [9].

Nevertheless, event-based systems can be at the same time
tightly coupled by the semantics of exchanged events. Tradi-
tional deployments of event systems assume a mutual agree-
ment on event types, attributes, and values which forms an
explicit dependency between participants. For example, if a
smart city event source marks an event with the type ‘park-
ing space occupied’, all event consumers of this event would
have to use this exact event type in their rules. A new event
consumer to the system cannot use a rule with the term
‘garage spot occupied’ to handle the event.

The relative importance of each coupling dimension varies
with the boundaries which exist in a target system of sys-
tems. Carlile [5] recognizes two main levels of boundaries
that may exist in a given knowledge exchange scenario:

• Syntactic boundary affects the basic knowledge trans-
fer mechanism between participants. It is concerned
with data formats, participants interaction time, and
addressing which are expected to exist in most event-
based environments as shown in Figure 2. They form
the basics in information communication as originally
discussed in Shannon and Weaver’s information theory
[24]. The space, time, and synchronization decoupling
dimensions of Eugster et al. [9] can be seen to con-
tribute to event transfer across this type of boundaries.

• Semantic boundary starts to appear when new event
sources or consumers make some meanings unclear or
ambiguous. Semantic boundaries are inherent in large-
scale, open, and heterogeneous environments such as
the IoT as shown in Figure 2. Thus, establishing mu-
tual agreements on event semantics (semantic coupling)
becomes crucial. This in turn leads to magnifying the
problematic nature of semantic coupling which contra-
dicts with the fundamental basis of event systems as
decoupled and scalable systems.
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Figure 2: Boundaries to event exchange in (A) a
small scale known environment, and (B) a large-
scale heterogeneous environment.

Current event-based middleware can still be applied within
environments with non-significant semantic boundaries such
as enterprise environments. The approach in this paper sug-
gests associating events and subscriptions with additional
meaning signposts called themes when semantic boundaries
start to appear in open, heterogeneous, and dynamic envi-
ronments. It forms a compromise between absolute mutual
agreements on semantics which constrains scalability and
absolute ignorance of semantic agreements which leads to
high levels of false event matching.

1.2 Current Approaches
There are 3 main approaches to the semantic coupling

problem as shown in Table 1 and discussed in the following.

1.2.1 Content-based Approach
In content-based approaches, event sources and consumers

use the same event types, attributes, and values without
any extra description of meaning external to the subscrip-
tions and events. This is assumed in traditional content-
based publish/subscribe systems such as SIENA [7] where
the matcher performs string exact comparison between terms.
The approach has high semantic coupling between parties
and works well in environments with a low level of data het-
erogeneity. However, it becomes difficult to scale to more
heterogeneous environments due to the effort required to
keep the agreement on shared schemata and to develop a
large number of subscriptions according to the agreement.

1.2.2 Concept-based Approach
In the concept-based approach, participants can use dif-

ferent terms and still expect matchers to match them prop-
erly thanks to an explicit knowledge representation that
encodes semantic relationships between terms. Example
knowledge representations are thesauri and ontologies as in
S-TOPSS [22] and semantic pub/sub [28], as well as pro-
gramming language type hierarchies as in the type-based



Table 1: Approaches to Semantic Coupling
Content-based Concept-based Approximate

Semantic Event
Processing

Proposed Thematic Event
Processing

Matching exact string
matching

boolean semantic
matching

approximate
semantic matching

approximate semantic matching

Semantic
coupling

term-level full
agreement

concept-level
shared agreement

loose agreement loose agreement

Semantics not explicit top-down
ontology-based

statistical model
based on
distributional
semantics

statistical model based on
distributional semantics

Domain
specificity
cost

defining a large
number of domain
rules

defining a
domain-specific
ontology

indexing a
domain-specific
corpus

parametrizing the vector space of a
sufficiently large and comprehensive
open domain corpus

Effectiveness
(F1Score)

100% depends on the
domains and
number of
concept models

depends on the
corpus

depends on the corpus and the
themes tags. Outperforms
non-thematic approximate
approach

Cost defining a large
number of rules and
establishing shared
agreement on terms

establishing
shared agreement
on ontologies

minimal agreement
on a large textual
corpus

minimal agreement on a large
textual corpus and associating good
themes tags

Efficiency
(throughput)

high medium to high medium to high medium to high, refer to Section
5.3.2

publish/subscribe model [10]. Building such knowledge rep-
resentations is time consuming and agreements suggest an
explicit dependency between parties, not directly but via the
conceptual model. Thus, relatively high semantic coupling
exists as agreement is needed for each individual concept.

1.2.3 Approximate Semantic Event Processing
In the absence of an agreement on event schema or a con-

ceptual model, participants may loosely agree on topics rep-
resented in large corpora of texts. Such corpora can be used
to automatically construct distributional models of mean-
ing to derive semantic similarity and relatedness based on
terms co-occurrence. Freitas et al. proposed an approximate
query processing approach for databases based on distribu-
tional semantics and validated it within a natural query sce-
nario over graph databases [11]. In previous works [16] [17],
we proposed and discussed the details for an approximate
semantic event processing approach based on approximate
probabilistic matching and semantic similarity. Our previ-
ous work in [16] tackled semantic coupling within domain-
agnostic environments. Experiments showed that the model
is suitable when participants agree on some event types, at-
tributes, or values while performance decreases significantly
when an absolute 100% degree of approximation is required.

This paper introduces the concept of event themes which
is a pragmatic compromise to semantic coupling. We believe
the introduction of themes is a critical step that makes the
approximate semantic approach a viable technique within
real-world use cases. Our work in [16] stresses the impor-
tance of approximate matching, but this paper stresses the
exchange of meanings, e.g. attributes/values + tags+ back-
ground distributional vector space, as first class citizens in
event systems to loosen semantic coupling.

The rest of this paper is organized as follows: The pro-
posed approximate thematic event processing model and the

contributions are discussed in Section 2. Model instantiation
for structured attribute-value events is detailed in Sections
3 and 4. Section 5 details the evaluation methodology and
results. Related work is discussed in Section 6. Section 7
discusses future work and concludes the paper.

2. THEMATIC EVENT PROCESSING
The generic thematic event processing model is motivated

and discussed throughout the following subsections.

2.1 Motivational Scenario
Alice works in the town hall planning department of a

smart city. Alice is interested in finding the energy usage
of street lights during peak electricity usage in their areas.
Such information can be detected using an Event Processing
Language (EPL) such as Esper’s1 as follows:

pattern [ every a=StreetLightsEvents(
a.type= ‘energy consumption event’
and a.area.consumptionPeak=‘true’)]

While the sources of required information are available,
the semantics of the events differ from one area to another
due to different sensors manufacturers. For instance, events
contain terms such as ‘energy consumption’, and ‘electric-
ity usage’ to refer to the same thing. The IT department
requires a large set of rules such as the one above with all
possible variations of semantics in order to cover the events
semantic heterogeneity. Definition and maintenance of such
rules requires significant time and effort.

2.2 Requirements and Questions
The main requirement tackled in this paper is to reduce

the effort to describe the meaning of events and subscrip-

1http://esper.codehaus.org/



tions. The research questions stemming from this require-
ment are: (1) how to achieve semantically loosely coupled
event exchange? and (2) how to effectively and efficiently
match exchanged events in the environment?.

2.3 Proposed Approach
The approach in this paper builds on the analogy with

the wide spread use of social tagging, or folksonomies, in
knowledge discovery [14]. Web 2.0 forms a large-scale envi-
ronment where users are decoupled and distributed. It has
been observed that imposing fixed or agreed-upon top-down
taxonomies on users to describe web content such as images
is unfeasible [14]. Instead, bottom-up and user generated
tags called folksonomies are used by users to tag and dis-
cover content. For example Xu et al. [27] showed that using
folksonomies for information retrieval significantly improves
search quality. Consequently, many social tagging platforms
have flourished such as Flicker, Twitter, Delicious, etc.

The proposed approach suggests associating representa-
tive terms that describe the themes of types, attributes and
values and clarify their meanings as shown in Figure 3.
The hypothesis is that associating events and subscriptions
with extra information that better describes their mean-
ings can improve effectiveness and time efficiency in het-
erogeneous environments and domain-specific knowledge ex-
change. Thematic events can more easily cross semantic
boundaries as: (1) they free users from needing a prior
semantic top-down agreements and thus enable event ex-
change across such boundaries, and (2) they carry approxi-
mations of events meanings composed of payloads and theme
tags which when combined carry less semantic ambiguities.
An approximate matcher exploits the associated themes tags
to improve the quality of its uncertain matching of events
and subscriptions.

This generic architecture applies to various types of event
payloads. For example, an event payload can be an im-
age and its theme is a set of tags describing its content
like {‘girl’, ‘football’, ‘outdoor’}. A subscription can be an
image too associated with a set of tags such as {‘female’,
‘ball’, ‘play’, ‘nature’}. The approximate matcher performs
an uncertain matching on images based on their pixels and
other intrinsic image features. It also exploits the tags as-
sociated with the event and the subscription to parametrize
its matching algorithm and improve its matching quality.
For instance it weighs up some object recognition candi-
dates more like ‘girl’ versus ‘boy’ in the event image. Event
sources and consumers can either (1) agree on the use of
representative terms when agreement is possible and thus
having lightweight loose coupling, or (2) freely use represen-
tative terms in open environments when agreement is not
possible, thus having no coupling.

This paper instantiates a generic thematic event process-
ing model for structured attribute-value events and subscrip-
tions. The attribute-value model is simple, widely used, and
may be used to convey other models. Theme tags are ex-
changed with the events and used by the matcher to more
accurately filter a distributional representation of terms in
a vector space as discussed in Sections 3 and 4.

2.4 Contributions
The contributions of this paper are:

• A thematic event processing model to address semantic
coupling in heterogeneous and domain-specific event
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Figure 3: Thematic event processing.

exchange environments effectively and efficiently.

• A formal framework for structured events based on
thematic projection in parametric vector space.

• An evaluation framework based on synthetic event loads
and approximate subscriptions from real world IoT de-
ployments and domain-specific thesauri.

3. MODEL INSTANTIATION
The main elements of the model instantiation are illus-

trated in Figure 4. Let an event of increased energy con-
sumption be represented as follows:

{type: increased energy consumption event,
measurement unit: kilowatt hour,
device: computer, office: room 112}

In the thematic model, this event is accompanied with a set
of key terms that represent approximately the domain and
meaning of the event attributes and values. We call these
terms the event theme tags. An example of terms for the
above event are:

{energy, appliances, building}

Similarly, subscriptions are associated with subscription
theme tags. The proposed model language introduces the
tilde ∼ operator which signifies that the user wants the
matcher to match the term used or any term semantically
similar to it. A subscription for increased energy consump-
tion can be represented as follows:

{type= increased energy usage event∼,
device∼= laptop∼, office= room 112}

Example theme tags for this subscription are:

{power, computers}

The example event and subscription do not use exactly
the same terms to describe the type or the device, hence
‘energy consumption’ vs. ‘energy usage’, and ‘computer’ vs.
‘laptop’. Nevertheless, the event should not be considered
as a negative match to the subscription. For this reason,
our model employs an approximate probabilistic semantic
matcher which uses a measure to estimate semantic simi-
larity and relatedness between various terms. Functionally,
it tries to establish the top-1 or top-k possible mappings
between subscription predicates and event tuples along with
probability spaces of each predicate-to-tuple and of the over-
all mapping. For example, the most probable mapping of the
previous examples, or top-1 mapping, is described as follows:
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σ∗ ={(type=increased energy consumption event
↔ type:increased energy usage event),
(device∼ = laptop∼ ↔ device:computer),
(office = room 112 ↔ office: room 112)}

The approximate matcher uses a semantic measure to esti-
mate semantic similarity and relatedness between each pair
of attributes or values from the subscription and the event.
The matcher then combines that in a similarity matrix that
encodes similarity between all possible pairs of subscription
predicates and event tuples. Our model proposes the use
of a semantic measure based on distributional semantics as
described in Section 3.1. While typical semantic measures
take as input two terms and returns a value in [0, 1], our the-
matic matcher passes the subscription and event themes as
additional parameters along with the terms. The themes are
used to adapt the terms meaning vector space before the ac-
tual semantic distance is measured as described in Section 4.
The various aspects of the model instantiation are discussed
in the following sections.

3.1 Distributional Semantics
Distributional semantics is based on the hypothesis that

similar and related words appear in similar contexts [15].
Distributional models are quite useful for the task of as-
sessing semantic similarity and relatedness between terms.
A semantic measure is a function that quantifies the simi-
larity/relatedness between two terms and typically has its
values in the range [0, 1]. Distributional models can be
constructed automatically from statistical co-occurrence of
words in a corpus of documents. The formalism of such a
model as a vector space provides a computationally efficient
framework for calculating similarity scores.

We scope this paper to the distributional Explicit Seman-
tic Analysis semantic measure esa [12] constructed from
the Wikipedia corpus as of 20132. However the model is
generic and suitable for other measures too. In a nutshell,

2http://en.wikipedia.org/wiki/Wikipedia:Database down-
load

Wikipedia-based esa builds an index of words based on the
Wikipedia articles they appear in as shown in Figure 5. A
word becomes a vector of articles and the more common ar-
ticles between two words exist, the more related the words
are. For example, esa(‘parking’, ‘garage’) > esa(‘parking’,
‘energy’) as the formers appear frequently in common ar-
ticles. Typically semantic relatedness between a pair of
terms is measured using cosine or Euclidean distance be-
tween the two vectors representing the two terms. In our
thematic parametric vector space model, the esa measure is
parametrized also with the theme tags. They are used to
project the terms vectors to get more domain-specific mean-
ing vectors and then are passed to the distance function as
illustrated in Figure 5 and detailed in Section 4.

3.2 Themes
We define a theme as a set of terms that describe the

content of an event or a subscription. For instance, the set
{‘energy’, ‘appliances’, ‘building’} refers to an event which
convey energy consumption of appliances in a building. A
theme combined with the actual content form an approxi-
mation of the meaning of concepts meant to be exchanged
in addition to the actual symbols, i.e. words, used to repre-
sent attributes and values. A theme is a lightweight method
to convey semantics when combined with a semantic model
such as distributional semantics. At the same time, themes
are meant to be used in situations where little or no agree-
ments can be achieved on a fixed taxonomy.

Event publishers associate their events with a number of
terms that describe their payload. Subscribers also associate
their subscriptions with a number of terms that clarify their
interests. If agreements on themes can be achieved then a
theme is decided for each event type. If agreements cannot
be assumed then event publishers and subscribers freely add
themes that better represent their artifacts.

3.3 Event Model
The event model used in this work is an attribute-value

model but the discussion is as relevant to other models such



as hierarchical or graph-based event models. Each event is
a pair of two sets: a set of theme tags and a set of tuples.
Each theme tag is a single-word or a multi-word term. Each
tuple consists of an attribute-value pair. No two distinct
tuples can have the same attribute. An example energy
consumption event is represented as follows:

({energy, appliances, building},
{type: increased energy consumption event,
measurement unit: kilowatt hour,
device: computer, office: room 112})

The formal definition of the event model is as follows:
let E be the set of all events, let TH be the set of all
possible theme tags, and let A and V be the sets of pos-
sible attributes and values respectively. Let AV be the
set of possible attribute-value pairs, i.e. tuples, such that
AV = {(a, v) : a ∈ A ∧ v ∈ V }. An event e ∈ E is a pair
(th, av) such that th ⊆ TH and av ⊆ AV are the set of
theme tags and the set of tuples respectively.

3.4 Language Model
Each subscription is a pair of two sets: a set of theme tags

and a set of conjunctive attribute-value predicates. Each
theme tag is a single-word or a multi-word term. Each pred-
icate uses the equality operator to signify exact equality or
approximate equality when indicated. Other Boolean and
numeric operators such as ! =, >, and < are kept out of the
language for the sake of discourse simplicity. Each predicate
consists of an attribute, a value, and specifications of the se-
mantic approximation for the attribute and the value. The
most notable feature of the language is the tilde ∼ operator
which helps specify the approximation for an attribute/value
when it follows it. An example subscription to energy usage
events is as follows:

({power, computers},
{type= increased energy usage event∼,
device∼= laptop∼, office= room 112})

The author of the subscription specifies that the device
can be a ‘laptop’ or something related semantically to ‘lap-
top’. The subscription also states that the attribute ‘device’
itself can be semantically relaxed. However, it states that
the event’s ‘office’ must be exactly ‘room 112’, etc.

The formal definition of the language model is as follows:
let S be the set of subscriptions, let TH be the set of all
possible theme tags, and let A and V be the sets of possible
attributes and values respectively which can be used in a
subscription. Typically there are no restrictions on A or
V and the user is free to use any term or combination of
terms. Each predicate is a quadruple which consists of the
attribute, the value, and whether or not the attribute/value
are approximated. Let P be the set of possible predicates,
thus P = {p : p = (a, v, appa, appv) ∈ A × V × {0, 1}2}. A
subscription s ∈ S is a pair (th, pr) where th ⊆ TH and
pr ⊆ P are the set of theme tags and the set of predicates
respectively. The degree of approximation is the proportion
of relaxed attributes and values. An exact subscription has
0% degree of approximation.

3.5 Matching Model
An approximate semantic single event matcherM decides

on the semantic relevance between a subscription s and an

event e based on the semantic mapping between attribute-
value predicates of s and attribute-value tuples of e. An
example mapping between the event in Section 3.3 and the
approximate subscription in Section 3.4 is as follows:

σ ={(type=increased energy consumption event
↔ type:increased energy usage event),
(device∼ = laptop∼ ↔ device:computer),
(office = room 112 ↔ office: room 112)}

M works in two modes: the top-1 mode which decides
on the most probable mapping between s and e, and the
top-k mode which decides on the top-k probable mappings
to be used later for complex event processing. It has been
shown in [13] that producing the top-k mappings increases
the chance of hitting the correct mapping.

The formal definition of matching is as follows: let C =
s×e be the set of all possible correspondences between pred-
icates of s and tuples of e. ∀c = (p, t) ∈ C ⇒ p ∈ s ∧ t ∈ e.
Σ = 2C is the power set of C and represents all the possible
mappings between s and e. There are exactly n correspon-
dences in any valid mapping σ where n is the number of
predicates in the subscription s.

For any valid mapping σ a probability function quanti-
fies the probability of every predicate-tuple correspondence
(p, t) ∈ σ such as (device = laptop∼↔ device: computer).
There also exists a probability function which quantifies the
probability of the overall mapping σ among other possi-
ble mappings. Both functions form probability spaces Pσ
and P. In this paper, all probabilities are calculated based
on the combined similarity matrix which is based on the
thematic pairwise attributes or values semantic relatedness
scores. Thematic semantic relatedness measure is discussed
in Section 4. For more details on the generic matcher model
and detailed evaluation of top-1 and top-k modes, please
refer to [16].

4. PARAMETRIC VECTOR SPACE MODEL
We introduce the concept of a Parametric Vector Space

Model (PVSM). Vector space models are widely used in in-
formation retrieval and known to be computationally effi-
cient. Thus, we propose an extension suitable for event
processing where time efficiency is a requirement. Figure 5
shows the main elements of the parametric space. Building
the PVSM is identical to building the non-thematic distribu-
tional space model based on indexing the corpus. Nonethe-
less, vectors in PVSM are projected into thematic dimen-
sions passed as parameters before being used as discussed in
the following subsections.

4.1 Distributional Vector Space Model
Given a set of documents D, each document is tokenized

into terms, stop words are removed, and an inverted index
is built to have an entry for each term [6], step 1 in Figure 5.
The inverted index encodes a vector space model whose basis
is the set of unit vectors that represent the documents, i.e.

{~di : di ∈ D}. Each term t is then represented as a weighted
vector ~vt in the vector space as shown in Equation 1.

~vt =

i=|D|∑
i=1

wti ~di (1)

We use the Term Frequency Inverse Document Frequency
(TF/IDF) weighting scheme which gives more weight to a
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term if it appears more often in a document and less often in
other documents. It is important to keep the raw tf and idf
values for each pair (term, document) in the inverted index
so they can be used later for thematic projection. TF/IDF
scheme is shown in Equations 2, 3, and 4.

tf(t, d) = 0.5 +
0.5× freq(t, d)

max{freq(t′, d) : t′ ∈ d} (2)

idf(t,D) = log
|D|

|{d ∈ D : t ∈ d}| (3)

tfidf(t, d,D) = tf(t, d)× idf(t,D) (4)

4.2 Thematic Projection
At the usage stage, the ultimate goal is to measure the

semantic relatedness between two terms terms and terme

given the subscription and the event themes ths and the
respectively. Given a term and a theme, the key operation is
to use the theme to filter the space into a thematic subspace.
The thematic space basis is the set of documents that define
the theme representative tags.

The thematic basis can be found by getting the vector
representation of the theme, step 2 in Figure 5, and then
the documents where its weights are greater than 0, step 3
in Figure 5. Given the new basis, the term vector is trans-
formed to have 0 components for documents not in the the-
matic basis and to have new tfidf weights for the basis doc-
uments as the overall number of documents is now different

from |D|. These steps are shown in Algorithm 1. Projection
can be computed in O(|D|) time if all vectors components
are stored and O(|V |) where V is the non-zero components
if only those are stored in the index.

ALGORITHM 1: Thematic projection

Input: a term t, a set of theme tags th, parametric
distributional vector space PV SM

Result: thematic projection vector ~tth of t given th
1 begin
2 ~t←− distributional vector of t from PV SM ;

3 ~th←− distributional vector of th from PV SM ;

4 for d ∈ D s.t. ~thd = 0 do
5 ~tthd

←− 0;

6 end

7 for d ∈ D s.t. ~thd > 0 do
8 tf ←− original tf(t, d) from PV SM ;

9 idf ←− log
|{d∈D: ~thd>0}|

|{d∈D: ~thd>0∧~td>0}|
; /* recalculate idf */

10 ~tthd
←− tf × idf ; /* update weight */

11 end

12 return ~tth;
13 end

4.3 Distance and Semantic Relatedness
Let T be the set of terms, and TH the set of all possible

thematic tags. We define the semantic measure sm as a func-
tion that operates on a pair of terms associated with their
themes such that sm : T × 2TH × T × 2TH → [0, 1]. Given
two terms ts and te from a subscription and an event respec-
tively and their associated themes ths ∈ 2TH and the ∈ 2TH

respectively, sm works by finding the thematic projections
~tsths

and ~tethe
and then calculating the vector distance be-

tween the resulting projected vectors, step 4 in Figure 5.
We use the Euclidean distance to measure projected vec-

tors distance as defined in Equation 5.

dis(~a,~b) =

√√√√i=|D|∑
i=1

(~ai −~bi)2 (5)

Semantic relatedness is estimated to be the opposite of the
distance and can be calculated as defined in Equation 6.

relatedness(~a,~b) =
1

dis(~a,~b) + 1
(6)

The more filtering that occurs during thematic projection
due to smaller themes, the less time is required for comput-
ing relatedness.

5. EVALUATION
To evaluate the thematic approach, we compare it with

non-thematic approximate semantic event processing. Eval-
uation is concerned with two metrics: matching quality and
time efficiency. In previous work [16] we compared the non-
thematic approximate approach with a concept-based ap-
proach that uses query rewriting using WordNet [20]. Ex-
periments were conducted with 10 sets of 10− 100 approxi-
mate subscriptions of 50% degree of approximation with esa.
Results show that the approximate matching model delivers
94% − 97% matching quality, higher than the 89% − 92%
delivered by the WordNet rewriting approach.



Table 2: Base Concepts to Evaluate Effectiveness
Ground Truth
Relevant Events

Ground Truth
Irrelevant Events

Matcher
Relevant Events

TP
(True Positive)

FP
(False Positive)

Matcher
Irrelevant Events

FN
(False Negative)

TN
(True Negative)

The rewriting approach outperforms the approximate ap-
proach in throughput when the pair-wise semantic related-
ness scores are calculated at run-time. However, the ap-
proximate model based on precomputed esa scores outper-
forms in throughput with around 91, 000 events/sec com-
pared to around 19, 100 events/sec on average. Distribu-
tional semantics-based approximation is based on a very
loose model of semantic coupling which scales to heteroge-
neous environments. That is not the case for rewriting with
knowledge bases as building them is time consuming and
establishing agreements is granular and difficult to achieve.

In this paper we generate a large event set with a partic-
ular theme as well as a set of subscriptions which assume
no semantic agreements and 100% degree of approximation.
We compare the thematic matcher with the non-thematic
matcher when different theme tags are used. Evaluation
metrics and detailed methodology are described in the fol-
lowing subsections.

5.1 Evaluation Metrics
Evaluation metrics can be classified into two categories:

effectiveness and efficiency metrics [4]. Effectiveness met-
rics measure the quality of event matching. That requires
a ground truth which divides events into relevant and ir-
relevant with respect to each subscription. Table 2 shows
the base concepts needed for evaluating effectiveness. For
those to exist, the resulting events from the matcher must
be divisible into two distinct sets of relevant and irrelevant
events. In the case of the approximate matcher which as-
signs probabilities to events with respect to a subscription,
the two sets can be achieved by ranking and cutting off using
recall levels. Precision, Recall, and the combined F1Score
have been used for effectiveness evaluation.

Precision measures the proportion of relevant events dis-
covered by the matcher with respect to all the discovered
events such that Precision = TP/(TP + FP ). Recall mea-
sures the proportion of relevant events discovered by the
matcher with respect to all the known relevant events from
the ground truth such that Recall = TP/(TP + FN). Pre-
cision and recall are calculated for the whole set of sub-
scriptions by averaging the precision and recall achieved
for all individual subscriptions respectively. The F1Score
equally combines Precision and Recall such that F1Score =
(2× Precision×Recall)/(Precision+Recall). F1Score is
computed at 11 recall points, {0, 0.1, 0.2, ..., 1.0}, to cover all
the precision-recall curve without using thresholds and the
maximal F1Score is then used. The metric used for evaluat-
ing time efficiency is Throughput defined as Throughput =
(Number of processed events)/(Time unit).

5.2 Methodology
The evaluation methodology for effectiveness outlined in

Figure 6 is based on schema matching/mapping method-
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Figure 6: Evaluation methodology.

ologies [4] where the task is to find the best mapping be-
tween a source schema and a target schema. Within the
context of event matching we use approximate subscriptions
and events. Specifying the ground truth mappings is a chal-
lenge for large sets of events and subscriptions.

In recent years there has been a trend towards synthetic
evaluation [4]. Similarly to the idea in STBenchmark [1],
we start with pairs of exact subscriptions and events with
a known ground truth which is simply the result of exact
matching. We then apply a semantic expansion transfor-
mation to the events and the subscriptions based on a the-
saurus, similarly to the synonyms transformation in eTuner
[18]. The ground truth is updated accordingly. We use the
EuroVoc3 thesaurus for themes and ground truth generation
as it has many domains and can be used for semantic expan-
sion according to specific themes. EuroVoc is a multilingual
and multidisciplinary thesaurus that provides common lexis
to cover the activities of the European Union.

5.2.1 Generation of the Seed Event Set
To create a heterogeneous IoT environment, we have cre-

ated a dataset of events using a set of real-world datasets.
Seed events have been synthesized from a set of IoT sensors
identical to those deployed in the SmartSantander smart city
project [23] and the Linked Energy Intelligence (LEI) datas-
pace [8]. SmartSantander proposes a city-scale experimen-
tal research testbed for IoT applications and services based
on sensors deployed in a set of European cities. The LEI
project targets smart buildings for energy saving purposes.
The used sensor capabilities are shown in Table 3.

A set of car brands from the Yahoo! directory4 is used

3©European Union, 2014, http://eurovoc.europa.eu/
4http://dir.yahoo.com/recreation/automotive/makes
and models



Table 3: Sensor Capabilities
Sensor Capabilities
solar radiation, particles, speed, wind direction, wind
speed, temperature, water flow, atmospheric pressure,
noise, ozone, rainfall, parking, radiation par, co, ground
temperature, light, no2, soil moisture tension, relative
humidity, energy consumption, cpu usage, memory
usage

to generate vehicle mobile sensors platforms. A set of ap-
pliances from the BLUED KDD dataset are used as indoor
platforms [2]. For indoor locations, rooms from the DERI
Building5 have been used. For geographical locations the
SmartSantander project locations as well as Galway City
have been used. The seed event generation is done by ran-
domly combining various attributes and values from the
aforementioned datasets. A set of 166 seed events has been
used to generate events for the experiments. An example
seed event generated is as follows:

{type: increased energy consumption event,
measurement unit: kilowatt hour, device: laptop,
desk: desk 112c, room: room 112, zone: building,
city: Galway, country: Ireland, continent: Europe}

5.2.2 Semantic Expansion of Seed Events
The purpose of semantic expansion of seed events is to

generate a large amount of events for evaluation where se-
mantic heterogeneity holds. The EuroVoc thesaurus has
been used and specifically its micro-thesauri belonging to do-
mains ‘transport’, ‘environment’, ‘energy’, ‘geography’, ‘ed-
ucation and communications’, and ‘social questions’. This
is because those micro-thesauri conform to the theme of the
events used in the experiments. A set of 14, 743 expanded
events of a length up to 10 tuples has been generated start-
ing from seed events by replacing one or more terms in an
event’s tuples by synonyms or related terms from the the-
saurus. An example event resulting from semantically ex-
panding the seed event in Section 5.2.1 is as follows:

{type: increased energy consumption event,
measurement unit: kilowatt hour, device: laptop,
desk: desk 112c, room: room 112, zone: building,
urban area: Galway, country: Eire,
continent: European countries}

5.2.3 Generation of Approximate Subscription Set and
Ground Truth

A set of 94 exact subscriptions are generated by randomly
picking a number of tuples from the seed events and turn-
ing them into exact subscriptions. A set of 94 approximate
subscriptions are then generated by introducing the tilde ∼
operator into all the predicates in the exact subscriptions
to exclude the non-approximation effect on the results. The
approximate subscriptions are equivalent to about 48, 000
subscriptions which would be needed by a non-approximate
approach to cover events heterogeneity. An example approx-
imate subscription resulting from relaxing all predicates of
the exact subscription is as follows:

5http://lab.linkeddata.deri.ie/2010/deri-rooms

{type∼: increased energy consumption event∼,
device∼: laptop∼, floor∼: ground floor∼}

The resulting relevance function between approximate sub-
scriptions and expanded events is isomorphic to a basic exact
ground truth function between exact subscriptions and seed
events, thus it is an exact relevance function. As a result, an
expanded event is relevant to an approximate subscription if
it exactly matches the subscription or a version of it which
results from it by replacing the approximated parts with re-
lated terms from the thesaurus used for semantic expansion.

5.2.4 Generation of Theme Tags
The target of this step is to associate events and subscrip-

tions with themes tags. EuroVoc has top terms for each of
its micro-thesauri. We randomly pick from the top terms
associated with the domains ‘transport’, ‘environment’, ‘en-
ergy’, ‘geography’, ‘education and communications’, and ‘so-
cial questions’ which are originally used to expand the event
set. For each sub-experiment two sets of representative tags
are chosen to represent the subscriptions theme and the
events theme. The purpose is to study the behavior of the
thematic approximate matcher with different combinations
of themes tags. An example subscription theme tags set
from EuroVoc of size 2 is {land transport, protection of na-
ture}.

Given the events and subscriptions sets, various combi-
nations of theme tags have been associated to them. For
each combination, we have a sub-experiment which gives an
F1Score and a throughput result. In every combination, the
event theme tags set contains the subscription theme tags
set or vice versa. Each combination is defined by the size
of the event and the subscription themes. For example, a
3 − 2 combination means that the event theme contains 3
terms while the subscription theme contains 2 terms and the
former contains the latter.

For each combination of sizes, we have a random sam-
ple of 5 different pairs of theme tags sets. The experi-
ment has been conducted with different sizes of 1 to 30 tags
for subscriptions and 1 to 30 tags for events. This gives
30×30×5 = 4, 500 sub-experiments. The thematic matcher
was executed in each sub-experiment to give F1Score and
throughput results. The choice of the sample size is due to
the high dimensionality of the experiments which poses prac-
tical constraints. We think that future work shall use more
resources to allow experimentation with larger samples.

5.2.5 Baseline
Given the generated events and subscriptions sets, a non-

thematic approximate matcher with domain-independent esa
has been used [16]. The matcher gives 62% of F1Score and
a throughput of 202 events/sec averaged over 5 runs.

5.3 Results
The following subsections discuss the effectiveness and ef-

ficiency results. All experiments have been conducted on a
Windows 7 machine, with an Intel Core i7-3520 2.90 GHz
CPU and 8GB of RAM running JVM 1.7.

5.3.1 Effectiveness
Each cell in Figure 7 represents the average F1Score of the

sample of 5 sub-experiments, each of which uses a different
combination of events and subscriptions themes tags. For
instance, the sub-experiments of the cell in the 2nd column
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Figure 7: Effectiveness of thematic matcher.

and 10th row from the bottom left, all use 2 terms to describe
events theme and 10 terms to describe subscriptions theme
and the event theme terms set is a subset of the subscription
theme terms set. The sub-experiments of the cell in the 10th

column and 10th row from the bottom left, all use 10 terms
to describe events theme and 10 terms to describe subscrip-
tions theme and the event theme terms are the same as the
subscription theme terms. Square cells are sub-experiments
which exceed the baseline while circular ones score below
the baseline. Cell color reflects the average F1Score for the
sample of combinations for that cell. Colors range from blue
(low F1Score) to red (high F1Score).

Figure 7 shows that thematic matching outperforms non-
thematic matching in F1Score for more than 70% of combi-
nations with scores 62%−85% and an average of 71% versus
62% for the baseline. Those are more concentrated in the
upper left two thirds of Figure 7. F1Score on the diagonal
line is also a little less for the thematic matcher, 59%− 62%
versus 62%, suggesting that the projection stage of the vec-
tor space by same tags seems to be less discriminative as
opposed to using different tags which could disambiguate at-
tributes/values better. Thematic matching performs worse
when the number of thematic tags is very small, e.g. using
just one term as a theme tag. Also, in the bottom triangular
half of the figure with F1Score widely ranging from 4% to
62%. Larger themes for subscriptions quickly improve effec-
tiveness as opposed to an opposite effect by event themes.
That reflects the asymmetric relationship between the many
heterogeneous events versus fewer subscriptions. Thus more
terms are needed in subscription themes to discriminate rel-
evant events.

Figure 8 illustrates the standard deviation (standard er-
ror) of the samples conforming to each set of 5 combinations.
The average standard error is 7% of F1Score in effectiveness.
Most of this error is around sub-experiments of medium
F1Scores where it reaches values around 10% − 25%. Very
small errors are concentrated around the sub-experiments
of very low F1Scores but those are not of concern as theme
combinations conforming to such areas of Figure 7 should be
avoided. More importantly, error converges to smaller val-
ues around 7% for sub-experiments of high F1Scores which
mainly exceed the baseline. This suggests that the experi-
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Figure 8: Effectiveness sample error.

ments are more predictive for higher F1Scores and the areas
of Figure 7 which outperforms the non-thematic approach
are more probable to outperform it also in other samples.

5.3.2 Time Efficiency
Figure 9 shows the average throughput for each combi-

nation of events and subscriptions theme tags. It suggests
that the thematic approach outperforms the non-thematic
matcher for more than 92% of the sub-experiments, with
throughput of 202 − 838 and an average of 320 versus 202
events/sec. Better throughput is due to the thematic filter-
ing of the space during the thematic projection phase which
saves time during semantic relatedness calculation. That
has less effect given more tags towards the top right corner
with throughput as low as 95 events/sec.

Figure 9 shows that throughput decreases gradually when
larger sets of theme tags are used to describe events and
subscriptions due to less thematic filtering. The last half
of the diagonal line shows a drop in throughput, 95 − 177
versus 202 events/sec, as two equal sets of thematic tags for
events and subscriptions causes more common dimensions
for the semantic measure to be calculated and thus more
time is needed for calculation.

Figure 10 shows that few sub-experiments outliers (around
5%) have high standard deviation ranging from 20 to 240
events/sec. The outliers can be explained by rare terms that
do not exist in the original indexed corpus which causes the
space to be filtered completely and results in a very differ-
ent time consumption behavior from other combinations in
the same sample. This causes higher errors and less pre-
dictability. However, most other sub-experiments have a
standard error around the average of 10 events/sec which
is small compared to the overall throughput. Most of small
errors are identified around sub-experiments with through-
put from 200 − 600 events/sec which is mainly above the
non-thematic baseline. This shows that throughput results
are well predictive and should be expected in other samples
of subscriptions and events theme combinations.

In previous work, we discussed less degrees of approxima-
tions when some agreements can be assumed and throughput
of a magnitude of thousands events/sec was achieved [16].
Experiments here represent a worst case scenario with 100%
degree of approximation and were conducted on a single lap-
top. We think there are further opportunities to optimize
the matcher with commonalities, evaluation order, caching,
and indexing techniques to improve efficiency.

5.3.3 Discussion
Results show that the thematic approach is limited when

users can provide only a small number of tags for subscrip-
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tions, and when hard real-time deadlines are required. Oth-
erwise, results suggest that the use of less terms to describe
events, around 2 − 7, and more to describe subscriptions,
around 2 − 15, can achieve a good matching quality and
throughput together with less error rates. That is concen-
trated in the middle to upper left side of Figures 7 and 9. We
think that this is a lightweight amount of terms that events
and subscriptions authors can associate with their artifacts.

For containment between subscriptions themes and events
themes to hold, it can be handled in two ways:

• Event sources and consumers loosely agree on terms
to use which guarantee containment but causes some
semantic coupling.

• Event sources and consumers use more theme tags
when no agreement can be achieved in vastly open and
decoupled scenarios. Containment and overlap can be
assumed to hold due to the distribution of term usage
by humans where some terms are more probable to be
used by both parties.

6. RELATED WORK
Related work can be recognized in distributed event-based

systems and information retrieval communities.

6.1 Semantic Event Processing
A-TOPSS [19] defines an approximate matching model

based on fuzzy functions that specify the degree of mem-
bership between an event’s value and a subscription’s filter
but without supporting schema approximation. S-TOPSS
[22] tackles schema and value semantic matching via agreed-
upon ontologies and a system architecture that generates
events other than the original ones by replacing concepts
with taxonomic concepts. S-TOPSS provides a generic ar-
chitecture but no concrete model or empirical validation has
been discussed. Besides, replicating events with new con-
cepts has the downside of overwhelming the system with a
large amount of events. FOMatch [29] proposes the use of
fuzzy agreed-upon ontologies. However, it does not free the
user from using pre-defined vocabularies.
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6.2 Uncertainty in Event Processing
A taxonomy for uncertain event processing has been pro-

posed in [25]. It suggests two dimensions for uncertainty:
element and origin uncertainty. Origin uncertainty deals
with the source of uncertainty which may originate from the
event source or from event inference. Our model suggests
matching as another type of origin where uncertainty reflects
the loose semantic coupling between sources and consumers.
A model for complex event processing over uncertain events
is proposed in [26]. Single event matching in our model can
feed into a complex event processing module.

6.3 Folksonomies
Folksonomies are taxonomies generated by people (folks)

in a bottom-up manner. It has been widely adopted as an al-
ternative to top-down agreed upon taxonomies which require
effort to agree upon, to maintain, and to use [14]. Gupta et
al. recognize user motivations for tagging in [14] such as
contribution, sharing, and technological ease. A classifica-
tion of tags is presented to include content-based, context-
based, ownership, organizational, and personal tags among
others. Several successful applications of folksonomies are
discussed including: search [27], indexing, classification, en-
hanced browsing, and others. Folskonomies are typically
used to index non-structured web pages and images while
our work introduces the parametric vector space model which
uses tags to extract approximate meanings of structured
events data and subscriptions.

7. CONCLUSIONS AND FUTURE WORK
This paper proposes a thematic event processing approach

to deal with semantic boundaries arising in large-scale, het-
erogeneous, and open environments. The proposed approach
suggests associating events and subscriptions with tags to
describe their semantic themes. The themes represent a
lightweight way to communicate event semantics across sys-
tems boundaries without the need for granular semantically
coupling agreements that limit scalability. Experiments show
that the thematic approach outperforms a non-thematic ap-
proximate event processing approach in matching effective-
ness and throughput for many combinations of theme tags.
Future work aims at the study of realistic tagging behavior of
users, building an efficient indexing for thematic projection,
throughput optimization, and more quantitative aspects of
evaluation such as cold start and real-time behavior.
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