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Abstract. The proliferation of sensor devices and services along with
the advances in event processing brings many new opportunities as well
as challenges. It is now possible to provide, analyze and react upon real-
time, complex events about physical or social environments. When exist-
ing event services do not provide such complex events directly, an event
service composition maybe required. However, it is difficult to determine
which event service candidates (or service compositions) best suit users’
and applications’ quality-of-service requirements. In this paper, we ad-
dress this issue by first providing a quality-of-service aggregation schema
for complex event service compositions and then developing a genetic al-
gorithm to efficiently create optimal event service compositions.

Keywords: complex event processing, event service composition, ge-
netic algorithm, quality-of-service

1 Introduction

Recent developments in Sensor Networks and Information Communication Tech-
nologies along with cheap and fast Internet and reduced cost of sensors are seen
as an enabler for the Internet-of-Things (IoT). Great opportunities are arising for
rendering IoT-enabled services in “smart cities”: smart city applications require
more of such services to fulfill their promise in promoting urban performances
in terms of sustainability, high quality of life and wiser management of natural
resources [3]. For example in the city of Aarhus 3 traffic sensors, pollution moni-
tors, parking meters, social feeds, library data and more are deployed in the city
and the real time data are made publicly available as a rich source of knowledge
to facilitate new services and applications, but we are not there yet.

Complex Event Processing (CEP) and event-based systems are important
enabling technologies for smart cities [7], due to the need for integrating and
processing high volumes of real time physical and social events. However, along

3 Open Data Aarhus: http://www.odaa.dk/
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with new opportunities, new challenges also arise. With the multitude of het-
erogeneous event sources to be discovered and integrated [6], it is crucial to
determine how to best answer complex event requests and identify which event
source should be considered to match specific quality requirements from users
or applications [12].

Non-functional properties, e.g.: quality-of-service (QoS) properties, can play
a pivotal role in guiding such selection if used as dimensions for finding the
optimal event service composition plan that provides the best available results.
Existing publish/subscribe based event systems and middleware use propriety
event advertisement and subscription formats (which leads to silo architectures)
and provide limited supports for non-functional requirements related to event
subscriptions [10].

In this paper, we extend the work in [5], which aims to provide CEP appli-
cations as reusable services where reusability is determined by examining com-
plex event patterns and primitive event types. The extension aims at enabling
QoS-aware event service compositions in complex event-service networks. The
conceptual architecture of such networks is illustrated in Figure 1.
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Fig. 1: Architecture of Complex Event Service Networks

In order to facilitate QoS-aware complex event service composition, two is-
sues should be considered which we tackle in this paper: QoS aggregation and
composition efficiency. The QoS aggregation for a complex event service relies
on how its member events are correlated. The aggregation rules are inherently
different to conventional web services. Efficiency becomes an issue for complex
event service compositions for IoT because 1) there can be a large set of sensor
devices or ICT services suitable for detecting an event and 2) a CEP service may
reuse existing services at different granularity levels, resulting in different sets of
event detection tasks involved.

In summary, this paper contributes to both aspects by:

– creating event QoS aggregation rules and utility functions used to estimate
and assess QoS for event service compositions, and

– enabling efficient event service compositions and optimization w.r.t QoS con-
straints and preferences based on Genetic Algorithms.

The remainder of the paper is organized as follows: Section 2 discusses re-
lated works in QoS-aware service planning; Section 3 presents the QoS model
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we use and the QoS aggregation rules we define; Section 4 presents the heuristic
algorithm we use to achieve global optimization for event service compositions
based on Genetic Algorithms (GA); Section 5 evaluates the proposed approach;
conclusions and future work are discussed in Section 6.

2 Related Work

The first step of solving the QoS-aware service composition problem is to define a
QoS model, a set of QoS aggregation rules and a utility function. Existing works
have discussed these topics extensively, e.g., in [1, 8, 13]. In this paper we extract
some typical QoS properties from the existing work and define a similar utility
function based on Simple Additive Weighting (SAW). However, the aggregation
rules in the existing work focus on conventional web services rather than complex
event services, which has a different QoS aggregation schema. For example, event
engine also has an impact on the QoS aggregation, which is not considered in
conventional service QoS aggregation. Also, the aggregation rules for some QoS
properties based on event composition patterns is different to those based on
workflow patterns (as in [8]), which we will explain in details in Section 3.2.

As a second step, different concrete service compositions are created are com-
pared w.r.t. their QoS utilities to determine the optimal choice. To achieve this
efficiently, various GA based approaches are developed. In [15] the chromosome
encoded with binary bits representing whether a concrete service is selected or
not. The problem with this approach is that the readability of the genomes are
poor and the chromosome length is not fixed during evolution. In [2] the authors
use a different encoding approach, which leads to a fixed chromosome length.
In [14] a two-dimensional genome encoding is proposed to express all execution
paths while considering task relations, but crossover and mutation needs vali-
dation. In [4], the authors use tree coding chromosome, crossovers operate on
sub trees and mutation operate on leaf nodes to avoid invalid reproductions.
In [9] the authors develop a GA based approach that goes beyond QoS-aware
composition and enables compliance-aware service composition.

The above GA based approaches can only evaluate service composition plans
with fixed sets of service tasks (abstract services) and cannot evaluate compo-
sition plans which are semantically equivalent but consists of different service
tasks, i.e., service tasks on different granularity levels. A more recent work in [13]
addresses this issue by presenting the concept of Generalized Component Services
(GCS) and developing the GA encoding techniques and genetic operators based
on GCS. Results in [13] indicate that up to a 10% utility enhancement can be ob-
tained by expanding the search space. Composing events on different granularity
levels is also a desired feature for complex event service composition. However,
[13] only caters for Input, Output, Precondition and Effect (IOPE) based ser-
vice compositions. Complex event service composition requires an event pattern
based reuse mechanism [5]. As a result, it requires different genetic encoding
mechanisms and crossover operations.
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3 QoS Model and Aggregation Schema

The QoS properties of event service compositions may vary depending on the set
of member event services used in the compositions. Some QoS properties may
propagate along the event service network. In this section, a QoS model is used
to represent some sample QoS properties. Then the QoS aggregation schema is
presented to estimate the QoS properties for complex event service composition
plans. Finally a utility function is introduced to evaluate the QoS performance
under constraints and preferences.

3.1 Quality-of-Service Properties of Event Services

The event QoS attributes describe the non-functional performance of event ser-
vices (and service compositions). In this paper, we do not intend to create a
complete and precise QoS ontology for event services. Instead, some typical and
important QoS attributes are investigated, including:

– Latency describes the delay in time for an event service, i.e., the temporal
difference between the time when the event consumer receives the notifica-
tion and the time when the event actually happens (usually denoted by the
timestamp of the event), denoted L,

– Price describes the monetary cost for an event services, denoted P ,
– Energy Consumption describes the energy cost for an event service, denoted

E,
– Bandwidth Consumption describes the usage of network bandwidth for an

event service, denote B,
– Availability describes the possibility of an event service being accessible, it

can be numerically represented in percentages, denoted Ava,
– Completeness describes the completeness of events delivered by an event ser-

vice, it can be numerically represented as recall rates in percentages, denoted
C,

– Accuracy describes the correctness of events delivered by an event service,
it can be numerically represented as precision in percentages, denoted Acc
and

– Security describes the security protocol used by event services, it can be
numerically represented as integer security levels, while bigger numerical
value indicates higher security level, denoted S.

By the above definition, a quality vector Q =< L,P,E,B,Ava,C,Acc, S > can
be specified to indicate the performance of an event service in 8 dimensions.

3.2 QoS Aggregation

To calculate the overall QoS performance of an event service composition, a QoS
aggregation schema is required. The QoS performance of an event service com-
position is considered to be influenced by three factors: Service Infrastructure,
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Composition Pattern and Event Engine. The Service Infrastructure consists of
computational hardware, service I/O implementation and the physical network
connection, it determines the inherent I/O capability of a service. The Compo-
sition Pattern refers to the local event patterns evaluated by the event engine
and the set of member event services directly involved. Indeed, the performance
varies on which services are used to produce the member events and how they
are logically correlated by event operators. In this paper four event operators
are considered: And, Or, Sequence and Repetition. The internal implementation
of the Event Engine also has an impact on the event service composition per-
formance. However, it can be difficult to assess or specify, because it depends
on different implementations of event engines. Table 1 summarizes how differ-
ent QoS parameters of an event service composition are calculated based on the
three factors.

Table 1: Overall QoS calculation

Dimensions
QoS Symbols

Overall Calculation
Service Infras-
tructure

Composition
Pattern

Event Engine

Latency Li Lc Le L = Li + Lc + Le

Price Pi Pc n/a P = Pi + Pc

Energy Ei Ec Ee E = Ei + Ec + Ee

Bandwidth n/a Bc n/a B = Bc

Availability Avai Avac n/a Ava = Avai ×Avac

Completeness Ci Cc n/a C = Ci × Cc

Accuracy Acci Accc Acce Acc = Acci ×Accc ×Acce
Security Si Sc n/a S = min(Si, Sc)

The Composition Plan is a key factor in aggregating QoS properties for event
service compositions. As in [5], event patterns are represented as event syntax
trees. In this paper, a step-wise transformation of event syntax tree is adopted
to aggregate QoS properties. More specifically, we apply aggregation rules from
the leaves to the roots on event syntax trees. Aggregation rules for different QoS
dimensions can be event operator dependent or independent. Event operator
dependent rules are defined based on the QoS properties of the set of Direct
Sub-Trees (DSTs) of the entire event syntax trees. Event operator independent
rules are defined based on the QoS properties of the set of Immediately Com-
posed Event services (ICEs). Table 2 shows the detailed rules for each quality
dimension. In the following we explain the rationale for each rule.

1. Price and Energy Consumption are operator independent properties.
They can be specified in different manners, e.g., price can be charged over
subscription time or volume, similar for energy consumption. For simplicity
we assume they are specified over time. Then the overall price or energy cost
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Table 2: QoS aggregation rules based on composition patterns

Dimensions
Event Operators

Repetition Sequence And Or

Pc(E ), Ec(E ) =
∑

Pc(e),
∑

Ec(e),where e ∈ Eice

Avac(E ) =
∏

Avac(e),where e ∈ Eice

Sc(E ) = min{Sc(e), e ∈ Eice}
Lc(E ) = Lc(e), e is the last event in Edst avg{Lc(e), e ∈ Edst}

Cc(E ) =
min{Cc(e) · f(e), e ∈ Edst}

card(E ) · f(E )

max{Cc(e) · f(e), e ∈ Edst}
f(E )

Accc(E ) =
card(E ) · f(E )

min{Accc(e)−1 · f(e), e ∈ Edst}
f(E )

max{Accc(e)−1 · f(e), e ∈ Edst}

of a certain event E is the sum of the price or energy cost of the immediately
composed event services (denoted Eice).

2. Availability and Security are operator independent properties. The avail-
ability of E is the product of event service availability in Eice; the security
level is determined by the most vulnerable event service in Eice.

3. Latency of event E is an operator dependent property. It is determined by
the last event completing the event pattern of E . Therefore, if the root oper-
ator of E is sequence or repetition, the latency of E is same as the last event
in the direct sub events of E (denoted Edst). Otherwise, it is hard to predict
when the last direct sub event occurs, therefore we make an approximation
with the average of the latencies of the event services in Edst.

4. Completeness and Accuracy are operator dependent properties. The re-
liability of E can be estimated based on its direct sub event frequencies (de-
noted f(e), e ∈ Edst, for the estimation of f(e) see [5]4) and direct sub event
reliabilities. The idea is to derive the estimated receiving frequency of E by
investigating its direct sub event sending frequencies and reliability, and then
divide the estimated receiving frequency by the estimated logical frequency
(the theoretical value of how often should E occur). For Sequence,Repetiton5

or And operators, the estimated receiving frequency of E is the minimum
of the products of the sending frequency and reliability of the event ser-
vices in Edst. On the contrary, for Or operators the maximum is used as
the estimated receiving frequency. Based on the similar ideas on frequency
estimation, aggregation rules for accuracy can be derived.

5. Bandwidth Consumption can be measured by the number of events con-
sumed by an event composition, i.e., its traffic demand. We refer readers to
[5] for detailed description on estimating traffic demands of event composi-
tion based on the frequencies of primitive events.

4 It is not entirely accurate to reuse the frequency estimation method directly in this
context, because it was defined without considering the impact of reliability and
accuracy, however for brevity we omit the modifications required.

5 The function card(E ) gives the cardinality of the repetition, other operators have a
default cardinality of 1.
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3.3 Event QoS Utility Function

To choose the best service composition under users’ constraints and preferences,
a QoS utility function is needed. In this paper, a SAW based approach with
normalization is used to calculate the QoS utility. Given a quality vector of an
event service composition Q =< L,P,E,B,Ava,C,Acc, S > representing the
service QoS capability, we denote q ∈ Q as a quality value in the vector, O(q) as
the theoretical optimum value in the quality dimension of q, C(q) as the user-
defined value specifying the hard constraints on the dimension and 0 ≤W (q) ≤ 1
as the weighting function of the quality metric, representing users’ preferences.
Further, we distinguish between QoS properties with the positive or negative
tendency: Q = Q+ ∪ Q−, where Q+ = {Ava,R,Acc, S} is the set of properties
with the positive tendency (bigger values the better), and Q− = {L,P,E,B} is
the properties with the negative tendency (smaller values the better). Then, the
QoS utility U is derived by:

U =
∑ W (qi) · (qi − C(qi))

O(qi)− C(qi)
−
∑ W (qj) · (qj −O(qj))

C(qj)−O(qj)
(1)

where qi ∈ Q+, qj ∈ Q−. According to Equation (1) the best event service
composition should have the maximum utility U .

4 Genetic Algorithm for QoS-Aware Event Service
Composition Optimization

The detection of the complex event pattern of an event service composition can
be achieved by monitoring different sets of member events on different granu-
larity levels. Each member event detection task can be achieved by subscribing
to a set of event services. If a complex event pattern can be detected by n dif-
ferent sets of sub-events, each set has an average size of m sub-events, and each
sub-event detection task can be implemented by subscribing to l (on average)
event service candidates, the total number of concrete composition plans is es-
timated to be n · lm. Clearly, in large scale scenarios, it is highly inefficient to
enumerate all possible compositions of event services and evaluate their overall
performances. In this paper, we propose a heuristic method based on Genetic
Algorithms (GA) to derive global optimizations for event service compositions,
without the need for enumerating all possible composition plans.

Typically, a GA requires a genetic encoding for the solution space, as well as
a fitness function to evaluate the solutions. A standard GA based search iterates
the procedure of select, crossover and mutate until termination conditions are
met. The GA approach in this paper also follows these steps. The “fitness”
of each solution can be evaluated by the QoS utility function in Equation (1).
Compared to traditional GA based optimizations for service compositions, where
a composite service is accomplished by a fixed set of service tasks, event service
compositions can have variable sets of sub-event detection tasks. Determining
which event services are reusable to the event service request is resolved in [5],
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where hierarchies of reusable event services are maintained, called an Event
Reusability Forest (ERF).

An ERF consists of a set of Event Reusability Hierarchies (ERH). An ERH
is a directed-acyclic-graph, denoted ERH = (T,R) where T is a set of canon-
ical event patterns6 of event services, R ⊂ T × T is a set of edges (reusable
relations) connecting nodes. Generally speaking, an ERF serves as a reusability
index for (complex) event services based on their event patterns. In the following
we elaborate how we utilize the ERF in the genetic algorithms.

4.1 Population Initialization

Given an event service composition request represented by a canonical event
pattern ep, we consider the initialization of the population consists of three steps.
First, enumerate all Abstract Composition Plans (ACPs) of ep. An ACP is a
composition plan without concrete event service bindings. Second, pick randomly
a set of ACPs. Third, for each chosen ACP, pick randomly one concrete event
service binding for each sub event involved. Then, a set of Concrete Composition
Plans (CCPs) with random structure and service bindings are obtained. The
second and third steps are trivial, next we explain how ACPs are derived based
on ERF.

e3

e1

SEQ

e2

OR

Query

e1

SEQ

e2

type= e4
loc=loc4

e3

e2

e1
type= e3
loc=loc3
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type= e1
loc=loc1

Event Service 1

Event Service 2

Event Service 3

Event Service 4

reusable on e3reusable on SEQ

reusable on e1

reusable on e2

Fig. 2: Marking the reusable nodes

When an event pattern ep is inserted into the ERF, we can mark its reusable
nodes denoted Nr: Nr ⊆ fcanonical(ep) ∧ ∀n ∈ Nr,∃ep

′ ∈ ERF , ep
′

is reusable
to ep on n, as depicted in Figure 2. Obviously, a primitive event involved in ep
has at most 1 ACP, which is subscribing to the primitive event services with the
requested primitive event type. And the ACPs for any sub-event patterns of ep
(including ep itself) can be enumerated by listing all possible combinations of
the ACPs of their immediate reusable nodes. By recursively aggregating those
combinations, we can derive the ACPs for ep.

6 In [5] the function fcanonical(ep) is defined to derive the canonical form for an event
pattern ep.
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It is worth noticing that although it requires enumerating all ACPs to ensure
the diversity in the structure of event compositions, the size of the different
combinations of reusable sub-events is moderate, compared to the size of all
concrete composition plans. Meanwhile, the reusable relations can be efficiently
retrieved from the ERF [5]. Therefore, the enumeration of ACPs can be done
efficiently.

4.2 Genetic Encodings for Event Syntax Trees

With the ability to initialize the population, now we need to genetically encode
the individuals in the population to represent their various characteristics. In
a typical encoding for service compositions, each service task is encoded with
a value indicating the concrete service implementing the task. These values are
ordered in a sequence so that the positions of the values indicate which service
tasks they relate to. Similarly, we encode the event detection tasks (leaf nodes) in
an CCP with values to indicate the service bindings used. However, the positions
of the values (arranged in any tree traversal orders) cannot represent which parts
of the event detection task do the reused event services contribute in, since the
CCPs are unordered trees with variable structures. The only thing identifying
an event detection task is the event pattern it detects.

Nevertheless, the sequence of ancestors of the nodes can give a hint about
which roles they play in the entire event pattern and reducing the search space
while finding their functional equivalent counter-parts. Therefore, we first assign
a global identifier for all the nodes in the CCPs generated during population
initialization, as well as the nodes in the event patterns in the ERF. Then we
encode the leaf nodes (reusable nodes) in CCPs with a string of node identifiers
as a prefix representing the path of its ancestor nodes and a service identifier
indicate the concrete service binding, as shown in Figure 3.
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Fig. 3: Example of genetic encoding and crossover operation
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4.3 Crossover and Mutation Operations

After the population initialization and encoding, the preparation tasks for GA
based optimization are completed. The algorithm iterates the cycle of select,
crossover and mutate to find optimal solutions. The selection is trivial, individ-
uals with better finesses (QoS utility derived by Equation (1)) are more likely
to be chosen to reproduce. In the following we explain the details on crossover
and mutation operations for event service composition optimization.

Crossover To ensure valid child generations are produced by the crossover op-
eration, parents must only exchange genes representing the same part of their
functionalities, i.e., the same (sub) event detection task, specified by semanti-
cally equivalent event patterns. An example of crossover is illustrated in Figure
3. Given two genetically encoded parent CCPs P1 and P2, the event pattern
specified in the query Q and the event reusability forest ERF , the crossover
algorithm takes the following steps to produce the children:

1. Pick randomly a leaf node l1 from P1, query the reusable relations stored in
ERF to find the relevant reusable node nr in Q.

2. Starting from l1, search backwards along the prefix of l1 and locate node
n1 ∈ P1, such that event pattern represented by T (n1) ⊆ P1 is a substitute
to T (nr) ⊆ Q, then mark node n1 as the cross point for P1.

3. For all leaf nodes in P2, denoted L2, find l2 ∈ L2 which are also reusable to
Q on nr, or on n

′

r which is a descendant of nr, then, mark the cross point
n2 ∈ P2.

4. If L2 = ∅, it means the sub event pattern T (nr) ∈ Q is not implemented
locally in P2, so there must be at least one leaf node l2 ∈ L2, such that the
event pattern represented by T (l1) ⊆ P1 is reusable to the one represented
by T (l2) ⊆ P2. For each such l2, mark the relevant reusable node in Q as
the new nr, and try to find n1 in the prefix of l1 such that T (n1) ⊆ P1 is a
substitute to T (nr) ⊆ Q. If such n1 is found, mark it as the new crossover
point for P1, similarly, mark the new cross point n2 ∈ P2.

5. If n1 or n2 is the root node, do nothing but keep the parents along with
the new generations and give them a 100% chance of selection next time.
Otherwise, swap the sub-trees in P1, P2 whose roots are n1, n2 (and therefore
the relevant genes), resulting in two new CCPs.

Mutation The mutation operation changes the composition plan for a leaf
node in a CCP. To do that we can simply select a random leaf node n in a
CCP P , and treat the event pattern of n (possibly a primitive event) as a new
event query that needs to be composed, then we use the same random CCP
creation process specified in the population initialization (Section 4.1) to alter
its implementation.
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5 Evaluation

In this section we present the experimental results of the proposed approaches
based on simulated datasets. We first present the experiment setups and the
datasets used in the experiments, then, we compare the results and execution
time of a brute-force enumeration and the proposed genetic evolution, finally,
we show the means of improving genetic evolution results at the cost of slower
convergence rate.

5.1 Experiment Settings and Datasets

All experiments are carried out on a Macbook Pro with a 2.53 GHz duo core
cpu and 4 GB 1067 MHz memory. Prototypes are developed in Java. The Java
Virtual Machine is configured with a minimal heap size of 64 MB and a maximal
heap size of 256 MB. All results are derived from 10 test iterations.

In the experiments the event pattern of the query to be composed consists of
10 nodes, including 6 primitive events and 4 event operators. This event pattern
is also used to create event service descriptions stored in the event service repos-
itory: for each sub-tree of the pattern (including the entire tree and leaf nodes),
a number of (complex) event service descriptions are created with random QoS
vectors. These event service descriptions are reused to create event service com-
positions. The QoS utility is calculated for each event service composition ac-
cording to the QoS utility function defined in Equation (1). The weights of QoS
metrics representing the QoS preferences of the query are equally set to 1.0, and
a loose constraint is defined in the query which do not reject any event service
compositions in order to enlarge the search space. The performance of the GA
based composition and a brute-force enumeration is recorded and compared.

5.2 Brute-Force Enumeration vs. Genetic Algorithm

In the first experiment, we compare our genetic algorithm with the brute-force
enumerations in terms of maximum QoS utility obtained and execution time
required. First, we build three event service repositories with different sizes.
Creating 4 event services for each sub-pattern of the query leads to 8004 CCPs,
5 event services per pattern gives 27005 CCPs, 6 event services per pattern
gives 74074 CCPs, 7 event services (and above) cannot be enumerated due to
the memory limit. We observe the time used during the execution and capture
the CCP with the highest QoS utility, then, we execute the genetic algorithm
over these three datasets and compare the results with brute-force enumerations.
The results are shown in Table 3. In the test names, “BF” indicates the test uses
brute-force enumeration, “GA” indicates the genetic algorithm is used for the
test, the number after the dash represent the number of event services created for
each sub-pattern. Throughout our evaluation, the crossover rate of the genetic
algorithm is set to 100% and mutation rate is 5%.

From the results in Table 3, we can see that the execution time of brute-
force enumeration grows exponentially to the number of service candidates for
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Table 3: Brute-force enumeration vs. genetic algorithm
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each sub-event, which is not scalable. However, the GA based approach can
produce about 79 percent optimal results (compared to the global optimizations
enumerated) within 353 to 757 milliseconds, using 200 random CCPs as the
initial population. We run an additional genetic evolution over a 50 candidate
per pattern event repository (which is far beyond the capacity of brute-force
enumeration), and the evolution completes in 1270 milliseconds. The average
utility of the initial population is lower than the entire set of CCPs is due to
the fact that each ACP has an equal chance of producing CCPs during the
initialization, but some ACPs create more CCPs with higher QoS utility in the
enumeration.

5.3 Convergence Time vs. Degree of Optimization

If a user is not satisfied with the above results (79% optimal), he may sacrifice
some execution time in exchange for a higher utility. There are two ways to do
that: increase the size of the initial population or the selection probability of the
individuals in each generation. To evaluate the influence of the initial population
size and selection probability, we execute the genetic evolutions with different
population sizes and selection probabilities over the second dataset (BF-5) in
Table 3. Figure 4(a) and Figure 4(b) show the growth of execution time and
best QoS utility retrieved using from 200 to 1200 CCPs as the initial populations.
From the results we can see that the growth of evolution time is (almost) linear to
the size of the initial population, and by increasing the population size we always
get better results. It is also observed that increasing the population size up to
400 has the fastest utility growth rate. The influence of increasing population
size in GA is analyzed in [11]. In total, increasing the initial population from
200 to 1200 gains additional 0.276 (15.6%) QoS utility with the cost of 1344
milliseconds of execution time.

In the tests above, we adopt the Roullete Wheel selection policy: for each
individual i, the selection probability Pi = Ui

Umax
, where Ui is the QoS utility of
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Fig. 4: Performances under different initial population size
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Fig. 5: Performances under different selection factor

i and Umax is the maximum utility in the generation. However, this selection
policy results in early extinction of the population. To produce more generations,
we simply increase the selection probability with a constant 0 ≤ F ≤ 1, we call
the additional F the selection factor. Figure 5(a) and Figure 5(b) show the
execution time and best evolution results with different selection factors from
0 to 0.5. Figure 5(c) show the average utility of each generation using different
selection factors.



14 Feng Gao et al

The results in Figure 5(a) show that the execution time increases when more
individuals are selected in each generation, and the rate get faster as the selection
factor gets bigger. The results in Figure 5(b) show that increasing the selection
factor does not always bring better results: the best evolution result is achieved
when F = 0.3, accepting more (bad) individuals after that may give worse
evolution results. When F = 0.3, the genetic algorithm gains additional 0.243
(13.7%) QoS utility with the cost of 513 milliseconds of execution time. It is
evident that increasing the selection probability (up to F = 0.3) is more efficient
than increasing the size of the initial population. The user may also use a hybrid
approach, using 1200 individuals in the initial population with the selection
factor F = 0.3, the genetic algorithm finds a CCP with 1.721 (97.2% optimal)
QoS utility within 2526 milliseconds.

6 Conclusions and Future Work

In this paper a QoS aggregation schema is proposed to calculate the overall
QoS vector for an event service composition. Based on a user-defined constraint
and weight vector, a QoS utility function is defined to calculate the degree of
optimization for event composition. Finally, a genetic algorithm is developed
and evaluated to efficiently create optimal event service compositions. A tree
encoding schema for event service compositions and a crossover operation based
on the Event Reusability Forest is presented. The experimental results show
that the genetic algorithm is scalable, and by leveraging the trade-off between
convergence time and degree of optimization, the algorithm gives 79% to 97%
optimized results.

As future work, we plan to carry out experiments to validate our QoS ag-
gregation schema based on real-world datasets. We also plan to observe how the
proposed genetic algorithm performs on real data. Moreover, we will investigate
how other parameters, e.g.: crossover rate, mutation rate and other selection
policies, may influence the performance of the algorithm.
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