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ABSTRACT
Smart City applications often use event processing tech-
niques to detect coarse-grained events and situations from
fine-grained events of the physical and social world. They
operate in dynamic environments in which the properties
of underlying resources and streams need to be constantly
updated according to changes and events in the real world
(e.g. sensor readings, network availability, weather condi-
tions, and temperature). In most of the existing solutions
matchmaking between the requirements expressed by event
consumers and available event providers is carried out at
design-time. This approach is often far from optimal and its
deficiencies become even more obvious in smart city scenar-
ios due to their inherently dynamic stream properties. In
this paper we discuss a solution for quality-aware adaptive
complex event processing using a service-oriented approach.
We detail the automatic adaption strategies and evaluate
them in a smart city scenario with both real and synthe-
sised datasets.

CCS Concepts
•Applied computing→ Service-oriented architectures;
Event-driven architectures; •Computer systems or-
ganization → Dependable and fault-tolerant systems
and networks;
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1. INTRODUCTION
Complex Event Processing (CEP) has been widely discussed
and used for deductive reasoning over dynamic data streams
to detect complex situations according to predefined event
patterns [15]. During the past decade, research efforts in
Event Processing Network (EPN) aim to carry out CEP in a
distributed fashion [7]. However, advancements in Internet-
of-Things (IoT) and Smart City applications bring new chal-
lenges to existing EPNs, e.g., incorporating heterogeneous
data interfaces, data semantics and CEP platforms [3]. Pre-
vious works in [9, 10] aim to address these challenges by pro-
viding CEP capabilities as Complex Event Services (CESs),
which describe the event patterns in their service descrip-
tions and allow CEP capabilities to be reused within differ-
ent CEP platforms. A network of CESs and Simple Event
Services1 (SESs) constitute an Event Service Network (ESN),
as depicted in Figure 1. In [8] an Automatic Complex Event
Implementation System (ACEIS) is proposed as a middle-
ware for managing the modelling, composition and imple-
mentation of CESs. However, it did not address the problem
of dynamic service adaptation under quality changes.
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Figure 1: Overview of an event service network

Adaptability is important for service-oriented systems [6].
Adaptability is crucial especially in the context of IoT, be-
cause IoT service qualities are prone to environmental changes
[11]. For example, the accuracy of a sensor might be affected
by its battery level [4], air temperature, humidity [12] etc.
ACEIS should have the ability to automatically detect ser-
vice failures or constraint violations according to users’ re-
quirements at run-time and make appropriate adjustments,
including re-compose and re-deploy CESs, to adapt to changes.

1An SES is an event service that may deliver simple or com-
plex events but no event patterns are described in the service
description, hence can only be identified by event types and
attributes.
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Figure 2: Example of an ESN for traffic monitoring

In this paper we extend the framework in [8] and provide
means for Quality-of-Service (QoS) aware adaptive event
processing over IoT data/event streams. The contribution
of this paper is summarised as follows:

∗ We extend the ACEIS architecture in [8] to enable QoS-
aware CES adaptation and elaborate on the details of
three different adaptation strategies.

∗ We evaluate the proposed adaptation techniques with a
prototype implementation using both real and simulated
urban datasets.

The remainder of this paper is organized as follows: Section
2 introduces a motivation scenario in urban traffic moni-
toring; Section 3 presents the extended ACEIS architecture
and elaborates in details how the QoS-aware adaptations are
made; Section 4 presents and discusses evaluation results for
different adaptation strategies; Section 5 describes the state-
of-the-art on QoS-aware adaptive service composition before
we summarise the outcome and future steps in Section 6.

2. MOTIVATION SCENARIO
Figure 2 shows a simplified example of federated CESs. Sup-
pose 3 CESs are deployed to monitor the traffic conges-
tion events in different regions of a city. As shown in Fig-
ure 2(a), region A consists of region B and C, i.e., A =
B ∪ C, while B and C consist of several different streets,
i.e., B = (s1, s2), C = (s3, s4, s5). The congestion event in
region A is detected when both B and C are congested, i.e.,
Congest(A) := Congest(B)∧Congest(C), while Congest(B)
and Congest(C) are detected based on the traffic reports
produced by the traffic sensors deployed on the relevant
streets, i.e., primitive events Traffic(sn). Domain experts
can define different rules for the congestion event, e.g., aver-
age vehicle speed below a threhold or vehicle count per road
distance is higher than a threhold etc. The ESN topology
containing the relevant CESs and SESs created by ACEIS is
shown in Figure 2(c). Notice that Congest(A) is evaluated
by a C-SPARQL engine [2], and it reuses event detection
results from Congest(B) and Congest(C), which are evalu-
ated by ETALIS [1] and CQELS [14] engines, respectively.

This example demonstrates how event processing capability
can be provided in a platform independent manner, in which
different event engines can be used, as long as all patterns
are described in a mutually accepted ontology, such as the
CES ontology2. By analysing the event patterns evaluated
by the CESs, an Event Reusability Hierarchy (ERH) can be
constructed using the method provided in [10], as shown in
Figure 2(b). An ERH describes how event services can di-
rectly or in-directly reuse (denoted dr and idr in Figure 2(b))
other services by comparing the semantics of the events they
provide. An ERH serves as an index for the event services
and accelerates the event service composition [9].

When composing the CES for detecting Congest(A), a user
may specify QoS constraints (expressed as QoS value thresh-
olds) and preferences (expressed as weights over QoS met-
rics) on the composition plan created. A composition plan
describes how existing services are reused in a CES compo-
sition, the reused services are referred to as memeber event
services in the composition plan. ACEIS is capable of sat-
isfying the constraints during CES composition and rank
the composition plans based on the preferences. The cre-
ated composition plan may use different combinations of the
CESs and SESs in Figure 2. At run-time, when an event ser-
vice involved in the composition plan has a QoS update, two
questions arise: 1) will the quality update significantly affect
the QoS of the CES and result in violation of the constraints
and 2) if yes, how to modify the current composition plan
and satisfy the constraints?

3. EVENT SERVICE ADAPTATION
Existing approaches to data stream processing address dif-
ferent issues related to streams and data processing such as
stream data management, query processing, and data min-
ing. However, it is still an open challenge to properly ad-
dress issues that are more closely related to the quality of
a federated stream, more precisely integration of the feder-
ated data/event streams while keeping their quality metrics
in mind. To facilitate adaptability in quality-aware federa-
tion of IoT streams for smart city applications, the following

2CES Ontology: citypulse.insight-centre.org/ontology/ces
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actions have to be considered:

• Monitor Quality Updates: to monitor any updates in
the quality metrics of the IoT streams involved in stream
federation,

• Evaluate Criticality: to determine whether any partic-
ular quality update is critical and if there is any adapta-
tion action that should be carried out, and

• Perform Adaptation: once a critical update is con-
firmed, perform necessary actions for automatic adapta-
tion according to the new conditions/environment.

In the following we first present the architecture of ACEIS
with a focus on the above actions are implemented in the
adaptation module. Then, we elaborate the strategies for
creating new service compositions at runtime, i.e., perform-
ing adaptation to keep the constraints satisfied with an ab-
stract example.

3.1 ACEIS Architecture
ACEIS is developed as a middleware to model, discover,
compose and adapt CESs. Figure 3 illustrates the overall
architecture of ACEIS. ACEIS consists of three main com-
ponents: Application Interface, Semantic Annotation and
ACEIS Core component.
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Figure 3: ACEIS architecture overview (extended from [8])

The Application Interface interacts with end users as well
as the ACEIS core modules. It allows users to provide in-
puts required by the application and presents the results to
the users. Event requests are generated from user inputs
and sent to the ACEIS Core for further processing. The
Semantic Annotation component annotates syntactical in-
formation with semantic terms. It annotates both static
information (e.g., event service descriptions with CES on-
tology) and dynamic information (e.g., IoT messages and
sensor observations with the SSN3 ontology), so that a se-
3Semantic Sensor Network ontology: http://www.w3.org/
2005/Incubator/ssn/ssnx/ssn

mantic discovery of event services and a semantic querying
and reasoning over event messages can be realised.

The ACEIS Core module serves as a middleware between
low level event streams and upper level applications and
business processes. The ACEIS core consists of three ma-
jor components: resource management, data federation and
adaptation manager. The Resource Management is respon-
sible for performing pattern-based [9] and QoS-aware [10]
discovery and composition of CESs. The Data Federation
is responsible for implementing the composition plan over
the ESN. It uses a subscription manager to subscribe to
the relevant semantic event streams in the composition plan
and transform the composition plan into a semantic stream
query in order to detect the requested complex events.

The Adaptation Manager comprises of three main modules,
namely:

QoS Stream Discovery: this module finds the relevant
quality update streams to subscribe to for the composition
plan.

Monitoring: this module subscribes to the relevant QoS
streams and continuously monitors and verifies whether qual-
ity scores of all the contributing data streams in a compo-
sition plan are compliant to the event request. We adopt
the QoS aggregation method described in [9] for estimat-
ing the overall QoS performance of a composition plan and
determining whether a QoS constraint is violated.

Adaptation Handler: this module is triggered if any of
the user defined QoS constraints and preferences are vio-
lated. It utilizes different adaptation strategies and tries to
determine the scope of the adaptation. If an adaptation is
possible, it invokes the Resource Management component to
find replacements for parts of (or the entire) original com-
position plan. Then it creates the new composition plan
via merging or replacing the original composition plan and
send it back to the Data Federation component for query re-
deployment and other subsequent actions. In order to avoid
conflicting adaptations, no parallel adaptations are allowed,
i.e., when an adaptation is in action, all QoS updates are
ignored.

3.2 Adaptation Strategies
We distinguish between 3 different adaption strategies for
creating new composition plans: local, global, and incremen-
tal adaptations. All strategies query the ERH to find valid
candidate services. In the following we elaborate on these 3
strategies using an example ERH shown in Figure 4.

Recall that in Section 2, an ERH is informally described as
a hierarchy that captures reusability between event services.
Now we formally define an ERH as a directed-acyclic-graph
(DAG) consisting of a set of nodes and edges, i.e., erh =
(V,R) where V is a set of event services and R ⊂ V × V
is a set of binary relations over nodes. We distinguish be-
tween two types of relations: reuse and equivalent relation
in R, i.e., R = Rr ∪ Re where Rr and Re represent reuse
and equivalent relations, respectively. Rr is a transitive,
asymmetric relation such that if (v1, v2) ∈ Rr, the seman-
tics of the events provided by v2 is covered by those of v1,
i.e., whenever an event instance e1 is detected by v1, there
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Figure 4: Example of an ERH

should be at least one e2 detected by v2, where e2 belongs
to the Event Instance Sequence (EIS) that triggers e1. Re

is a transitive, symmetric and reflexive relation such that if
(v1, v2) ∈ Re, the semantics of the events provided by v1 is
equivalent to those of v2, i.e., whenever an event instance
e1 is detected by v1, there should be exactly one event in-
stance e2 detected by v2 such that e1 and e2 are triggered by
the same EIS. An ERH is constructed once when an ACEIS
server initializes, and constantly maintained by adding and
removing services in the ERH, until the server is shut down.

In Figure 4 a (partial) example of an ERH (denoted erh =
(V,R)) is presented, which contains 11 functionally differ-
ent CES and SES nodes. Arrows in Figure 4 represent the
Rr relations, and Re relations are abstracted as stacked
nodes, representing functional identical services. Suppose
an instance of the ACEIS adaptation manager is currently
monitoring the service CES0, and its current composition
plan contains a set of member event services mes(CES0) =
{CES4, SES3, CES6}, the adaptation manager for CES0

will subscribe to the QoS updates for all event services in
mes(CES0). When a QoS update, say, for SES3 is detected,
it will recalculate the aggregated QoS metrics for CES0 to
see if it still complies with the user-defined constraint C. If
the constraint C still holds for CES0, it will do nothing ex-
cept to update the QoS for SES3 in the composition plan of
CES0 and publish a QoS update for CES0 to all other in-
terested adaptation manager instances. Otherwise it marks
SES3 as a critical node (marked in red), triggers an adap-
tation process, and tries to create a new composition plan
for CES0 that satisfies C using one of the following three
strategies:

• local adaptation that finds all functional equivalent ser-
vices to SES3, ranks them based on constraint C and
preference P , and then substitutes SES3 with the high-
est ranking replacement SES′

3 in the current composition
plan of CES0;

• global adaptation that recomposes a new composition
plan entirely for CES0 based on C,P and

• incremental adaptation that follows the steps:

1. try local adaptation, if failed i.e., no substitutes avail-
able or the substitution of SES3 cannot satisfy C then,

2. try to recompose the critical node, if failed, i.e., no
composition possible, e.g., the critical node here is an

SES, or replacing the critical node with the new com-
position cannot satisfy C then,

3. find all Intermediate Nodes (denoted IN) between CES0

to SES3 in erh such that

IN ⊆ V | ∀v ∈ IN =⇒ (v, SES3) ∈ R∗
r

where R∗
r is the transitive closure of Rr ⊆ R,

4. starting from the node with shortest to the largest dis-
tance to SES3 in IN , i.e., in the sequence of CES5,
CES3 and CES0, mark the node as the critical node
and repeat step 1 and 2 on this node until a satisfying
new composition plan is created and

5. if all above steps failed to create a valid composition
plan, exit with an adaptation failure notification to the
users or the application, triggering the necessary recov-
ery mechanisms.

Algorithm 1 CES adaptation algorithm

Require: Composition Plan: comp, QoS update: qUpdate, Con-
straint: C, Adaptation Mode: mode, Event Reusability Hier-
archy: erh

Ensure: Adapted Composition Plan: resultP lan
1: procedure adapt(comp, qUpdate, C,mode, erh)
2: needAdpt← checkConst(comp, qUpdate, C)
3: resultP lan← ∅
4: if needAdpt = true then
5: if mode = local then
6: resultP lan← localAdpt(comp, qUpdate, C)
7: else if mode = global then
8: resultP lan← globalAdpt(comp, qUpdate, C)
9: else if mode = incremental then
10: resultP lan←
11: incrementalAdpt(comp, qUpdate, C, erh)
12: end if
13: end if
14: return resultP lan
15: end procedure
Require: Composition Plan: comp, QoS update: qUpdate, Con-

straint: C, Event Reusability Hierarchy: erh
Ensure: Adapted Composition Plan: resultP lan
16: procedure incrementalAdpt(comp, qUpdate, C, erh)
17: resultP lan← ∅
18: IN ← getIN(comp, erh) ∪ comp
19: for criticalService ∈ IN do
20: resultP lan← localAdpt(comp, qUpdate, C)
21: if resultP lan = ∅ then
22: subP ← getSubPattern(comp, criticalService)
23: subResult← globalAdpt(subP, qUpdate, C)
24: resultP lan← mergeResult(comp, subResult)
25: if checkConst(resultP lan, qUpdate, C) then
26: result← ∅
27: end if
28: end if
29: if resultP lan 6= ∅ then
30: break
31: end if
32: end for
33: return resultP lan
34: end procedure

Algorithm 1 provides the pseudo code for the adaptation
algorithm, with a focus on incremental adaptation. Intu-
itively, each of the above three strategies has its own mer-
its (and drawbacks). Local adaptation causes the smallest
changes to the composition plan and requires the least com-
putation effort, however it has a relatively low chance of a
successful adaptation, and even if it succeeds, the result-
ing new event service composition may have a low overal
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QoS, since the substitute options are limited. Global adap-
tation ensures a high probability of success while it gets
the best possible (with regard to the composition algorithm
used) resulting QoS. However, it may change dramatically
the structure of the original service composition and requires
the same time of composing the original service in the ser-
vice planning phase, which might take too long for a adjust-
ment during run-time. Incremental adaptation is a more
“balanced” choice between local and global adaptation, i.e.,
it changes the scope of adaptation when necessary, thus on
average, it takes the intermediate time to adapt and cre-
ates the intermediate resulting QoS. Notice that in the case
when an incremental adaptation is regressed into a global
one, they produce the same quality results, but the incre-
mental approach may take even more time than the global,
due to the overhead of failed attempts. In Section 4 the
above intuitions are verified with experiments.

3.3 Adaptation for Service Failures
It is worth mentioning that by adopting the QoS aggrega-
tion methods described in [9], we can handle adaptations
for constraints over eight QoS metrics, including latency,
accuracy, availability, completeness, security and energy/-
monetary/bandwidth consumption. However, service fail-
ures, such as server offline, or connection broken, are not di-
rectly supported. Nevertheless, service failures can be easily
adopted as critical QoS updates and trigger the adaptation,
as long as those service failures provide explicit notifications
to the service consumers. In cases where no explicit notifi-
cations are provided, prediction methods based on statistics
or patterns can be used to detect service failures and trig-
ger adaptations [17]. These methods are not detailed in this
paper.

4. EVALUATIONS
In this section we experiment on the performance of our
adaptation strategies using a traffic monitoring scenario (im-
plemented as an extension of the example in Figure 2) in the
smart city context. In the following we first present the sce-
nario and dataset description and then show the results of
the experiments as well as the analysis of the results.

4.1 Datasets
The city of Aarhus has deployed 449 pairs of traffic sensors
on the streets to report traffic conditions. The live traffic
data, along with other sensor data on air pollution, weather
etc. has been made publicly available via the ODAA4 plat-
form. By wrapping the sensors as SESs that publish sensor
data as sensor observation events, we can integrate ACEIS
in the traffic monitoring scenario sketched in Figure 2.

To experiment on the adaptation capability we also collected
the QoS measurements for the sensors used during August,
2014 and replay them with the sensor observations to simu-
late the real-time quality updates5. Figure 6 and 7 show the
QoS analysis for an event request over the selected month.

4Open Data Aarhus: www.odaa.dk
5We are thankful for the CityPulse team in the University
of Applied Sciences Osnabrück (UASO) for the QoS data
assessment and collection.

In the experiments we monitor a query of traffic congestion
events over a specific route in the city. Figure 5 shows the
start and end locations of the queried route, which consists
of 10 street segments (10 traffic sensor services deployed on
the route from point A to B in Figure 5). Figure 6 shows the
distribution of the accuracy measurements of the 10 sensor
services during the month and Figure 7 shows the trend of
the aggregated accuracy for the query during the month, i.e.,
for each day of the month, we observe the maximum, min-
imum and average of the aggregated accuracy of the query
(multiplication of the accuracy of 10 sensors). From the ac-
curacy distribution and aggregated accuracy for each day we
can see that although for about 90% of the time the sensor
observation is correct (100% accuracy), we still have quite
some low accuracy results when we investigate large queries
using observations from many sensors, which strengthens
our argument on the necessity of quality-aware event ser-
vice adaptation.

4.2 Performances of Adaptation Manager
To investigate the adaptation performance in more details,
we replay the QoS updates in a random day of the month
(e.g., 21st of August, 2014) and observe how the adapta-
tion manager reacts to the quality changes during the day
while monitoring the traffic condition on the route specified
in Figure 5. In addition to the real-world datasets, for exper-
imental purposes, we create synthesised datasets: for each
sensor deployed in the city, we create 10 functionally equiva-
lent virtual sensors, so that local adaptation is possible. QoS
updates for these virtual sensors are also simulated: for each
real sensor QoS update stream, we apply 10 different (and
random) offsets over the timestamps (e.g., +1 hour) of the
updates to create 10 virtual sensor quality updates streams.
We also deploy 100 CESs in the ERH, each CES is a ran-
dom combination of the street segments used in the query in
Figure 5. These CESs represents traffic monitoring queries
over smaller regions and their results can be reused by the
investigated query, so that the incremental adaptation is
possible.

4.2.1 Comparison of Different Strategies
Table 1 shows an overall comparison of different adaptation
strategies. The first column lists the adaptation strategies
used (“n/a” stands for no adaptation) under 3 QoS con-
straints: a (relatively) strict constraint requires the accu-
racy of query results above 90%, a medium constraint above
80% and a loose constraint above 70%. The second col-
umn lists the QoS updates that are considered critical, i.e.,
the updates causing constraint violations. It shows while
local adaptation can reduce some critical quality updates,
global and incremental adaptation can reduce the amount
to the minimum. The reason behind this is that when an
adaptation is triggered and failed, the problematic event ser-
vice tends to keep causing critical QoS updates. The third
column lists the number of successful adaptations. The re-
sults indicate that local adaptation has a much lower success
rate than global and incremental. The fourth column lists
the time required for the adaptations. From the results we
can see that local adaptation is very efficient while global
may take more than 3 seconds to complete, and incremental
adaptation takes less time than the global option and more
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Figure 5: Traffic monitor-
ing query on the map
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Table 1: Comparison of adaptation strategies

! critical!
updates!

valid!
adpt.!

avg.!adpt.!
time!(ms)!

query!
results!

satisfied!
period!

total!acc.!
changes!

Constraint!C1:!accuracy!>!90% 

! n/a$ 470$ 0$ 0$ 2160$ 22.67%$ $
local$ 407$ 10$ 8$ 2145$ 22.96%$ +1.18%$
global$ 17$ 17$ 3243$ 1487$ 100.00%$ +43.09%$
incremental$ 16$ 16$ 2272$ 1596$ 100.00%$ +44.67%$

Constraint!C2:!accuracy!>!80%!
! n/a$ 413$ 0$ 0$ 2161$ 36.32%$ $

local$ 349$ 5$ 9$ 2161$ 37.53%$ +1.39%$
global$ 9$ 9$ 3332$ 1654$ 100.00%$ +39.47%$
incremental$ 14$ 14$ 919$ 1661$ 99.91%$ +31.93%$

Constraint!C3:!accuracy!>!70%!
! n/a$ 355$ 0$ 0$ 2145$ 50.02%$ $

local$ 317$ 2$ 8$ 2143$ 48.38%$ <1.41%$
global$ 7$ 7$ 3446$ 1668$ 100.00%$ +38.73%$
incremental$ 6$ 6$ 815$ 1836$ 100.00%$ +28.15%$

!

than the local adaptation. The efficiency and scalability of
the adaptation is guaranteed by the CES composition algo-
rithm in [9]. The fifth column lists the number of query re-
sults (i.e., congestion events) obtained from the event stream
engine. If we use the “n/a” option as the baseline (i.e., as-
suming the event engine does not create false positive/nega-
tives), we can see that the global and incremental adaptation
suffers from high message loss (≈ 30% loss in the worst case)
and local adaptation does not lose many event messages (less
than 0.7%). We will provide more analysis on this later (in
Section 4.2.2). The sixth columns shows the portion of the
time during the day that the constraints are satisfied using
different adaptation strategies. We can see from the results
that the global and incremental adaptation can always keep
the constraints satisfied, while the local adaptation provides
slightly improved satisfactory time for constraint C1 and C2

and has worsened the situation for constraint C3. This effect
is also reflected in the seventh column, where the summed
accuracies of different strategies over the day are compared
to the non-adapted approach.

In summary, the results in Table 1 show that the local adap-
tation is more efficient and has less message loss than the
global and incremental adaptation due to the limited search
space available. However, for the same reason it has a much
lower success rate and quality improvement. The local adap-
tation success rate is likely to improve if there are more
functional equivalent event services to adapt to. Users can

choose the most suitable adaptation strategy according to
their needs. To have a more intuitive representation of the
accuracy trends over the day using different strategies, we
plot the hourly averaged accuracy of the query in Figure 8.

4.2.2 Message loss and adaptation Time
From Table 1 we can see that the message loss is positively
related to the average adaptation time. Indeed, if more time
is required to make the adjustments, there is a higher chance
that a query result is lost. The frequency of query result up-
date depends on the frequency of the input streams. In the
experiments above the traffic conditions are reported every
3 seconds. To see the impact of stream frequency over the
message loss rate, we use global and incremental adaptation
under constraint C2 using different streaming intervals. The
results are shown in Figure 9. From the results we can see
that slowing down the streaming rate can reduce the mes-
sage loss for both strategies, but it cannot eliminate them.
In fact, even when we use a streaming interval of 9 seconds,
the message loss is still high: ≈ 15% for both strategies. By
further analysing the data we found out two more reasons
for the message loss: 1) when a new event query is regis-
tered as a result of adaptation, a new event window is used
and the previous events are discarded, thus, some query re-
sults may be lost, and 2) the semantic stream engine (e.g.,
C-SPARQL) takes additional time (e.g., several seconds) to
get the query results after the query is registered. A possible
solution would be deploying the new query along with the
old one and keep the old query results until the new query
is fully functional. However, it causes an overhead and we
risk receiving low quality query results.

The adaptation time is an important metric while evalu-
ating the adaptation strategies as well as deciding the best
option in a particular usecase. For local adaptation the time
required simply depends on the number of Re relations in
the ERH. The global adaptation time depends on the effi-
ciency of the event service composition algorithm, which is
out of the scope of this paper. For incremental adaptation,
the time required to create new composition plans largely
depends on the structure and size of the ERH used. A suc-
cessful incremental adaptation could be completed during 3
different phases in the adaptation procedure (recall the in-
cremental adaptation steps in Section 3.2): local replacement
(i.e., from steps 1 and 2), parent replacement and recompose
(i.e., from steps 3 and 4 excluding global recomposition)
and global recomposition. The local replacement and global
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(a) Accuracy trend under constraint C1

0	
  

0.2	
  

0.4	
  

0.6	
  

0.8	
  

1	
  

1.2	
  

00:
00	
  

02:
00	
  

04:
00	
  

06:
00	
  

08:
00	
  

10:
00	
  

12:
00	
  

14:
00	
  

16:
00	
  

18:
00	
  

20:
00	
  

22:
00	
  

Accuracy	
  

Time	
  of	
  Day	
  

(b) Accuracy trend under constraint C2

0	
  

0.2	
  

0.4	
  

0.6	
  

0.8	
  

1	
  

1.2	
  

00:
00	
  

02:
00	
  

04:
00	
  

06:
00	
  

08:
00	
  

10:
00	
  

12:
00	
  

14:
00	
  

16:
00	
  

18:
00	
  

20:
00	
  

22:
00	
  

Accuracy	
  

Time	
  of	
  Day	
  

(c) Accuracy trend under constraint C3

Figure 8: Accuracy trends under different constraints over a day using different strategies
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Figure 9: Message loss rate under con-
straint C2 using different stream rate
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Figure 10: Avg. time used by incremen-
tal adaptation over different ERHs
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Figure 11: Distribution of incremental
adaptation over different ERHs

recomposition take the least and most time to complete, re-
spectively. Therefore, an ERH is ideal for incremental adap-
tation if the distribution of global recomposition can be min-
imised, i.e., it contains sufficient Re relations to enable local
replacement as well as sufficient Rr relations between the
query and the critical node to enable parent replacement.
We test the adaptation time and the distribution of success-
ful incremental adaptations over ERHs with different sizes
under constraint C2. The results are shown in Figure 10
and Figure 11. From the results we can see that in general,
the adaptation time is negatively related to the size of the
ERH and is positively related to the percentage of global
recompositions occurred.

5. RELATED WORKS
QoS-aware adaptive service composition and self-recovery
have been discussed extensively. In [16] a multi-tier rank-
ing system is used to categorise services based on link anal-
ysis over snapshot of the service network. This approach
can select popular services in the network based on dynamic
bindings, however it can only recover from service failures.
Also, only service re-discovery at an atomic level is realised.
In [13] ontology-based solutions are proposed to manage the
service life-cycle in the cloud, including service discovery, ne-
gotiation, composition and monitoring. A fuzzy-logic-based
framework is used to monitor service quality. However, it
does not provide dynamic recovery mechanism. In [19] dif-
ferent service recovery strategies are discussed and a Dy-

namic Local Backup Recovery Algorithm (DLBRA) is pro-
posed for ubiquitous services. DLBRA is quite similar to
the approach in [16], only that the backups are proactively
searched by the service monitor instead of taking snapshots
when the recovery mechanism is triggered (as in [16]), also
the quality analysis is based on a quality utility aggregated
from multiple quality metrics instead of link analysis. We
argue that proactively searching backups will introduce an
overhead, also local recovery has a lower success rate because
the choices are very limited. In [20] reinforcement learning
is used to optimise service compositions, however, like [18]
and other learning based approaches, the learning phase is
needed. In [5] a context-aware adaptive composition over
IoT services is proposed. It adopts an incremental adapta-
tion strategy, which is similar to the idea we propose in this
paper. However, it focuses on adapting contextual changes
rather than quality constraint violations. Moreover, existing
approaches in adaptive service computing rely on impera-
tive workflows, which is inherently different to declarative
event pattern definitions in complex event services. There-
fore, they cannot be applied directly to the ESNs.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we present a service-oriented approach for
quality-aware adaptive event stream federation. We first in-
troduce the concept of Complex Event Services (CES) and
Event Service Networks (ESN). A motivation scenario in ur-
ban traffic monitoring showcases the use of ESN and raises
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the questions related to QoS-aware event service adapta-
tion. Then, we present a middleware (extended ACEIS)
to manage the life-cycle of event services and discuss how
QoS-aware adaptations are realised in the system. Detailed
event service adaptation mechanisms are discussed, includ-
ing three different adaptation strategies: local, global and
incremental adaptation. Finally, we evaluate different adap-
tation strategies in the motivation scenario with both real
and synthesised datasets and analyse the evaluation results.
The results reveal that there is no global optimised strategy
for the event service adaptation and users should choose dif-
ferent strategies based on their requirements as well as the
characteristics of the datasets (i.e., service repositories). In
future work, we plan to use more sophisticated constraint
violation detection mechanisms, e.g., constraint distribution
and negotiation, to expand the search space for the incre-
mental adaptation. This may improve the performance of
the incremental adaptation by increasing the distribution of
parent replacement and reducing the adaptation time. We
also plan to investigate effective methods to reduce the mes-
sage loss caused by the adaptation.
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