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INTRODUCTION

The demand to access large amounts of heterogeneous struckhe demand to access large amounts of heterogeneous struc-
tured data is emerging as a trend for many users and appli-tured data is emerging as a trend for many users and appli-
cations. However, the effort involved in querying heteroge cations on the Web 1]. Google Knowledge Graghis a re-
neous and distributed third-party databases can creat maj cent example of the bene ts of enabling the use of largeescal
barriers for data consumers. At the core of this problem is structured data resources may bring to applications. Addi-
the semantic gaetween the way users express their infor- tionally, during the last years, Linked Data emerged asra sta
mation needs and the representation of the data. This workdard for publishing structured data on the Web, playing a fun
aims to provide a natural language interface and an associ-damental role in enabling the next generation of applicatio
ated semantic index to support an increased level of vocab-driven by rich Web data.

ulary independency for queries over Linked Data/Semantic
Web datasets, usingdastributional-compositional semantics
approach. Distributional semantics focuses on the aufomat
construction of a semantic model based on the statistisal di

tribution of co-occurring words in large-scale texts. The-p

posed query model targets the following features: (i) a-prin
cipled semantic approximation approach with low adaptatio
effort (independent from manually created resources ssch

ontologies, thesauri or dictionaries), (i) compreheasbe-

mantic matching supported by the inclusion of large volumes

of distributional (unstructured) commonsense knowledge i

However, the effort involved in querying heterogeneous and
distributed third-party Linked Data sources on the Web cre-
ates barriers for data consumers. In order to query datasets
users need to discover the datasets of interest, undeitstand
structure and vocabularies used in these datasets, and then
nally formulate the query using the syntax of a structured

g duery language (such as SPARQL or SQL). Ideally users

should be able to express their information needs without be
ing aware of the dataset vocabulary (or 'schema'), delegati
the query formulation process to a query engine.

the semantic appro_ximation process a_md (iii) express_ive na Structured query mechanisms for datasets akopressive
ural language queries. The approach is evaluated using natuqueriesat the expense afisability. the semantic matching
ral language queries on an open domain dataset and achieve@rocess is manually done by data consumers. On the other

avg. recall=0.81 mean avg. precision=0.62andmean re-
ciprocal rank=0.49.
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side of the usability spectrum, information retrieval (I&)-
proaches allow users to search using intuitive keyworedas
interfaces. In this case, the high usability comes at the ex-
pense of query expressivity and effectiveness: traditiona
vector space (VSM) models for IR typically do not deliver
expressive and semantic queries over structured data. At
the core of thisusability-expressivity trade-ofs theseman-
tic/vocabulary gapbetween the way users express their in-
formation needs and the way structured data is represented.
To address the semantic gap it is necessary to provide a se-
mantic model which supports an effective semantic matching
between users' information needs and the data represamtati
Additionally, from an interface perspective, natural laage
interfaces (NLI), i.e. query interfaces where users camesg
their information needs using natural language, can alge su
port users to have more freedom and ef ciency for querying
large and heterogeneous data sour@gs [

http://googleblog.blogspot.ie/2012/05/introducing-knowledge-
graph-things-not.html, 2012.



This paper proposes a natural language interface (NLI)
approach for Linked Data targeting a greater level of
vocabulary-independendivol). To cope with the semantic
matching over greater levels tdxical and abstractionvari-
ations betweemuery and data, a distributional semantic
modelis used. Thalistributional semantic modelomponent

is complemented by eompositional semantic modahich
allows the alignment of the sequence of query terms to diatase
elements, respecting syntactic constraints in the quanés

in the datasets. The compositional model, which is tightly
coupled with the distributional model, allows the de nitiof
expressive query capabilities required for a NLI systeme Th
utility of the approach can be extended to any dataset which
can be transformed into d@ntity-Attribute-ValugEAV) rep-
resentation abstraction.

The contributions of this paper are: (i) a NLI approach for
Linked Data (LD) based on a distributional-compositional
semantic model which supports greater levels of vocabulary
independency, (ii) the implementation of the distribuéibn
compositional model as a semantic inverted index, (iii) the

outline of the paper. The rst step (1) in the proposed ap-
proach is the construction ofdistributional semantic model
based on the extraction of co-occurrence patterns frone larg
corpora, which de nes a distributional semantic vectorcgpa
The distributional semantic vector space uses concept vec-
tors to semantically represent data and queries, by mapping
datasets elements and query terms to concepts in the distri-
butional space. Once the space is built, the RDF graph data
is embedded into the space (step 2), de ning the Space

a structured distributional semantic vector space. Thgnali
ment between structured data and the distributional mddel a
lows the use of thiarge-scale commonsense informatam-
bedded in the distributional model (extracted from text)eo
used in thesemantic matching/approximati@nocess. An in-
troduction to distributional semantics and the constourctf

the Spaceis described in section Space In order to
support high performance search and querying, th&pace

is mapped into an inverted index, which is described in the
sectionQuery Approach

After the data is indexed into the Space it is ready to be

implementation of the proposed system as a research pro-queried. The query processing starts with the analysiseof th

totype and (iv) an extensive evaluation of the proposed ap-
proach.

The Vocabulary Problem for Linked Data
The structural, categorical and lexical elements used én th
representation of a proposition (triple) in a Linked Datase

depends largely on factors such as the set of usage intentgne

for the dataset and the individual perspective of the datase
designer. Figurd depicts an example of thecabulary gap
between a user query and alternative dataset represestatio
for triples providing answers for the query. In (&)nited
States'composes withiPresidents'to form a class, while in
(b) "United Statess an instance associated with the property
“president: The vocabulary information related to the query
term “daughter'is given by the propertychild' in (a) and
“fatherOf' in (b). The semantic gap introduced by possible
conceptualizations of the reality into a database de nes th
vocabulary problem for databases

The vocabulary problem for databases is a fundamental and

practical concern for many users and information systems, a
database schemas grow in size and semantic heterogefjeity [
and the time to build structured queries grows in proportion

to the schema size. Addressing the vocabulary problem for
databases, however, depends on the de nition of a compre-
hensive semantic matching approach between user informa

tion needs and structured data. However, the construcfion o
comprehensive semantic matching solutions is largelymepe
dent on the availability of large-scale commonsense knowl-
edge bases.

Proposed Solution
This work introduces a distributional-compositional satia

natural language query, from which a setqpfery features
and asemi-structured query representatignextracted (step

3). The query analysis is described in secti@uery Anal-
ysis After the query is analyzed, query processing plan

is generated, which maps the set of features and the semi-
structured query into a set of search, navigation and toansf
mationoperations(step 5) over the data graph embedded in
Space These operations de ne the semantic match-
ing between the query and the data, using the distributional
semantic information. This corresponds to tdoenpositional
model associated to the distributional model. The query pro
cessing approach and the operations over theSpaceare
described in th&uery Processingection. The approach is
evaluated under a large open domain dataset i taduation
section, followed by the analysis of related work and conclu
sions.

DISTRIBUTIONAL SEMANTIC MODEL

Distributional Semantics

Distributional semanticss de ned upon the assumption that
the context surrounding a given word in a text provides im-
portant information about its meanin§]] Distributional se-
mantics focuses on thautomaticconstruction of a seman-
tic model based on the statistical distribution of word co-
occurrence in texts, allowing the creation of an assogiatio

and quantitative model which captures the degree of semanti
relatedness between words. Distributional semantic nsodel
are represented by Vector Space Models (VSMs), where the
meaning of a word is represented by a weighted vector which
captures the associational pattern with other words inde c
pora. In this work aistributional semantic modé$ used as

a core element to address the query-dataset vocabulary gap.

model which is used as the central element for the construc- -Space

tion of a vocabulary-independent Natural Language Interfa
(NLI) for Linked Data. Figurel depicts the high-level work-
ow behind the proposed NLI approach which maps to the

The -Space 8] is a distributional structured vector space
modelwhich allows the semantic (concept-based) indexing of
labelled graphs. The distributional model under the scdpe o



™ A Query: Who is the daughter of Bill Clinton Distributional Model (T-Space) Linked Data
u‘ married to ?

Analyzed Query: Bill Clinton - daughter - married
(instance) - predicate - predicate

:Marc_Mezvinsky

:spouse
:Chelsea_Clinton @

@ @ :Bill_Clinton <):' ~ SO
Semantic Indexing // ~
~
Query Plén ,’ PresujentsOfTheUnltedStates AN
(Search operations) \ TF/DE S
ESA @ Possible Data Representations
ox! e
R
Results @ ﬂ‘ Distributional

Chelsea Clinton’s spouse is Corpus analysis

Marc Mezvinsky

Bill Clinton’s daughter is
Chelsea Clinton

presidentOf :Chelsea_Clinton

:husband

term B :Bill Clinton

distribution
:Marc Mezvinsky

Figure 1. Example of the vocabulary gap between query and datrepresentation.

this work is de ned by the Explicit Semantic AnalysiE$A) Thus, the set of contexts where a term occurs de ne the con-
[2] model. ESA de nes aconcept coordinate basighere the cept vectors associated with the term, which is a represen-
RDF(S) graph labels can be resolved into a high-dimensionaltation of its meaning based on the reference corpora. Each

concept space. FigurH2) depicts the  Spaceembed- concept vector is weighted according to the term distrdouti

ding an example RDF graph containing triples with instances in the corpus, allowing the concept vector space coordinate
classes and properties. By its construction,E&A coordi- basis to be de ned in terms of a term vector space coordinate
nate basis can be transformed to®R=IDF term coordi- basis, where each dimension maps to a word in the corpus.
nate basigFigurel) [3, 2]. Essentially, the Spaceallows In order to obtain an approach that supports an approxima-

the representation of labelled graph data such as RDF withtive semantic model, the relational (labelled graph) maslel

a distributional semantic grounding, using the background linked to the distributional model, so that the distribugd
commonsense knowledge present in the reference corpora tanodel could enrich and ground the semantics of the reldtiona
support semantic search operations. model.

The rst step is to build the -Space concept spatased on
Construction the reference corpus. The second step is to translate the ele
The graph data model has a signature ( P;E) formed ments of the signature= ( P; E) of the graptG to elements
by a pair of nite set of symbols used to represent predicates V SP't . The vector representation Bf, under thev SP'st
p 2 P and instances 2 E in the graphG. It can be assumed is de ned by:
that both elements iR andE are represented using mean-
ingful descriptors (symbols present in the reference crpu ! . X b
In this context, a predicate represent both propertiesafiin Pysost =Tp :p = vi ¢i,foreachp2 Pg (1)
predicates) and classes (unary predicates). Each element i i=1
the signature ¢ is represented as a vector in a distributional

; : Term .
space. The semantics &f is de ned by the vectors in the and the vector representation®fin V'S is de ned by:

distributional space. | | X

: _ ! _ Bl .
The  Spacecoordinate systeris built from a text collec- Evsen =fele= W ki, foreache2 Eg (2)
tionC. The seffTerm = fky; ; ki g, of aII'terms av|ai|ab|e i=1
in C is used to de ne the basiBermpase = f k1; kg wherew? andvP are de ned by a co-occurrence weighting
of unit vectors that spans therm vector spac¥ STe™ . schema.
The set of all distributional concept€oncept = The third step refers to the translation of triple from G into
fci;  ;cgare extracted from a reference corpus and each he Space As each predicate and instance term has a

concept; 2 Conceptis mapped to an identi er whichrepre-  yector representation, we can de ne the vector representat
sents the co-occurrence pattern in the Corpus. Each idanti Of a trip|er in the Concept vector Space by the fo”owing def_

¢ de nes a set which tracks the context where a tégnoc- inition.
Furred Th|s set is used to construct the b&simiceptase =
c1; , ctgofvectors that spans tibstributional vector %for example, the term-frequency/inverse document fre-

spaceV Spist quency(TF/IDF).



De nition (Relational Vector): Let| p ,! e and e, be the
vector representations, respectively,pog; andezl A t[iple
vector rqpresgntgtion |(denoted by isde nedby:(p “e;)
ifp(er);(p “ei;e2  p)if pler;er).

The vocabulary-independent query model usesdik&ibu-
tional semantic relatedness searels a native (and primi-
tive) semantic approximation/equivalence operation betw
query terms and data elements in the Space This prim-
itive operation is coordinated with data navigation andgra
formation steps over the data graph, which de nes the com-
positional model, i.e. progressively matches query stinest

to dataset structures.

VOCABULARY-INDEPENDENT QUERY APPROACH

Outline

To facilitate the understanding of the principles behine th
query approach we start with the description of the query
analysis and processing for the query example and then we
follow to the description of the generalised approach.

QUERY FOCUS ANSWER TYPE

i (INSTANCE) —> (PREDICATE) —> (PREDICATE)—> (PERSON) |

Query
Features:

1
PODS: Bill Clinton |—)| daughter |—)| married to | 6. semantic relatedness
| *

‘ 5. navigation

. /
:Chelsea_CIinto*%:l :MarkiMezvinskyl

sem_rel(married to, spouse)=0.062

4.semantic

1. pivot
relatedness

determination

2.semantic
relatedness

3. navigation

— child
:Bill_Clinton &=

Linked Data:

* \ religion

:almaMater

sem_rel(daughter child)=0.054
sem_rel(daughter,religion)=0.004

sem_rel(daughter,alma mater)=0.001

Figure 2. Query processing steps for the query example.

to dbprop:spouseand the answer to the query is found: the

For the example querywho is the daughter of Bill Clinton
married to?', the query analysis starts with tpart-of-speech
(POS) tagging of the natural language query terms and by
determining thelependency structurd the query. The query
analysis consists in transforming the natural languageyque
into apartial ordered dependency structueODS), a triple-

like representation of the query associated with a sqtiefy
featureg(Figure?2).

entity dbpedia:Mark_MezvinskiFigure 2).

Semantic Matching
The query processing approach has the objective of provid-
ing a mappingm(Q; G) between the query ternisp:::g,i

With the PODS and the query features, the query process-8d 2 Q andP;E elements in the grapB. This mapping is

ing approach starts by resolving there (pivot) entityin the
query (in this cas8ill Clinton) to the corresponding database
entity (dbpedia: Bill_Clinton (Figure 2). The pivot determi-
nation is dependent on heuristics which take into accoumnt t
query features and targets the element whidkss vague or

named arinterpretationof the queryQ under the grapit.

In the interpretation process it is central to minimize time i
pact ofambiguity vaguenessandsynonymywhich are cen-
h tral phenomena for the vocabulary problem for databases.

RDF(S) de nes a semantic representation model which typi-

ambiguousand consequently presents a higher probability of cally maps speci ¢ lexical categories to speci ¢ types of en

a correct matching (covered in tiguery Analysisection).

After Bill Clinton is resolved, the subspace of the entibpe-
dia:Bill_Clinton is selected, constraining the search space to
elements associated witlbpedia:Bill_Clinton and the next
term in the PODS @laughter) is used as a query term for a
distributional semantic search over the neighboring efeéme
of dbpedia:Bill_Clinton The distributional semantic search
is equivalent to computing thdistributional semantic relat-
ednesshetween the query termdaughter) and all predi-
cates associated wittbpedia:Bill_Clinton(dbprop:religion
dbprop:child dbprop:almaMatey etc). The semantic equiv-
alence betweendaughter' and dbprop:child is determined
by using the corpus-based distributional commonsense in-
formation (the wordsdaughter'andchild' occur in similar
contexts). Athreshold Iters out unrelated relations. After
the alignment betweeldaughter'anddbprop:childis done,
the query processingavigates tahe entity associated with
thedbprop:childrelation @bpedia:Chelsea_Clintgrand the
next query term’(narried’) is taken. At this point the entity
dbpedia:Chelsea_Clintode nes the search subspace (rela-
tions associated witdbpedia:Chelsea_Clintgrand the se-
mantic search for predicates which are semantically relate
to “married' is done. The query ternmarried' is aligned

tities. Below we examine the relation between lexical cate-
gories and the representation model of RDF.

Instance: Instances typically represemtamed entities
such as people, places, organizations, events and are asso-
ciated with proper nouns. Named entities are less bound
to vaguenesand synonymy Compared to other entity
types (property, relationship, class) it also presentsvaio
incidence ofambiguity From a semantic matching per-
spective, instances are less bound to vocabulary variation
(lower vocabulary gap) and as a consequence are more
likely to match using string/term similarity approaches-(u
derVv STerm),

Property, Class: Represent predications, categories, rela-
tions and states. Typically map to nouns, adjectives, verbs
and adverbs. Nouns, adjectives, verbs and adverbs are
more bound to synonymy, vagueness, ambiguity. From a
corpora perspective, predications tend to occurr in a targe
number of contexts. From a semantic matching perspec-
tive, properties and classes are more prone to vocabulary
variation (higher vocabulary gap) and are typically depen-
dent on more sophisticated semantic matching approaches
(distributional search undéf SP'st ).



Query Analisys Thedistributional semantic relatedness meassresed to es-
The query analysis process consists in recognizing ansliclas tablish an approximate semantic equivalence between guery
fying entitiesandoperationsdn the query and also in mapping dataset elements in the context of a query matching step. The

the natural language query intoPDDS (triple-like format) rst element to be resolved in the PODS, callge: seman-
and into a set ofjuery featuregFigure2). The query analy- tic pivot, in general is a term which represents the most spe-
sis operations are: ci c element in the query. The semantic pivot, as the more

constraining element in the query, helps to reduce the kearc

space, since just the elements in the graph associated with
the pivot at a given iteration are candidates for the seman-
tic matching. The query sequence is embedded in the vector
spaceV SUist | allowing its identi cation with the following

Entity detection and classi cation (instances, classes,
complex classes)The pre-processing phase starts by deter-
mining the part-of-speech (POS) of the query tern®OS
tags pattern rulesare used to determine entity candidates'

types: instances classesand properties Examples of the ~ seduence of vectors 9%; q%; ;g% >.

POS tag-based entity detection and classi cation mapping pe nition:  Given a queryq, its instances and predi-
rules are as followsNNP + ! Instance; RB ~ JJ } cates, denoted by th;::; ¢, are ordered in a sequence
NN (S) {IN NNP }* ! Class OR PropertyBE VB <qda; ;o0 > using a heuristic measure of speci city
{IN NN }* I Property; {D+ OR (NN (S )+ AND hspecificty  from the most speci ¢ to the less speci ¢, that
isAfterAP ropertyTerm )} ! Value. is, 8i 2 [0; n]; hspecificity (qo) Nspecificity (Oi0+1)- The

Operation detection: POS tagsand keyword patternsare speci city can be computed by taking into account lexical
used in the detection of operations and associated paramete categories (€.g.fspec(proper_noun) > f spec(noun) >

in the query. While the lexical and structural variation for fspec(adective) > f spec(adverh)) in combination with a
dataset elements is large, the vocabulary for typical detab ~ COrpus-based measure of speci city, in this case inverse do
operations can be enumerated in a knowledge base of lexicalment frequency (IDF) using Wikipedia as a corpus.

expressions of operatio®p. . ] - .
P P Bp In the rstiteration,q% 2 V St | the vegtor representation

Triple-pattern ordering:  Natural language queries are of the pivotgd can be resolved to a vectao. The entity
parsed using @ependency parserThe dependency struc- ey de nes a vector subspace which can be explored by the
tures are reduced to a setprtial ordered dependency struc-  next query term (which spans the relations associated with
tures (PODS)y applying two sets of operations: (i) the re- the entitye;). The second query terf) can be matched
moval of stopwords and their associated dependenciebéii)t with one or more predicates associated veghfor example
re-ordering of the dependencies based on the core entity po{y, consid?ring that thelistributional semantic relatedness
sition in the query (where the core entity becomes the rst measuresr'(qoll', Po) _Where is a semantic relatedness

query term and the topological relations given by the depeni threshold. The entities associated wjith (for examplee; )
dencies are preserved). For the example query the PODS iS¢ 1sed as new semantic pivots.

Bill Clinton - daughter - married to The triple-pattern pro-

cessing rules are described in details4h [ At each iteration of the querying process, a set of semantic
pivots are de ned and are used to navigate to other points
in the vector space. This navigation corresponds to the rec-
onciliation process between the semantic intent de ned by
the query and the semantic intent expressed in the ddtaset
The reconlciliation process can be de nqd as the sequence of

Query classi cation: Classi es the query according to the
following query features (i) queries with instances refer-
ences (i) queries with classes/complex classes referehces
(i) queries with operators referencd#s) queries with con-
straint composition(property composition conjunction & ! I ! I ! I
disjunction (F))peratorgfﬂﬁ)e sgt of fere)ltures représent database Yectors< (@ " p 1).;(q°2 ' pz.); (A% pa) >
primitives in thedata representation levéinstances, proper- 1 ne proposed approximate querying process car also be rep-
ties, classes)pperational level(e.g. aggregation, ordering) | "eSented geometrically as the vecterg o " po).(po

and structural/compositional leve{conjuction, disjunction, ~ €1)::5(Pn 1 * €n) > overthe — Space which geo-
property composition). The query features for the example metrically represents the process of nding the answer @ th
query are shown in Figur2 graph.

Query Processing
- . . After the Query Analysisthe PODS and the query features
De nition (Semantic Relatedness): A semantic related- 5o gont t(c?tthuery P){annerwhich generates(tlhqugry pro-
ness functiorsr : V™' - vs®t 1 [0;1]isdened as  _ocain - - -

1 -~ R T A S B o g plan A query processing plan involves the applica-
s1(p11pz) = cos( ) = 'p1p2Tpujifpaij. A threshold tion of a sequencéopy;::;;opi of search, navigation and

2 [0; 1] could be used to establish the semantic r.elatednesstransformation operations over theSpace. The primitive
between the two vectorsrtpl;pg) > . The experimental operations for th&uery Plannerre:

threshold is based on the semantic differential approach for
ESA proposed in Freitas et ab][

Query Approach over the Space

(i) Search operations:
Consists of keyword and distributional search operatimes o
complex classes are classes which contain more than two words  the graphG.




Instance search{ ST®™ ): Due to its low level of vague-
ness, ambiguity and synonymy and typically large number
of instances, the instance search approach does not use the
distributional semantic model. For a query tegmover

the term spac®& STe™ | theranking functions(q';ij) is

given by a combination of theice coef cientbetween the
returned URI label and the query tesim gice (Q'; ij), the

node cardinality(number of associated propertiex); ).

Class search Y SPst): Differently from instances,
classes are more bound to synonym, vagueness and
ambiguity (larger vocabulary gap), being more sensitive to

Query

(CLASS) —> (OPERATOR)—> (SORT, TOP_MOST)|
Features: ]

Mountain |—>| highest |

3.get
property
superset

PODS:

5. Operator(SORT)

2.Extensional
expansion

1. pivot
determination

4.semantic

relatedness 6. Operator(TOP_MOST)

:typeOf

- -~ :elevation
:Mountain

:Everest |<—> 8848 m

:typeof\ \__, 8611 m

-elevation

Linked Data:

vocabulary variation. The class search operation is de ned Figure 3. Execution of a query processing plan for the query What is
by the computation of the semantic relatedness betweenthe highest mountain ?

the class candida]te query tea and the class entities in
the  Space sr(qC! c).

Property search (V SP*! ): Consists in the search opera-
tion where a set of URIs de ne a set of subspaces associ-
ated with instance . The property candidate query term
g” is used as an input for a distributional semantic search
over the relations associpted with the instance subspace.

The search is de ned byr(qplj p).

(ii) Graph navigation & transformation operations

Graph navigation: Graph navigation elements provide the
core structural compositional operations for the query pro
cessing over instances (i), properties (p), classes (¢)en t
graph. There are three main graph navigation elements:

1. Navigation (Predicate composition): Consists
in a predicate composition that denes a path
query. The predicate composition is determined
for a path of predicates connected through a
common instance. Geometrically, the predicate
composition is de ned by a sequence of transla-
tions in theV SP'st | This operation maps to the
(i po Vo)(Vo P1 Vi):(Vn  Pne1 Vnser)OF
(i po Vo)(vo P vi)ii(ve rdf itype )
graph patterns, whenrg represents a variable.

. Extensional class expansion (instance listing for a
class): Consists in expanding the set of instanges
associated with a clagsthrough therdf:type predi-
cate. This operation mapstotfe rd :type v,)
triple pattern, wherev, de nes a set of instances
associated with the class

of semantic constraints which are matched, but eventually
can return approximate or incomplete results. The search
operations and the constraints application are done in a in-
verted index, aiming at performance and scalability. This
approach can be contrasted with NLI approaches which try
to satisfy all constraints in a single SPARQL query.

Data transformation operations: Consists in the applica-
tion of functionsfor ltering triples or mapping triples to
the real domain.

1. Aggregation operators: Maps a set of triples or en-
tities from Vv SP'St or V ST®™ into the R domain,
based on an enumerable set of functional operators
Op (e.g.count average etc).

. Ordering operators: De nes a sequence for a set of
triples and entities based on an ordering criteais: (
cending descending

. Conditional operators: Filters a set of triples and en-
tities based on &onditional expressioffe.g. >, <,
etc).

. User feedback operators: Filters a set of triples
based on the user input for a set of instances, classes
and properties. This operation aims at allowing users
to cope with possible errors in the term and distribu-
tional search operations over the Space by al-
lowing them to select from a list matching the search
criteria, a set of valid instances, classes and proper-
ties. Theuser feedback dialoge ne just a lItering
function, where users can select from a reduced list of
options (maximum 5 elements) in case there is ambi-
guity in the term/distributional search process.

The query planning algorithnfAlgorithm 1) orchestrates the

. Star-Shaped property compositior€onsists in the
composition of triple patterns in a disjunctiye
Po V) (i1 pr V)_::_ (in pn V)orconjunc-

search& graph navigation & transformatiomperations de-
ned above.

A query plan de nes multiple operations over the index. Fig-
ure2 shows an example of a set of operations for a query with
aninstanceas a pivot entity, while Figur8 shows the execu-
The application of the compositional constraints is done as tion of a query plan for a second example quel¥Ifat is the

a graph navigation over the Space The query pro- highest mountain '}, which is a query with aclassas a pivot
cessing algorithm works as semantic best-efforjuery entity.

system, where the algorithm tries to maximize the amount

tiveform(ip po V)™(i1 pr V)™:M(in pn V).



Algorithm 1 Distributional-compositional query planning al-
gorithm

Q(Vq;Eq;Op) : Vol query graph patterns
G(VG;Eg) : Indexed LD graph
A(Va;Ea;Pa) : answer graph and post-processed answer
i : set of instances URIs
c: set of classes URIs
p : related properties URIs
g: query term
initialize (A)
forall g2 Vg do
if (isCoreEntity (q)) then
i searchlnstances (q)
c searchClasses(Q)
end if
if (isAmbiguous (i;c)) then
i;c  disambiguateP ivotEntity
end if
if (pivotEntiylsClass ) then
i extensionalExpansion (c)
end if
p  searchProperties (i;q)
if (hasOperations (Q)) then
p  searchOperations (i;Op)
end if
if (isAmbiguous (p)) then
p  disambiguateP roperty (p)
triples selectByP ivotAndP roperty (i;p)
end if

(ic)

i;c  navigateT o (triples )

Va Ea triples

Pa applyOperation (triples; Op )
end for

ARCHITECTURE
The high-level work ow and main components for the query
approach are given in Figure In the rst phase query pre-

processing, the natural language query analysis process is

done by thenterpretercomponent. The second phase con-
sists in thequery processing approacihich de nes a se-

quence of search and data transformation operations awer th

RDF graph embedded in theSpace, based on the query plan
which is de ned by the query features. Tiguery Planner
generates the sequence of operations (hery processing

Natural Language Query:
Who is the daughter of Bill
Clinton married to ?

! Indexin
,,,,,, b = 3
| Pre-Processin h I Explicit !
! N ! ] —— Ssemantic |
| Query Dependency || Corpora I Analysis (ESA) !
! Interpreter Parser ! ! !
! t \ ! [ Distributi i lconcept vectors|
! ' e |
user Disambiguation Entity Search }4—‘-» ; i
feedback ! } Index j Indexer |
L 777777777777777777777777 | (T-Space) I !
; ! |
[:Bill Clinton]] - daughter - | o orocessed query - ] SoTTT Tt
married pre-p auery
} Query Processing . search |operations O
Query Querry . Distributional & ! .
Planner Processor 1 Search Datasets " - .

user Disambiguation

feedback |
|

Answer:
Mark Mezvinsky

entity_uri
entlty_terms
entity_stemmed_terms
entity_type
entity_dist (payload)

Triples:
:Bill_Clinton :children :Chelsea_Clinton
:Chelsea_Clinton :spouse :Mark_Mezvinsky

pred_stemmed_terms
pred_dist (payload)

Figure 4. High-level components diagram of the vocabulary-
independent query approach and distributional inverted index struc-
ture.

tor. The distributional ESA concept vector is serializechas
Lucenepayload(byte array). For elements in the entity index,
only classes have a distributional eld. Figudedepicts the
distributional index structure. The index structure alois
natural parallelization: the subspaces de ned by entit&s
serve as partition identi ers. Each entity subspace camlads
partitioned and distributed given that the distributioreter-
ence corpus for each index partition is de ned.

The query processing mechanism is implemented ifTthe

NLI system following the components diagram (Figube
The system is implemented in Java. Téare component
contains the Lucene-based Spaceimplementation which
can be used in other semantic search scenarios, whillthe
component contains the module for analyzing natural lan-
guage queries. ThBS component contains a distributional
semantics infrastructure which implements ESA.

plan) over the data graph on the semantic inverted index. The Figures5 and6 show the query interface for different query

query processing plan is sent to t@eiery Processowhich
initialy executes theearch operationpart of the query plan
over theDistributional Searchcomponent. The query plan
also includes the application of a set gfaph navigation

& transformation operationsvhich are implemented on the
Operatorscomponent. The result of search operations can

types. For the example queries we can observesdmneantic
best-effortcharacteristic of the approach, where other highly
related elements are returned by the distributional magchi
A video of a running prototype can be found onfine

EVALUATION

The QA approach is evaluated under an open domain question
answering over Linked Data scenario, using unconstrained
natural language queries. The query processing approach

be disambiguated using thHgisambiguationcomponent for
pivot entitiesandpredicates

Index & System Implementation

The distributional-compositional index is implementeckiov
theLucene3.5 IR framework. The coradexstructure con-
sists of three indexes: tlgraph indexfor mapping the graph
topology (triples), theentity index(for instances and classes)
and thepredicate/property index While uri stores the el-
ement URI, the eldtermdstemmed termsovers the con-
tents of the parsed and stemmed URIs anddik&ibutional
concept vectoreld indexes the ESA weighted concept vec-

was evaluated using the Question Answering over Linked
Data 2011 test collectin The dataset contains 102 natu-
ral language queries over DBpedia 3.7 and YAGO. The ex-
periments were executed on an intel core i5 computer with
8GB of RAM. Tablel shows the distribution of query fea-
tures in the query set and the dataset statistics. In addiio
the query features, the test collection was analysed itioala

“hitp://bit.ly/1c36LGD
SQALD-1, http:/Avww.sc.cit-ec.uni-bielefeld.de/gald-1
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What s the highest mountain ?

"What is the highest mountain ?"
Answer

Mount Everest elevation 8848.0 ©

ch  Advanced Search  Knowledge Base  Admin

Who is the daughter of Bill Clinton married {  Search

"Who is the daughter of Bill Clinton married to ?"

Answer

Chelsea Clinton spouse Marc Mezvinsky ©

Bill Clinton child Chelsea Clinton ©

Bill Clinton children Chelsea Clinton @
William Jefferson Blythe, Jr. child Bill Clinton ©
Virginia Clinton Kelley child Bill Clinton ©
Virginia Clinton Kelley children Bill Clinton ©

Figure 5. Screenshots of the query interface for queries reirning triples.

B Give me all cities in New Jersey with more than| | Search |

© Data ) Vocabulary ) Text Schemaiiee SPARQL

"Give me all cities in New Jersey with more than 100000 inhabitants ."

Short Answer

e — A Was Margaret Thatcher a chemist ? —
< Jersey City, New Jerse
< Paterson, New Jersey ]
« Atiantic City, New Jersey @ Data O Vocabulary O Text Schemarfree ¢
* Elizabeth, New Jersey
" ot on
Answer 'Was Margaret Thatcher a chemist ?
Newark, New Jersey's population Metro is 18818536 ~Short Answer h

Newark, New Jersey’s population Metro is 18818536 « yes
Newark, New Jersey’s population Total is 277140
Newark, New Jersey’s population Total is 277140
Atlantic City, New Jersey's population Metro is 266268 Margaret Thatcher's description is Prime Minister of the United Kingdom (1979\u201

Answer

Atlantic City, New Jersey's population Metrois 266268 Margaret Thatcher's short Description is Prime Minister of the United Kingdom
Jersey City, New Jersey's population Total is 247597  Margaret Thatcher's type is Women Chemists

Jersey City, New Jersey's population Total is 247597  Margaret Thatcher's subjectis Category Women chemists

Paterson, New Jersey's population Totalis 146199 \argaret Thatcher's type is English Chemists
Margaret Thatcher's subjectis Category English chemists
Margaret Thatcher's profession is Chemist

Margaret Thatcher's profession is Chemist

Figure 6. Screenshots of the query interface for queries reirning post-
processed answers.

to the presence of vocabulary gaps: 41% of the properties
were aligned to different terms expressed in the querias, an
only 17% of the properties had identical lexical expression
For classes 30% had a completely different lexical expres-
sion, while 11% had an identical lexical expression. The tes
collection also expresses a large number of distinct quatsy p

terns. The reader is referred&dor the analysis of the query
patterns.

The average evaluation measures are provided in the Table
2 and5. The rst category of measurements evaluates the

Shitp://bit.ly/1c36LGD

S

Query Features %
Contains instance reference 0.63
Contains class reference 0.12
Contains complex class reference 0.10
Contains operator reference 0.15
Contains constraint composition 0.84
Dataset Feature value

# of predicates 45,767

# of classes 5,556,492
# of classes 9,434,677
dataset size 17GB

Table 1. Statistics for the test collection features.

Measure Type Value
Mean Avg. Precision 0.62
Avg. Recall 0.81
Avg. F-Measure 0.70
Avg. MRR 0.49
% of queries answered 80%

Table 2. Relevance analysis for the QALD 2011 queries.

answer relevance usingean avg. precisignavg. recall
mean reciprocal ranKmrr) and the% of answered queries
(fully and partially (recall> 0.20) answered).80% of the
queries were answered using the distributional-com mositi
index. The0.81 recall conrms the hypothesis that the
distributional-compositional search provides a compnehe
sive semantic matching mechanism. The mean avg. pre-
cision=0.62 and mrr.49 con rms the hypothesis that the
approach provides an effective approximate (semantic best
effort) NLI mechanism, also returning a limited list of unre
lated results. The approach was tested under differentieomb
nations of query patterns (14 based on entity types, 5hdisti
patterns based on lexical categories), showing a medigm-hi
coverage in terms ajuery expressivity.

Table3 shows the comparison between the distributional ap-
proach with three baseline systems. The system outperforms
the existing approaches in recall and % of answered queries,
showing equivalent precision to the best performing system
Analyzing the query features related to the queries with f-
measure< 0.1 it is possible to observe that most of the
queries which were not answered by PowerAqua have aggre-
gations and comparisons (53% - 9 queries) and/or reference t
classes (70% - 12 queries). For Freya, the same pattern could
be observed: queries with aggregations and comparisons ac-
count for 50% (7 queries) of the queries with f-measdre
0.1, while queries with reference to classes account for 64%
(9 queries). Comparatively, the proposed approach is able t
cope with queries containing references to aggregatiods an
comparisons and reference to classes (accounting for 40% on
the queries which were not answered - 2 queries). This dif-
ference can be explained by the construction of a comprehen-
sive query planning algorithm, which provides a mechanism
to detect core query features and map them into a query ex-
ecution plan (which in the context of this work, de nes the
compositional/interpretation model).

The second category of measurements in Taébévaluates
individually the core search components of the approaeh:
stance/class(pivot) searemdpredicate searchQueries with
instances as semantic pivots have higher precision antl reca


http://bit.ly/1c36LGD

System Avg. R MAP % answered
queries

Treo 0.79 0.63 79%

PowerAqua 0.54 0.63 48%

FREyA 0.48 0.52 54%

Unger et al. 0.63 0.61 -

Table 3. Comparison with existing systems for the QALD 2011 & sub-
set.

Measure value
Avg. query execution time (ms) 8,530
Avg. entity search time (ms) 3,495
Avg. predicate search time (ms) 3,223
Avg. number of search operations per query 2.70
Avg. index insert time per triple (ms) 5.35
Avg. index size per triple (bytes) 250
Dataset adaptation effort (minutes) 0.00
Dataset speci ¢ semantic enrichment effort per quer®.00
(secs)

Dataset speci ¢ semantic enrichment effort (minutgs).00

Table 4. Temporal and size measures of the distributional@mpositional
semantic index for the NLI approach.

compared with queries with classes pivots. The individual
performance of these two components minimizes the num-
ber of user-feedbacKor disambiguation over the semantic

inverted index. To support an effective user feedback dia-

log mechanism, the set of returned results should have high

mrr and precision. From a user-interaction perspectivayan
erage mrr higher than 0.33 (where the target result is ranke
third on the list) provides a low impact disambiguation mech
anism. The measured average nx&d for entity search
and0.76for predicate searcltomponents provide a low in-
teraction cost disambiguation mechanism. Both entity and
predicate search have a high recall valted@nd 0.95 re-
spectively). Compared with queries with instances as piv-
ots, queries containing classes as pivots have a signiygant
higher number of entity disambiguation operations. The

RELATED WORK

PowerAqua §] is a question answering (QA) system which
uses PowerMap, a hybrid matching algorithm comprising
terminology-level and structural schema matching tealesq
with the assistance of large scale ontological or lexical re
sources. In addition to the ontology structure, PowerMap
uses WordNet-based similarity approaches as a semantic ap-
proximation strategy. Unger et al1]] presents a QA ap-
proach that relies on a deep linguistic analysis which gener
ates a SPARQL template with slots that are lled with URIs.
In order to Il these slots, potential entities are identl es-

ing string similarity and natural language patterns exé@c
from structured data and text documents. The nal result is
given by a ranking of the remaining query candidates. Ex-
ploring user interaction techniques, FREY3 [s a QA sys-

tem which employs feedback and clari cation dialogs to re-
solve ambiguities and improve the domain lexicon with the
help of users. User feedback is used to enrich the semantic
matching process by allowing manual query-vocabulary map-
pings. Yahya et al.12] describes an approach for translating
natural language questions into structured SPARQL queries
The approach uses an integer linear program to coordinate
the solution of various disambiguation tasks jointly, il

ing the segmentation of questions into phrases, the mapping
of phrases to entities and the construction of SPARQL triple
patterns. In the evaluation of NLI/QA systems, usually the e

dfort involved in the adaptation, in the semantic enrichnant

the dataset and the user interaction in the question-airgyver
process is not measured, bringing additional barriers ¢o th
comparability of the approaches. Additionally, temporad-p
formance measurements are not prioritized. This work ad-
dresses these methodological issues.

Herzig & Tran [LO] propose an approach for searching het-
erogeneous Web datasets using a structured seed query that
matches to the vocabulary of one of the datasets. They intro-

evaluation shows that the semantic matching copes with theduce the entity relevance model which is used for matching

ability to handle lexical variatior(including non-taxonomic
matchings and alignments from different POS). Most queries

and ranking results from external datasets and for perfaymi
data integration on the y. Novacek et al.l3] describe a

do not require user disambiguation. The average number ofdistributional approach applied to Semantic Web Data targe

user disambiguation operations per querQ.is4for entities
and 0.05 for predicates. The system can stand on its own
query processing approach, without the disambiguatioo-fun
tionality. Comparatively, Freya9] has an average of 3.65

ing the description of a tensor-based model for RDF data and
its evaluation on entity consolidation. Freitas et &] gro-
pose an initial analysis of a distributional structured aptit
space (-Space). The work presented Bj had the following

user feedback operations per query, while the proposed apdimitations: (i) low query expressivity - focus on IR instta

proach has 0.20 disambiguation operations per query.

In addition to the evaluation of the results quality, theexd

is evaluated in relation to its temporal performance and siz
(Table4). The 8,530 msaverage query execution time sup-

ports an interactive query mechanism. This average value fo
the query execution time is increased by the in uence of a

of QA, (ii) lack of a more extensive evaluation, (iii) no ex-
tensive scalability/performance evaluation - lack of ausib
implementation of an inverted index.

Comparatively, this work focuses on improving query expres
sivity while keeping query exibility, by introducing a com
positional model based on the analysis of query features. Th

smaI_I number of queries which have large answer sets. Forcompositional model is used to de ne the query planning al-
queries with small answer sets, the average query executiongorithm over the distributional vector space model (which

time is less than 2,000 ms. Additionally, the approach sup-
ports aminimum dataset adaptation effprteither requiring

supports a exible semantic matching mechanism). A com-
parative analysis with existing QA systems over Linked Data

data transformations nor a dataset speci ¢ manual semanticshows the improvement of query expressivity re ected by

enrichment.

the introduction of the compositional model. Another rele-
vant characteristic of the approach (compared to exis§ng a
proaches) is the fact that it addresses each of the struictura



Type Measure all w/ in- | w/classes| w/ com- | w/opera- | w/ const.
queries stances plex tions comp.
classes

Query Processing Mean Avg. Precision 0.62 0.65 0.77 0.46 0.88 0.63
Avg. Recall 0.81 0.93 0.76 0.67 1.00 0.87
MRR 0.49 0.59 0.44 0.19 0.92 0.56
% of queries answered 0.80 0.94 0.80 1.00 0.75 0.82
% of queries fully answered 0.62 0.81 0.40 0.30 0.75 0.70
% of queries partially answered 0.21 0.13 0.40 0.70 0.00 0.12

Entity Search Avg. Entity Precision 0.47 0.49 0.56 0.27 0.36 0.49
Avg. Entity Recall 1.00 1.00 1.00 1.00 1.00 1.00
Entity MRR 0.91 0.96 0.73 0.82 1.00 0.90
% of entity queries fully answered 0.88 1.00 1.00 1.00 0.75 0.88
Avg. # of entity disamb. operations per query 0.14 0.06 0.40 0.30 0.25 0.12

Predicate Search Avg. Predicate Precision 0.45 0.36 0.18 0.52 0.43 0.42
Avg. Predicate Recall 0.95 0.98 0.67 1.00 1.00 0.95
Predicate MRR 0.76 0.81 0.30 0.40 0.71 0.83
% of predicate queries fully answered 0.65 0.90 0.60 0.00 0.75 0.74
Avg. # of predicate disamb. operations per query 0.05 0.06 0.20 0.00 0.25 0.05

Table 5. Evaluation of the query processing mechanism restsl using natural language queries. Measures are collectedrfthe full query mechanism
and its core subcomponents: entity search and predicate se#. The measures are categorized according to the query feares.

query constraints at a time (instead of generating a single REFERENCES

SPARQL query), supporting a semantic approximation pro- 1.

cess. Compared with FREyA, the proposed approach relies
10x less on user feedback, and it can be used without user

feedback. The construction of a semantic inverted index sup 2

ports an interactive query execution time. The use of aidistr
butional semantic model supports a low maintenance seman-
tic matching mechanism, which can be automatically built
from corpora, with higher vocabulary coverage. The inde-
pendency of manually created linguistic resources or rich o
tologies brings the potential for higher transportabititross
other languages or domains.

CONCLUSIONS & FUTURE WORK

This paper proposes and evaluates the suitability of the 5.

Spacedistributional-compositional model applied to the con-
struction of a question answering system for Linked Data.

The contributions of this work are: (i) the de nition of a 6

NLI approach for Linked Data based on a distributional-
compositional VSM, focusing on an additional level of vo-

cabulary independency, (ii) the formulation and implemen- 7

tation of the distributional-compositional model as a sema
tic inverted index, and (iii) an extensive evaluation of the
proposed index and query processing mechanism. The pro-g

posed approach was evaluated using the QALD 2011 dataset -

over DBpedia achieving aavg. recall= 0.81 mean avg.
precision=0.62and mrr=0.49, outperforming existing sys- 4
tems in recall and query coverage. The nal distributional-
compositional semantic model is de ned by a set of opera-
tions over a vector space model which preserves the dataset
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