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ABSTRACT
The demand to access large amounts of heterogeneous struc-
tured data is emerging as a trend for many users and appli-
cations. However, the effort involved in querying heteroge-
neous and distributed third-party databases can create major
barriers for data consumers. At the core of this problem is
the semantic gapbetween the way users express their infor-
mation needs and the representation of the data. This work
aims to provide a natural language interface and an associ-
ated semantic index to support an increased level of vocab-
ulary independency for queries over Linked Data/Semantic
Web datasets, using adistributional-compositional semantics
approach. Distributional semantics focuses on the automatic
construction of a semantic model based on the statistical dis-
tribution of co-occurring words in large-scale texts. The pro-
posed query model targets the following features: (i) a prin-
cipled semantic approximation approach with low adaptation
effort (independent from manually created resources such as
ontologies, thesauri or dictionaries), (ii) comprehensive se-
mantic matching supported by the inclusion of large volumes
of distributional (unstructured) commonsense knowledge into
the semantic approximation process and (iii) expressive nat-
ural language queries. The approach is evaluated using natu-
ral language queries on an open domain dataset and achieved
avg. recall=0.81, mean avg. precision=0.62andmean re-
ciprocal rank=0.49.
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INTRODUCTION
The demand to access large amounts of heterogeneous struc-
tured data is emerging as a trend for many users and appli-
cations on the Web [1]. Google Knowledge Graph1 is a re-
cent example of the bene�ts of enabling the use of large-scale
structured data resources may bring to applications. Addi-
tionally, during the last years, Linked Data emerged as a stan-
dard for publishing structured data on the Web, playing a fun-
damental role in enabling the next generation of applications
driven by rich Web data.

However, the effort involved in querying heterogeneous and
distributed third-party Linked Data sources on the Web cre-
ates barriers for data consumers. In order to query datasets,
users need to discover the datasets of interest, understandthe
structure and vocabularies used in these datasets, and then
�nally formulate the query using the syntax of a structured
query language (such as SPARQL or SQL). Ideally users
should be able to express their information needs without be-
ing aware of the dataset vocabulary (or `schema'), delegating
the query formulation process to a query engine.

Structured query mechanisms for datasets allowexpressive
queriesat the expense ofusability: the semantic matching
process is manually done by data consumers. On the other
side of the usability spectrum, information retrieval (IR)ap-
proaches allow users to search using intuitive keyword-based
interfaces. In this case, the high usability comes at the ex-
pense of query expressivity and effectiveness: traditional
vector space (VSM) models for IR typically do not deliver
expressive and semantic queries over structured data. At
the core of thisusability-expressivity trade-offis theseman-
tic/vocabulary gapbetween the way users express their in-
formation needs and the way structured data is represented.
To address the semantic gap it is necessary to provide a se-
mantic model which supports an effective semantic matching
between users' information needs and the data representation.
Additionally, from an interface perspective, natural language
interfaces (NLI), i.e. query interfaces where users can express
their information needs using natural language, can also sup-
port users to have more freedom and ef�ciency for querying
large and heterogeneous data sources [7].

1http://googleblog.blogspot.ie/2012/05/introducing-knowledge-
graph-things-not.html, 2012.



This paper proposes a natural language interface (NLI)
approach for Linked Data targeting a greater level of
vocabulary-independency(VoI). To cope with the semantic
matching over greater levels oflexical andabstractionvari-
ations betweenquery and data, a distributional semantic
modelis used. Thedistributional semantic modelcomponent
is complemented by acompositional semantic modelwhich
allows the alignment of the sequence of query terms to dataset
elements, respecting syntactic constraints in the queriesand
in the datasets. The compositional model, which is tightly
coupled with the distributional model, allows the de�nition of
expressive query capabilities required for a NLI system. The
utility of the approach can be extended to any dataset which
can be transformed into anEntity-Attribute-Value(EAV) rep-
resentation abstraction.

The contributions of this paper are: (i) a NLI approach for
Linked Data (LD) based on a distributional-compositional
semantic model which supports greater levels of vocabulary
independency, (ii) the implementation of the distributional-
compositional model as a semantic inverted index, (iii) the
implementation of the proposed system as a research pro-
totype and (iv) an extensive evaluation of the proposed ap-
proach.

The Vocabulary Problem for Linked Data
The structural, categorical and lexical elements used in the
representation of a proposition (triple) in a Linked Dataset
depends largely on factors such as the set of usage intents
for the dataset and the individual perspective of the dataset
designer. Figure1 depicts an example of thevocabulary gap
between a user query and alternative dataset representations
for triples providing answers for the query. In (a)`United
States'composes with̀Presidents'to form a class, while in
(b) `United Statesis an instance associated with the property
`president'. The vocabulary information related to the query
term `daughter' is given by the propertỳchild' in (a) and
`fatherOf' in (b). The semantic gap introduced by possible
conceptualizations of the reality into a database de�nes the
vocabulary problem for databases.

The vocabulary problem for databases is a fundamental and
practical concern for many users and information systems, as
database schemas grow in size and semantic heterogeneity [7]
and the time to build structured queries grows in proportion
to the schema size. Addressing the vocabulary problem for
databases, however, depends on the de�nition of a compre-
hensive semantic matching approach between user informa-
tion needs and structured data. However, the construction of
comprehensive semantic matching solutions is largely depen-
dent on the availability of large-scale commonsense knowl-
edge bases.

Proposed Solution
This work introduces a distributional-compositional semantic
model which is used as the central element for the construc-
tion of a vocabulary-independent Natural Language Interface
(NLI) for Linked Data. Figure1 depicts the high-level work-
�ow behind the proposed NLI approach which maps to the

outline of the paper. The �rst step (1) in the proposed ap-
proach is the construction of adistributional semantic model
based on the extraction of co-occurrence patterns from large
corpora, which de�nes a distributional semantic vector space.
The distributional semantic vector space uses concept vec-
tors to semantically represent data and queries, by mapping
datasets elements and query terms to concepts in the distri-
butional space. Once the space is built, the RDF graph data
is embedded into the space (step 2), de�ning the� � Space,
a structured distributional semantic vector space. The align-
ment between structured data and the distributional model al-
lows the use of thelarge-scale commonsense informationem-
bedded in the distributional model (extracted from text) tobe
used in thesemantic matching/approximationprocess. An in-
troduction to distributional semantics and the construction of
the� � Spaceis described in section� � Space. In order to
support high performance search and querying, the� � Space
is mapped into an inverted index, which is described in the
sectionQuery Approach.

After the data is indexed into the� � Space, it is ready to be
queried. The query processing starts with the analysis of the
natural language query, from which a set ofquery features
and asemi-structured query representationis extracted (step
3). The query analysis is described in sectionQuery Anal-
ysis. After the query is analyzed, aquery processing plan
is generated, which maps the set of features and the semi-
structured query into a set of search, navigation and transfor-
mationoperations(step 5) over the data graph embedded in
the� � Space. These operations de�ne the semantic match-
ing between the query and the data, using the distributional
semantic information. This corresponds to thecompositional
model associated to the distributional model. The query pro-
cessing approach and the operations over the� � Spaceare
described in theQuery Processingsection. The approach is
evaluated under a large open domain dataset in theEvaluation
section, followed by the analysis of related work and conclu-
sions.

DISTRIBUTIONAL SEMANTIC MODEL

Distributional Semantics
Distributional semanticsis de�ned upon the assumption that
the context surrounding a given word in a text provides im-
portant information about its meaning [5]. Distributional se-
mantics focuses on theautomaticconstruction of a seman-
tic model based on the statistical distribution of word co-
occurrence in texts, allowing the creation of an associational
and quantitative model which captures the degree of semantic
relatedness between words. Distributional semantic models
are represented by Vector Space Models (VSMs), where the
meaning of a word is represented by a weighted vector which
captures the associational pattern with other words in the cor-
pora. In this work adistributional semantic modelis used as
a core element to address the query-dataset vocabulary gap.

� -Space
The � -Space [3] is a distributional structured vector space
modelwhich allows the semantic (concept-based) indexing of
labelled graphs. The distributional model under the scope of
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Figure 1. Example of the vocabulary gap between query and data representation.

this work is de�ned by the Explicit Semantic Analysis (ESA)
[2] model.ESA de�nes aconcept coordinate basiswhere the
RDF(S) graph labels can be resolved into a high-dimensional
concept space. Figure1(2) depicts the� � Spaceembed-
ding an example RDF graph containing triples with instances,
classes and properties. By its construction, theESA coordi-
nate basis can be transformed to anT F=IDF term coordi-
nate basis(Figure1) [3, 2]. Essentially, the� � Spaceallows
the representation of labelled graph data such as RDF with
a distributional semantic grounding, using the background
commonsense knowledge present in the reference corpora to
support semantic search operations.

Construction
The graph data model has a signature� = ( P; E) formed
by a pair of �nite set of symbols used to represent predicates
p 2 P and instancese 2 E in the graphG. It can be assumed
that both elements inP andE are represented using mean-
ingful descriptors (symbols present in the reference corpus).
In this context, a predicate represent both properties (binary
predicates) and classes (unary predicates). Each element in
the signature� G is represented as a vector in a distributional
space. The semantics ofG is de�ned by the vectors in the
distributional space.

The� � Spacecoordinate systemis built from a text collec-
tion C. The setT erm = f k1; � � � ; kt g, of all terms available
in C is used to de�ne the basisT ermbase = f

�!
k 1; � � � ;

�!
k t g

of unit vectors that spans theterm vector spaceV ST erm .

The set of all distributional conceptsConcept =
f c1; � � � ; ct g are extracted from a reference corpus and each
conceptci 2 Conceptis mapped to an identi�er which repre-
sents the co-occurrence pattern in the corpus. Each identi�er
ci de�nes a set which tracks the context where a termkt oc-
curred. This set is used to construct the basisConceptbase =
f �! c 1; � � � ; �! c t g of vectors that spans thedistributional vector
spaceV SDist .

Thus, the set of contexts where a term occurs de�ne the con-
cept vectors associated with the term, which is a represen-
tation of its meaning based on the reference corpora. Each
concept vector is weighted according to the term distribution
in the corpus, allowing the concept vector space coordinate
basis to be de�ned in terms of a term vector space coordinate
basis, where each dimension maps to a word in the corpus.
In order to obtain an approach that supports an approxima-
tive semantic model, the relational (labelled graph) modelis
linked to the distributional model, so that the distributional
model could enrich and ground the semantics of the relational
model.

The �rst step is to build the� -Space concept spacebased on
the reference corpus. The second step is to translate the ele-
ments of the signature� = ( P; E) of the graphG to elements
V SDist . The vector representation ofP, under theV SDist

is de�ned by:

�!
P V SDist = f �! p : �! p =

tX

i =1

vp
i
�! c i , for eachp 2 Pg (1)

and the vector representation ofE in V ST erm is de�ned by:

�!
E V ST erm = f �! e : �! e =

tX

i =1

we
i
�!
k i , for eache 2 Eg (2)

wherewe
i andvp

i are de�ned by a co-occurrence weighting
scheme2.

The third step refers to the translation of triple from G into
the � � Space. As each predicate and instance term has a
vector representation, we can de�ne the vector representation
of a tripler in the concept vector space by the following def-
inition.

2for example, the term-frequency/inverse document fre-
quency(TF/IDF).



De�nition (Relational Vector): Let �! p , �! e1 and �! e2 be the
vector representations, respectively, ofp; e1 ande2. A triple
vector representation (denoted by�! r ) is de�ned by:(�! p � �! e1 )
if p(e1); (�! p � �! e1 ; �! e2 � �! p ) if p(e1; e2).

The vocabulary-independent query model uses thedistribu-
tional semantic relatedness searchas a native (and primi-
tive) semantic approximation/equivalence operation between
query terms and data elements in the� � Space. This prim-
itive operation is coordinated with data navigation and trans-
formation steps over the data graph, which de�nes the com-
positional model, i.e. progressively matches query structures
to dataset structures.

VOCABULARY-INDEPENDENT QUERY APPROACH

Outline
To facilitate the understanding of the principles behind the
query approach we start with the description of the query
analysis and processing for the query example and then we
follow to the description of the generalised approach.

For the example querỳWho is the daughter of Bill Clinton
married to?', the query analysis starts with thepart-of-speech
(POS) tagging of the natural language query terms and by
determining thedependency structureof the query. The query
analysis consists in transforming the natural language query
into apartial ordered dependency structure(PODS), a triple-
like representation of the query associated with a set ofquery
features(Figure2).

With the PODS and the query features, the query process-
ing approach starts by resolving thecore (pivot) entityin the
query (in this caseBill Clinton) to the corresponding database
entity (dbpedia: Bill_Clinton) (Figure 2). The pivot determi-
nation is dependent on heuristics which take into account the
query features and targets the element which isless vague or
ambiguous, and consequently presents a higher probability of
a correct matching (covered in theQuery Analysissection).

After Bill Clinton is resolved, the subspace of the entitydbpe-
dia:Bill_Clinton is selected, constraining the search space to
elements associated withdbpedia:Bill_Clinton, and the next
term in the PODS (̀daughter') is used as a query term for a
distributional semantic search over the neighboring elements
of dbpedia:Bill_Clinton. The distributional semantic search
is equivalent to computing thedistributional semantic relat-
ednessbetween the query term (`daughter') and all predi-
cates associated withdbpedia:Bill_Clinton(dbprop:religion,
dbprop:child, dbprop:almaMater, etc). The semantic equiv-
alence betweeǹdaughter' and dbprop:child is determined
by using the corpus-based distributional commonsense in-
formation (the words̀daughter'and`child' occur in similar
contexts). Athreshold�lters out unrelated relations. After
the alignment betweeǹdaughter'anddbprop:child is done,
the query processingnavigates tothe entity associated with
thedbprop:childrelation (dbpedia:Chelsea_Clinton) and the
next query term (̀married') is taken. At this point the entity
dbpedia:Chelsea_Clintonde�nes the search subspace (rela-
tions associated withdbpedia:Chelsea_Clinton) and the se-
mantic search for predicates which are semantically related
to `married' is done. The query term̀married' is aligned
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Figure 2. Query processing steps for the query example.

to dbprop:spouseand the answer to the query is found: the
entitydbpedia:Mark_Mezvinsky(Figure 2).

Semantic Matching
The query processing approach has the objective of provid-
ing a mappingm(Q; G) between the query termshq0:::qn i
8qi 2 Q andP; E elements in the graphG. This mapping is
named aninterpretationof the queryQ under the graphG.
In the interpretation process it is central to minimize the im-
pact ofambiguity, vaguenessandsynonymy, which are cen-
tral phenomena for the vocabulary problem for databases.

RDF(S) de�nes a semantic representation model which typi-
cally maps speci�c lexical categories to speci�c types of en-
tities. Below we examine the relation between lexical cate-
gories and the representation model of RDF.

� Instance: Instances typically representnamed entities
such as people, places, organizations, events and are asso-
ciated with proper nouns. Named entities are less bound
to vaguenessand synonymy. Compared to other entity
types (property, relationship, class) it also presents a lower
incidence ofambiguity. From a semantic matching per-
spective, instances are less bound to vocabulary variation
(lower vocabulary gap) and as a consequence are more
likely to match using string/term similarity approaches (un-
derV ST erm ).

� Property, Class: Represent predications, categories, rela-
tions and states. Typically map to nouns, adjectives, verbs
and adverbs. Nouns, adjectives, verbs and adverbs are
more bound to synonymy, vagueness, ambiguity. From a
corpora perspective, predications tend to occurr in a larger
number of contexts. From a semantic matching perspec-
tive, properties and classes are more prone to vocabulary
variation (higher vocabulary gap) and are typically depen-
dent on more sophisticated semantic matching approaches
(distributional search underV SDist ).



Query Analisys
The query analysis process consists in recognizing and classi-
fying entitiesandoperationsin the query and also in mapping
the natural language query into aPODS(triple-like format)
and into a set ofquery features(Figure2). The query analy-
sis operations are:

Entity detection and classi�cation (instances, classes,
complex classes):The pre-processing phase starts by deter-
mining the part-of-speech (POS) of the query terms.POS
tags pattern rulesare used to determine entity candidates'
types: instances, classesand properties. Examples of the
POS tag-based entity detection and classi�cation mapping
rules are as follows:NNP + ! Instance; {RB � JJ � }
NN (S)� { IN NNP }* ! Class OR Property;BE � V B
{ IN NN }* ! Property; {CD+ OR (NN (S� )+ AND
isAf terAP ropertyT erm )} ! Value.

Operation detection: POS tagsand keyword patternsare
used in the detection of operations and associated parameters
in the query. While the lexical and structural variation for
dataset elements is large, the vocabulary for typical database
operations can be enumerated in a knowledge base of lexical
expressions of operationsOp.

Triple-pattern ordering: Natural language queries are
parsed using adependency parser. The dependency struc-
tures are reduced to a set ofpartial ordered dependency struc-
tures (PODS)by applying two sets of operations: (i) the re-
moval of stopwords and their associated dependencies (ii) the
re-ordering of the dependencies based on the core entity po-
sition in the query (where the core entity becomes the �rst
query term and the topological relations given by the depen-
dencies are preserved). For the example query the PODS is
Bill Clinton - daughter - married to. The triple-pattern pro-
cessing rules are described in details in [4].

Query classi�cation: Classi�es the query according to the
following query features: (i) queries with instances refer-
ences, (ii) queries with classes/complex classes references3,
(iii) queries with operators references, (iv) queries with con-
straint composition(property composition, conjunction &
disjunction operators). The set of features represent database
primitives in thedata representation level(instances, proper-
ties, classes),operational level(e.g. aggregation, ordering)
and structural/compositional level(conjuction, disjunction,
property composition). The query features for the example
query are shown in Figure2.

Query Approach over the � � Space
De�nition (Semantic Relatedness): A semantic related-
ness functionsr : V Sdist � V Sdist ! [0; 1] is de�ned as
sr (�!p1 ; �!p2 ) = cos(� ) = �!p1 :�!p2=jj �!p1 jjjj �!p2 jj . A threshold
� 2 [0; 1] could be used to establish the semantic relatedness
between the two vectors:sr (�!p1 ; �!p2 ) > � . The experimental
threshold� is based on the semantic differential approach for
ESA proposed in Freitas et al. [6].

3complex classes are classes which contain more than two words

Thedistributional semantic relatedness measureis used to es-
tablish an approximate semantic equivalence between query-
dataset elements in the context of a query matching step. The
�rst element to be resolved in the PODS, calledthe seman-
tic pivot, in general is a term which represents the most spe-
ci�c element in the query. The semantic pivot, as the more
constraining element in the query, helps to reduce the search
space, since just the elements in the graph associated with
the pivot at a given iteration are candidates for the seman-
tic matching. The query sequence is embedded in the vector
spaceV Sdist , allowing its identi�cation with the following
sequence of vectors<

�!
q0

0;
�!
q0

1; � � � ;
�!
q0

n > .

De�nition: Given a queryq, its instances and predi-
cates, denoted byq0; q1; :::; qn are ordered in a sequence
< q 0

0; q0
1; � � � ; q0

n > using a heuristic measure of speci�city
hspecif icity from the most speci�c to the less speci�c, that
is, 8i 2 [0; n]; hspecif icity (q0

i ) � hspecif icity (q0
i +1 ). The

speci�city can be computed by taking into account lexical
categories (e.g. f spec(proper_noun) > f spec(noun) >
f spec(adjective) > f spec(adverb)) in combination with a
corpus-based measure of speci�city, in this case inverse doc-
ument frequency (IDF) using Wikipedia as a corpus.

In the �rst iteration,
�!
q0

0 2 V Sdist , the vector representation
of the pivotq0

0 can be resolved to a vector�! e 0. The entity
e0 de�nes a vector subspace which can be explored by the
next query term (which spans the relations associated with
the entitye0). The second query termq0

1 can be matched
with one or more predicates associated withe0, for example
p0, considering that thedistributional semantic relatedness
measure, sr (

�!
q0

1; �! p 0) � � , where� is a semantic relatedness
threshold. The entities associated withp0 (for examplee1)
are used as new semantic pivots.

At each iteration of the querying process, a set of semantic
pivots are de�ned and are used to navigate to other points
in the vector space. This navigation corresponds to the rec-
onciliation process between the semantic intent de�ned by
the query and the semantic intent expressed in the datasetG.
The reconciliation process can be de�ned as the sequence of
vectors< (

�!
q0

1 � �! p 1); (
�!
q0

2 � �! p 2); � � � ; (
�!
q0

n � �! p n ) > .
The proposed approximate querying process can also be rep-
resented geometrically as the vectors< (�! e 0 � �! p 0); (�! p 0 �
�! e 1); :::; (�! p n � 1 � �! e n ) > over the� � Space, which geo-
metrically represents the process of �nding the answer in the
graph.

Query Processing
After the Query Analysis, the PODS and the query features
are sent to theQuery Planner, which generates thequery pro-
cessing plan. A query processing plan involves the applica-
tion of a sequencehop0; :::; opn i of search, navigation and
transformation operations over the� -Space. The primitive
operations for theQuery Plannerare:

(i) Search operations:
Consists of keyword and distributional search operations over
the graphG.



� Instance search (V ST erm ): Due to its low level of vague-
ness, ambiguity and synonymy and typically large number
of instances, the instance search approach does not use the
distributional semantic model. For a query termqI over
the term spaceV ST erm , the ranking functions(qI ; i j ) is
given by a combination of thedice coef�cientbetween the
returned URI label and the query termsim dice (qI ; i j ), the
node cardinality(number of associated properties)n(i j ).

� Class search (V SDist ): Differently from instances,
classes are more bound to synonym, vagueness and
ambiguity (larger vocabulary gap), being more sensitive to
vocabulary variation. The class search operation is de�ned
by the computation of the semantic relatedness between
the class candidate query termqC and the class entities in

the� � Space: sr (
�!
qC ; �! c ).

� Property search (V SDist ): Consists in the search opera-
tion where a set of URIs de�ne a set of subspaces associ-
ated with instancesi j . The property candidate query term
qP is used as an input for a distributional semantic search
over the relations associated with the instance subspace.

The search is de�ned bysr (
�!
qP ; �! p ).

(ii) Graph navigation & transformation operations
� Graph navigation: Graph navigation elements provide the

core structural compositional operations for the query pro-
cessing over instances (i), properties (p), classes (c) in the
graph. There are three main graph navigation elements:

1. Navigation (Predicate composition): Consists
in a predicate composition that de�nes a path
query. The predicate composition is determined
for a path of predicates connected through a
common instance. Geometrically, the predicate
composition is de�ned by a sequence of transla-
tions in the V SDist . This operation maps to the
(i � p0 � v0)(v0 � p1 � v1):::(vn � pn +1 � vn +1 ) or
(i � p0 � v0)(v0 � p1 � v1):::(vn � rdf : type � c)
graph patterns, wherevi represents a variable.

2. Extensional class expansion (instance listing for a
class): Consists in expanding the set of instancesi j
associated with a classc through therdf:type predi-
cate. This operation maps to the(c� rdf : type� vn )
triple pattern, wherevn de�nes a set of instances
associated with the classc.

3. Star-Shaped property composition:Consists in the
composition of triple patterns in a disjunctive(i 0 �
p0 � v) _ (i 1 � p1 � v) _ :::_ (i n � pn � v) or conjunc-
tive form(i 0 � p0 � v)^ (i 1 � p1 � v)^ :::^ (i n � pn � v).

The application of the compositional constraints is done as
a graph navigation over the� � Space. The query pro-
cessing algorithm works as asemantic best-effortquery
system, where the algorithm tries to maximize the amount
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:K2:typeOf

...

:elevation

:elevation
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Figure 3. Execution of a query processing plan for the queryẀhat is
the highest mountain ?'

of semantic constraints which are matched, but eventually
can return approximate or incomplete results. The search
operations and the constraints application are done in a in-
verted index, aiming at performance and scalability. This
approach can be contrasted with NLI approaches which try
to satisfy all constraints in a single SPARQL query.

� Data transformation operations: Consists in the applica-
tion of functionsfor �ltering triples or mapping triples to
the real domain.

1. Aggregation operators: Maps a set of triples or en-
tities from V SDist or V ST erm into the R domain,
based on an enumerable set of functional operators
Op (e.g.count, average, etc).

2. Ordering operators: De�nes a sequence for a set of
triples and entities based on an ordering criteria (as-
cending, descending).

3. Conditional operators: Filters a set of triples and en-
tities based on aconditional expression(e.g. > , < ,
etc).

4. User feedback operators: Filters a set of triples
based on the user input for a set of instances, classes
and properties. This operation aims at allowing users
to cope with possible errors in the term and distribu-
tional search operations over the� � Space, by al-
lowing them to select from a list matching the search
criteria, a set of valid instances, classes and proper-
ties. Theuser feedback dialogde�ne just a �ltering
function, where users can select from a reduced list of
options (maximum 5 elements) in case there is ambi-
guity in the term/distributional search process.

Thequery planning algorithm(Algorithm I) orchestrates the
search& graph navigation & transformationoperations de-
�ned above.

A query plan de�nes multiple operations over the index. Fig-
ure2 shows an example of a set of operations for a query with
aninstanceas a pivot entity, while Figure3 shows the execu-
tion of a query plan for a second example query (`What is the
highest mountain ?'), which is a query with aclassas a pivot
entity.



Algorithm 1 Distributional-compositional query planning al-
gorithm

Q(VQ ; E Q ; Op) : VoI query graph patterns
G(VG ; E G ) : Indexed LD graph
A(VA ; E A ; PA ) : answer graph and post-processed answer
i : set of instances URIs
c : set of classes URIs
p : related properties URIs
q : query term
initialize (A)
for all q 2 VQ do

if (isCoreEntity (q)) then
i  searchInstances (q)
c  searchClasses (q)

end if
if ( isAmbiguous (i; c )) then

i; c  disambiguateP ivotEntity (i; c )
end if
if (pivotEntiyIsClass ) then

i  extensionalExpansion (c)
end if
p  searchP roperties (i; q)
if (hasOperations (Q)) then

p  searchOperations (i; Op )
end if
if ( isAmbiguous (p)) then

p  disambiguateP roperty (p)
triples  selectByP ivotAndP roperty (i; p )

end if
i; c  navigateT o (triples )
VA ; E A  triples
PA  applyOperation (triples; Op )

end for

ARCHITECTURE
The high-level work�ow and main components for the query
approach are given in Figure4. In the �rst phase (query pre-
processing), the natural language query analysis process is
done by theInterpretercomponent. The second phase con-
sists in thequery processing approachwhich de�nes a se-
quence of search and data transformation operations over the
RDF graph embedded in the� -Space, based on the query plan
which is de�ned by the query features. TheQuery Planner
generates the sequence of operations (thequery processing
plan) over the data graph on the semantic inverted index. The
query processing plan is sent to theQuery Processorwhich
initialy executes thesearch operationspart of the query plan
over theDistributional Searchcomponent. The query plan
also includes the application of a set ofgraph navigation
& transformation operationswhich are implemented on the
Operatorscomponent. The result of search operations can
be disambiguated using theDisambiguationcomponent for
pivot entitiesandpredicates.

Index & System Implementation
The distributional-compositional index is implemented over
theLucene3.5 IR framework. The coreindexstructure con-
sists of three indexes: thegraph indexfor mapping the graph
topology (triples), theentity index(for instances and classes)
and thepredicate/property index. While uri stores the el-
ement URI, the �eldterms/stemmed termscovers the con-
tents of the parsed and stemmed URIs and thedistributional
concept vector�eld indexes the ESA weighted concept vec-

Natural Language Query:
Who is the daughter of Bill

Clinton married to ?
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Figure 4. High-level components diagram of the vocabulary-
independent query approach and distributional inverted index struc-
ture.

tor. The distributional ESA concept vector is serialized asa
Lucenepayload(byte array). For elements in the entity index,
only classes have a distributional �eld. Figure4 depicts the
distributional index structure. The index structure allows its
natural parallelization: the subspaces de�ned by entitiescan
serve as partition identi�ers. Each entity subspace can also be
partitioned and distributed given that the distributionalrefer-
ence corpus for each index partition is de�ned.

The query processing mechanism is implemented in theTreo
NLI system following the components diagram (Figure4).
The system is implemented in Java. Thecore component
contains the Lucene-based� � Spaceimplementation which
can be used in other semantic search scenarios, while theNLI
component contains the module for analyzing natural lan-
guage queries. TheDS component contains a distributional
semantics infrastructure which implements ESA.

Figures5 and6 show the query interface for different query
types. For the example queries we can observe thesemantic
best-effortcharacteristic of the approach, where other highly
related elements are returned by the distributional matching.
A video of a running prototype can be found online4.

EVALUATION
The QA approach is evaluated under an open domain question
answering over Linked Data scenario, using unconstrained
natural language queries. The query processing approach
was evaluated using the Question Answering over Linked
Data 2011 test collection5. The dataset contains 102 natu-
ral language queries over DBpedia 3.7 and YAGO. The ex-
periments were executed on an intel core i5 computer with
8GB of RAM. Table1 shows the distribution of query fea-
tures in the query set and the dataset statistics. In addition to
the query features, the test collection was analysed in relation
4http://bit.ly/1c36LGD
5QALD-1, http://www.sc.cit-ec.uni-bielefeld.de/qald-1

http://bit.ly/1c36LGD
http://www.sc.cit-ec.uni-bielefeld.de/qald-1
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Figure 5. Screenshots of the query interface for queries returning triples.
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Figure 6. Screenshots of the query interface for queries returning post-
processed answers.

to the presence of vocabulary gaps: 41% of the properties
were aligned to different terms expressed in the queries, and
only 17% of the properties had identical lexical expressions.
For classes 30% had a completely different lexical expres-
sion, while 11% had an identical lexical expression. The test
collection also expresses a large number of distinct query pat-
terns. The reader is referred to6 for the analysis of the query
patterns.

The average evaluation measures are provided in the Tables
2 and 5. The �rst category of measurements evaluates the
6http://bit.ly/1c36LGD

Query Features %
Contains instance reference 0.63
Contains class reference 0.12
Contains complex class reference 0.10
Contains operator reference 0.15
Contains constraint composition 0.84
Dataset Feature value
# of predicates 45,767
# of classes 5,556,492
# of classes 9,434,677
dataset size 17GB

Table 1. Statistics for the test collection features.

Measure Type Value
Mean Avg. Precision 0.62
Avg. Recall 0.81
Avg. F-Measure 0.70
Avg. MRR 0.49
% of queries answered 80%

Table 2. Relevance analysis for the QALD 2011 queries.

answer relevance usingmean avg. precision, avg. recall,
mean reciprocal rank(mrr) and the% of answered queries
(fully and partially (recall> 0.20) answered).80% of the
queries were answered using the distributional-compositional
index. The 0.81 recall con�rms the hypothesis that the
distributional-compositional search provides a comprehen-
sive semantic matching mechanism. The mean avg. pre-
cision=0.62 and mrr=0.49 con�rms the hypothesis that the
approach provides an effective approximate (semantic best-
effort) NLI mechanism, also returning a limited list of unre-
lated results. The approach was tested under different combi-
nations of query patterns (14 based on entity types, 57 distinct
patterns based on lexical categories), showing a medium-high
coverage in terms ofquery expressivity.

Table3 shows the comparison between the distributional ap-
proach with three baseline systems. The system outperforms
the existing approaches in recall and % of answered queries,
showing equivalent precision to the best performing system.
Analyzing the query features related to the queries with f-
measure< 0.1 it is possible to observe that most of the
queries which were not answered by PowerAqua have aggre-
gations and comparisons (53% - 9 queries) and/or reference to
classes (70% - 12 queries). For Freya, the same pattern could
be observed: queries with aggregations and comparisons ac-
count for 50% (7 queries) of the queries with f-measure<
0.1, while queries with reference to classes account for 64%
(9 queries). Comparatively, the proposed approach is able to
cope with queries containing references to aggregations and
comparisons and reference to classes (accounting for 40% on
the queries which were not answered - 2 queries). This dif-
ference can be explained by the construction of a comprehen-
sive query planning algorithm, which provides a mechanism
to detect core query features and map them into a query ex-
ecution plan (which in the context of this work, de�nes the
compositional/interpretation model).

The second category of measurements in Table5 evaluates
individually the core search components of the approach:in-
stance/class(pivot) searchandpredicate search. Queries with
instances as semantic pivots have higher precision and recall

http://bit.ly/1c36LGD


System Avg. R MAP % answered
queries

Treo 0.79 0.63 79%
PowerAqua 0.54 0.63 48%
FREyA 0.48 0.52 54%
Unger et al. 0.63 0.61 -

Table 3. Comparison with existing systems for the QALD 2011 test sub-
set.

Measure value
Avg. query execution time (ms) 8,530
Avg. entity search time (ms) 3,495
Avg. predicate search time (ms) 3,223
Avg. number of search operations per query 2.70
Avg. index insert time per triple (ms) 5.35
Avg. index size per triple (bytes) 250
Dataset adaptation effort (minutes) 0.00
Dataset speci�c semantic enrichment effort per query
(secs)

0.00

Dataset speci�c semantic enrichment effort (minutes)0.00

Table 4. Temporal and size measures of the distributional-compositional
semantic index for the NLI approach.

compared with queries with classes pivots. The individual
performance of these two components minimizes the num-
ber of user-feedbackfor disambiguation over the semantic
inverted index. To support an effective user feedback dia-
log mechanism, the set of returned results should have high
mrr and precision. From a user-interaction perspective, anav-
erage mrr higher than 0.33 (where the target result is ranked
third on the list) provides a low impact disambiguation mech-
anism. The measured average mrr=0.91 for entity search
and0.76for predicate searchcomponents provide a low in-
teraction cost disambiguation mechanism. Both entity and
predicate search have a high recall value (1.0 and 0.95 re-
spectively). Compared with queries with instances as piv-
ots, queries containing classes as pivots have a signi�cantly
higher number of entity disambiguation operations. The
evaluation shows that the semantic matching copes with the
ability to handle lexical variation(including non-taxonomic
matchings and alignments from different POS). Most queries
do not require user disambiguation. The average number of
user disambiguation operations per query is0.14for entities
and 0.05 for predicates. The system can stand on its own
query processing approach, without the disambiguation func-
tionality. Comparatively, Freya [9] has an average of 3.65
user feedback operations per query, while the proposed ap-
proach has 0.20 disambiguation operations per query.

In addition to the evaluation of the results quality, the index
is evaluated in relation to its temporal performance and size
(Table4). The8,530 msaverage query execution time sup-
ports an interactive query mechanism. This average value for
the query execution time is increased by the in�uence of a
small number of queries which have large answer sets. For
queries with small answer sets, the average query execution
time is less than 2,000 ms. Additionally, the approach sup-
ports aminimum dataset adaptation effort, neither requiring
data transformations nor a dataset speci�c manual semantic
enrichment.

RELATED WORK
PowerAqua [8] is a question answering (QA) system which
uses PowerMap, a hybrid matching algorithm comprising
terminology-level and structural schema matching techniques
with the assistance of large scale ontological or lexical re-
sources. In addition to the ontology structure, PowerMap
uses WordNet-based similarity approaches as a semantic ap-
proximation strategy. Unger et al. [11] presents a QA ap-
proach that relies on a deep linguistic analysis which gener-
ates a SPARQL template with slots that are �lled with URIs.
In order to �ll these slots, potential entities are identi�ed us-
ing string similarity and natural language patterns extracted
from structured data and text documents. The �nal result is
given by a ranking of the remaining query candidates. Ex-
ploring user interaction techniques, FREyA [9] is a QA sys-
tem which employs feedback and clari�cation dialogs to re-
solve ambiguities and improve the domain lexicon with the
help of users. User feedback is used to enrich the semantic
matching process by allowing manual query-vocabulary map-
pings. Yahya et al. [12] describes an approach for translating
natural language questions into structured SPARQL queries.
The approach uses an integer linear program to coordinate
the solution of various disambiguation tasks jointly, includ-
ing the segmentation of questions into phrases, the mapping
of phrases to entities and the construction of SPARQL triple
patterns. In the evaluation of NLI/QA systems, usually the ef-
fort involved in the adaptation, in the semantic enrichmentof
the dataset and the user interaction in the question-answering
process is not measured, bringing additional barriers to the
comparability of the approaches. Additionally, temporal per-
formance measurements are not prioritized. This work ad-
dresses these methodological issues.

Herzig & Tran [10] propose an approach for searching het-
erogeneous Web datasets using a structured seed query that
matches to the vocabulary of one of the datasets. They intro-
duce the entity relevance model which is used for matching
and ranking results from external datasets and for performing
data integration on the �y. Novacek et al. [13] describe a
distributional approach applied to Semantic Web Data target-
ing the description of a tensor-based model for RDF data and
its evaluation on entity consolidation. Freitas et al. [3] pro-
pose an initial analysis of a distributional structured semantic
space (� -Space). The work presented in [3] had the following
limitations: (i) low query expressivity - focus on IR instead
of QA, (ii) lack of a more extensive evaluation, (iii) no ex-
tensive scalability/performance evaluation - lack of a robust
implementation of an inverted index.

Comparatively, this work focuses on improving query expres-
sivity while keeping query �exibility, by introducing a com-
positional model based on the analysis of query features. The
compositional model is used to de�ne the query planning al-
gorithm over the distributional vector space model (which
supports a �exible semantic matching mechanism). A com-
parative analysis with existing QA systems over Linked Data
shows the improvement of query expressivity re�ected by
the introduction of the compositional model. Another rele-
vant characteristic of the approach (compared to existing ap-
proaches) is the fact that it addresses each of the structural



Type Measure all
queries

w/ in-
stances

w/ classes w/ com-
plex
classes

w/ opera-
tions

w/ const.
comp.

Query Processing Mean Avg. Precision 0.62 0.65 0.77 0.46 0.88 0.63
Avg. Recall 0.81 0.93 0.76 0.67 1.00 0.87
MRR 0.49 0.59 0.44 0.19 0.92 0.56
% of queries answered 0.80 0.94 0.80 1.00 0.75 0.82
% of queries fully answered 0.62 0.81 0.40 0.30 0.75 0.70
% of queries partially answered 0.21 0.13 0.40 0.70 0.00 0.12

Entity Search Avg. Entity Precision 0.47 0.49 0.56 0.27 0.36 0.49
Avg. Entity Recall 1.00 1.00 1.00 1.00 1.00 1.00
Entity MRR 0.91 0.96 0.73 0.82 1.00 0.90
% of entity queries fully answered 0.88 1.00 1.00 1.00 0.75 0.88
Avg. # of entity disamb. operations per query 0.14 0.06 0.40 0.30 0.25 0.12

Predicate Search Avg. Predicate Precision 0.45 0.36 0.18 0.52 0.43 0.42
Avg. Predicate Recall 0.95 0.98 0.67 1.00 1.00 0.95
Predicate MRR 0.76 0.81 0.30 0.40 0.71 0.83
% of predicate queries fully answered 0.65 0.90 0.60 0.00 0.75 0.74
Avg. # of predicate disamb. operations per query 0.05 0.06 0.20 0.00 0.25 0.05

Table 5. Evaluation of the query processing mechanism results using natural language queries. Measures are collected for the full query mechanism
and its core subcomponents: entity search and predicate search. The measures are categorized according to the query features.

query constraints at a time (instead of generating a single
SPARQL query), supporting a semantic approximation pro-
cess. Compared with FREyA, the proposed approach relies
10x less on user feedback, and it can be used without user
feedback. The construction of a semantic inverted index sup-
ports an interactive query execution time. The use of a distri-
butional semantic model supports a low maintenance seman-
tic matching mechanism, which can be automatically built
from corpora, with higher vocabulary coverage. The inde-
pendency of manually created linguistic resources or rich on-
tologies brings the potential for higher transportabilityacross
other languages or domains.

CONCLUSIONS & FUTURE WORK
This paper proposes and evaluates the suitability of the� �
Spacedistributional-compositional model applied to the con-
struction of a question answering system for Linked Data.
The contributions of this work are: (i) the de�nition of a
NLI approach for Linked Data based on a distributional-
compositional VSM, focusing on an additional level of vo-
cabulary independency, (ii) the formulation and implemen-
tation of the distributional-compositional model as a seman-
tic inverted index, and (iii) an extensive evaluation of the
proposed index and query processing mechanism. The pro-
posed approach was evaluated using the QALD 2011 dataset
over DBpedia achieving anavg. recall= 0.81, mean avg.
precision=0.62and mrr=0.49, outperforming existing sys-
tems in recall and query coverage. The �nal distributional-
compositional semantic model is de�ned by a set of opera-
tions over a vector space model which preserves the dataset
structure at the same time that supports semantically approx-
imate queries. Future work will concentrate on the investi-
gation of the approach under domain speci�c scenarios and
on the veri�cation of the impact of the use of distributional
models with more constraining context windows.
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