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Abstract. Tasks such as question answering and semantic search are dependent

on the ability of querying & reasoning over large-scale commonsense knowledge

bases (KBs). However, dealing with commonsense data demands coping with

problems such as the increase in schema complexity, semantic inconsistency, in-

completeness and scalability. This paper proposes a selective graph navigation

mechanism based on a distributional relational semantic model which can be ap-

plied to querying & reasoning over heterogeneous knowledge bases (KBs). The

approach can be used for approximative reasoning, querying and associational

knowledge discovery. In this paper we focus on commonsense reasoning as the

main motivational scenario for the approach. The approach focuses on addressing

the following problems: (i) providing a semantic selection mechanism for facts

which are relevant and meaningful in a specific reasoning & querying context

and (ii) allowing coping with information incompleteness in large KBs. The ap-

proach is evaluated using ConceptNet as a commonsense KB, and achieved high

selectivity, high scalability and high accuracy in the selection of meaningful nav-

igational paths. Distributional semantics is also used as a principled mechanism

to cope with information incompleteness.

1 Introduction

Building intelligent applications and addressing simple computational semantic tasks

demand coping with large-scale commonsense Knowledge Bases (KBs). Querying and

reasoning (Q&R) over large commonsense KBs are fundamental operations for tasks

such as Question Answering, Semantic Search and Knowledge Discovery. However,

in an open domain scenario, the scale of KBs and the number of direct and indirect

associations between elements in the KB can make Q&R grow unmanageable. To the

complexity of querying and reasoning over such large-scale KBs, it is possible to add

the barriers involved in building KBs with the necessary consistency and completeness

requirements.

With the evolution of open data, better information extraction frameworks and crowd-

sourcing tools, large-scale structured KBs are becoming more available. This data can

be used to provide commonsense knowledge for semantic applications. However, query-

ing and reasoning over this data demands approaches which are able to cope with large-

scale, semantically heterogeneous and incomplete KBs.

As a motivational scenario, suppose we have a KB with the following fact: ‘John

Smith is an engineer’ and suppose the query ‘Does John Smith have a degree?’ is issued
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Fig. 1: (1) Selection of meaningful paths, (2) Coping with information incompleteness.

over the KB. A complete KB would have the rule ‘Every engineer has a degree’, which

would materialize ‘John Smith has a degree’. For large-scale and open domain com-

monsense reasoning scenarios, model completeness and full materialization cannot be

assumed. In this case the information can be embedded in other facts in the KB (Figure

1). The example sequence of relations between engineer and degree defines a path in a

large-scale graph of relations between predicates, which is depicted in Figure 1.

In a large-scale KB, full reasoning can become unfeasible. A commonsense KB

would contain vast amounts of facts and a complete inference over the entire KB would

not scale to its size. Furthermore, while the example path is a meaningful sequence of

associations for answering the example query, there is a large number of paths which

are not meaningful under a specific query context. In Figure 1(1), for example, the rea-

soning path which goes through (1) is not related to the goal of the query (the relation

between engineer and degree) and should be eliminated. Ideally a query and reasoning

mechanism should be able to filter out facts and rules which are unrelated to the Q&R

context. The ability to select the minimum set of facts which should be applied in or-

der to answer a specific user information need is a fundamental element for enabling

reasoning capabilities for large-scale commonsense knowledge bases.

Additionally, since information completeness of the KBs cannot be guaranteed, one

missing fact in the KB would be sufficient to block the reasoning process. In Figure

1(2) the lack of a fact connecting university and college eliminates the possibility of

answering the query. Ideally Q&R mechanisms should be able to cope with some level

of KB incompleteness, approximating and filling the gaps in the KBs.

This work proposes a selective reasoning approach which uses a hybrid distributional-

relational semantic model to address the problems previously described. Distributional

semantic models (DSMs) use statistical co-occurrence patterns, automatically extracted

from large unstructured text corpora, to support the creation of comprehensive quantita-

tive semantic models. In this work, DSMs are used as complementary semantic layer to

the relational model, which supports coping with semantic approximation and incom-

pleteness. The proposed approach focuses on the following contributions:

– provision of a selective Q&R approach using a distributional semantics heuristics,

which reduces the search space for large-scale KBs at the same time it maximizes

paths which are more meaningful for a given reasoning context;



A Distributional Semantics Approach for Selective Reasoning 3

– definition of a Q&R model which copes with the information incompleteness present

at the KB, using the distributional model to support semantic approximations, which

can fill the lack of information in the KB during the reasoning process;

This work is organized as follows: section 2 provides an introduction on distri-

butional semantics; section 3 describes the τ -Space distributional-relational semantic

model which is used for the selection reasoning mechanism; section 4 describes the

selective reasoning mechanism (distributional navigational algorithm); section 5 pro-

vides an evaluation of the approach using Explicit Semantic Analysis (ESA) as a distri-

butional semantic model and ConceptNet [11] as KB; section 6 describes related work

and finally, section 7 provides conclusions and future work.

2 Distributional Semantics

In this work distributional semantics supports the definition of an approximative seman-

tic navigational approach in a knowledge base, where the graph concepts and relations

are mapped to vectors in a distributional vector space.

Distributional semantics is defined upon the assumption that the context surround-

ing a given word in a text provides important information about its meaning [12]. It

focuses on the construction of a semantic model for a word based on the statistical dis-

tribution of co-located words in texts. These semantic models are naturally represented

by Vector Space Models (VSMs), where the meaning of a word can be defined by a

weighted vector, which represents the association pattern of co-occurring words in a

corpus.

The existence of large amounts of unstructured text on the Web brings the potential

to create comprehensive distributional semantic models (DSMs). DSMs can be auto-

matically built from large corpora, not requiring manual intervention on the creation

of the semantic model. Additionally, its natural association with VSMs, which are sup-

ported by dimensional reduction approaches or data structures such as inverted list in-

dexes can provide a scalability benefit for the instantiation of these models.

The computation of semantic relatedness measure between words is one instance

in which the strength of distributional models and methods is empirically supported

([3];[2]). The computation of the semantic relatedness measure is at the center of this

work and it is used as a semantic heuristics to navigate in the KB graph, where the

distributional knowledge extracted from unstructured text is used as a general-purpose

large-scale commonsense KB, which complements the knowledge present at the rela-

tional KB.

3 τ -Space

The τ -Space [1] is a distributional structured vector space model which allows the

representation of the elements of a graph KB under the grounding of a distributional

semantic model. This work improves the formalisation on the definition of the τ -Space.

τ -Space is built from a reference corpus RC = (Term,Context) formed by a set

of terms Term = {k1, · · · , kt} and a set of context windows Context = {c1, · · · , ct}.
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The set Term is used to define the basis Termbasis = {
−→
k 1, · · · ,

−→
k t} of unit vectors

that spans the term vector space V Sterm.

A context window cj is represented in V Sterm as:

−→c j =
t∑

i=1

vi,j
−→
k i (1)

where vi,j is 1 if term ki appears in context window cj and 0 otherwise.

Analogously, the set of context windows Context is used to define the basis Contextbasis =
{−→c 1, · · · ,

−→c t} of vectors that spans the distributional vector space V Sdist. A given

term x is represented in V Sdist as:

−→x =
t∑

j=1

wj
−→c j (2)

such that

wj = tfj × idf =
freqj

count(cj)
× log

N

ncj

(3)

where wj is the product of the normalized term frequency tfj (the ratio between the

frequency of term x in the context window cj and the number of terms inside cj) and

the inverse document frequency idf for the term x (the logarithm of the ratio of the

total number of N context windows in the reference corpus RC and the number ncj of

context containing the term x).

Thus, the set of context windows where a term occurs define the concept vectors

associated with the term, which is a representation of its meaning on the reference

corpus.

4 Embedding the Commonsense KB into the τ -Space

We consider that a commonsense knowledge base KB is formed by a set of concepts

{v1, · · · , vn} and a set of relations {r1, · · · , rm} between these concepts, both rep-

resented as words or short phrases in natural language. Formally, a commonsense

knowledge base KB is defined by a labeled digraph Glabel
KB = (V,R,E), where V =

{v1, · · · , vn} is a set of nodes, R = {r1, · · · , rm} is a set of relations and E is a

set of directed edges (vi, vj) labeled with relation r ∈ R and denoted by (vi, r, vj).
Alternatively, we can simplify the representation of the KB ignoring their relation

labels: Let KB be commonsense knowledge base and Glabel
KB = (V,R,E) be its la-

beled digraph representation. A simplified representation of KB is defined by a di-

graph GKB = (V ′, E′), where V ′ = V and E′ = {(vi, vj) : (vi, r, vj) ∈ E}. Given

the (labeled) graph representation of KB, we have to embed it into the τ -Space. To do

that we have to translate the nodes and edges of the graph representation of KB into

a vector representation in V Sdist. The vector representation of Glabel
KB = (V,R,E) in

V Sdist is
−→
Glabel

KBdist
= (

−→
Vdist,

−→
Rdist,

−→
Edist) such that:
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−→
Vdist = {−→v : −→v =

t∑

i=1

uv
i
−→c i, for each v ∈ V } (4)

−→
Rdist = {−→r : −→r =

t∑

i=1

ur
i
−→c i, for each r ∈ R} (5)

−→
Edist = {(−→r −−→vi ,

−→vj −
−→r ) : for each (vi, r, vj) ∈ E} (6)

uv
i and ur

i are defined by the weighting scheme over the distributional model1.

5 Distributional Navigation Algorithm

Once the KB is embedded into the τ -Space, the next step is to define the navigational

process in this space that corresponds to a selective reasoning process in the KB. The

navigational process is based on the semantic relatedness function defined as: sr :
V Sdist × V Sdist → [0, 1] is defined as:

sr(−→p1,
−→p2) = cos(θ) = −→p1.

−→p2

A threshold η ∈ [0, 1] can be used to establish the desired semantic relatedness between

two vectors: sr(−→p1,
−→p2) > η.

The information provided by the semantic relatedness function sr is used to identify

elements in the KB with a similar meaning from the reference corpus perspective. The

threshold was calculated following the semantic differential approach proposed in [2].

Multiword phrases are handled by calculating the centroid between the concept vectors

defined by each word.

Algorithm 1 is the Distributional Navigation Algorithm (DNA) which is used to

find, given two semantically related terms source and target wrt a threshold η, all

paths from source to target, with length l, formed by concepts semantically related to

target wrt η.

The source term is the first element in all paths (line 1). From the set of paths to be

explored (ExplorePaths), the DNA selects a path (line 5) and expands it with all neigh-

bors of the last term in the selected path that are semantically related wrt threshold η and

that does not appear in that path (line 7-8). The stop condition is sr(target, target) = 1
(line 10-11) or when the maximum path length is reached.

The paths p =< t0, t1, · · · , tl > (where t0 = source and tl = target) found by

DNA are ranked (line 14) according to the following formula:

rank(p) =

l∑

i=0

sr(
−→
ti ,

−−−−→
target) (7)

Algorithm 1 can be modified to use a heuristic that allows to expand only the paths

for which the semantic relatedness between all the nodes in the path and the target term

1 Reflecting the word co-occurrence pattern in the reference corpus
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Algorithm 1 Distributional Navigation Algorithm

INPUT

– threshold: η

– pair of terms (source, target) such that sr(−−−−→source,
−−−−→
target) > η

– path length: l

OUTPUT

RankedPaths: a set of ranked score paths < (t0, · · · , tl), score > such that t0 = source and tl = target

1: t0 ← source
2: Paths← ∅

3: ExplorePaths← [(< t0 >, sr(
−→
t0,
−−−−−→
target))]

4: while ExplorePaths 6= ∅ do

5: remove (< t0, · · · , tk >, sr(
−→
tk,
−−−−→
target)) from ExploredPaths

6: if k < l− 1 then

7: for all (n ∈ neighbors(tk) : sr(−→n ,
−−−−→
target) > η and n /∈ {t0, · · · , tk}) do

8: append (< t0, · · · , tk, n >, sr(−→n ,
−−−−→
target)) to ExplorePaths

9: end for

10: else if k = l− 1 then

11: append (< t0, · · · , tk, target >, 1) to Paths
12: end if

13: end while

14: RankedPaths← sort(Paths)
15: return RankedPaths

increases along the path. The differential in the semantic relatedness for two consecutive

iterations is defined as ∆target(t1, t2) = sr(
−→
t2,

−−−−→
target) − sr(

−→
t1,

−−−−→
target), for terms

t1, t2 and target. This heuristic is implemented by including an extra test in the line 7

condition, i.e., ∆target(tk, n) > 0.

6 Evaluation

6.1 Setup

In order to evaluate the proposed approach, the τ -Space was built using the Explicit

Semantic Analysis (ESA) as the distributional model. ESA is built over Wikipedia using

the Wikipedia articles as context co-occurrence windows and TF/IDF as a weighting

scheme.

ConceptNet[11] was selected as the commonsense knowledge base. ConceptNet is

a semantic network represented as a labeled digraph Glabel
ConceptNet formed by a set of

nodes representing concepts and a set of labeled edges representing relations between

concepts. ConceptNet is built by using a combination of approaches, including open

information extraction tools, crowd-sourced user input and open structured data. Con-

cepts and relations are presented in the form of words or short natural language phrases.

The bulk of the semantic network represents relations between predicate-level words or

expressions. Different word senses are not differentiated. Two types of relations can be

found: (i) recurrent relations based on a lightweight ontology used by ConceptNet (e.g.

partOf ) and (ii) natural language expressions entered by users and open information ex-

traction tools. These characteristics make ConceptNet a heterogeneous commonsense

knowledge base. For the experiment, all concepts and relations that were not in English

terms were removed. The total number of triples used on the evaluation was 4,797,719.
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The distribution of the number of clauses per relation type is as follows: = 1 (45,311),

1 < x < 10 (11,804), 10 ≤ x < 20 (906), 20 ≤ x < 500 (790), ≥ 500 (50).

A test collection consisting of 45 (source, target) word pairs were manually selected

using pairs of words which are semantically related under the context of the Question

Answering over Linked Data challenge (QALD 2011/2012)2. Each pair establishes a

correspondence between question terms and dataset terms (e.g. ‘What is the highest

mountain?’ where highest maps to the elevation predicate in the dataset). 51 pairs were

generated in total.

For each word pair (a, b), the navigational algorithm 1 was used to find all paths

with lengths 2, 3 and 4 above a fix threshold η = 0.05, taking a as source and b as

target and vice-versa, accounting for a total of 102 word pairs. All experimental data is

available online3.

6.2 Reasoning Selectivity

The first set of experiments focuses on the measurement of the selectivity of the ap-

proach, i.e. the ability to select paths which are related and meaningful to the reasoning

context. Table 1 shows the average selectivity, which is defined as the ratio between the

number of paths selected using the reasoning algorithm 1 by the total number of paths

for each path length. The total number of paths was determined by running a depth-first

search (DFS) algorithm.

For the size of ConceptNet, paths with length 2 return an average of 5 paths per word

pair. For this distance most of the returned paths tend to be strongly related to the word

pairs and the selectivity ratio tend to be naturally lower. For paths with length 3 and 4

the algorithm showed a very high selectivity ratio (0.153 and 0.0192 respectively). The

exponential decrease in the selectivity ratio shows the scalability of the algorithm with

regard to selectivity. Table 1 shows the average selectivity for DNA. The variation of

DNA with the ∆ criteria, compared to DNA, provides a further selectivity improvement

(φ = (# of spurious paths returned by DNA / # of spurious paths returned by DNA +

∆)) φ(length2) = 1, φ(length3) = 0.49, φ(length4) = 0.20.

Table 1: Selectivity

Path Length Average Selectivity Agorithm 1 % Pairs of Words Resolved Path Acuracy

2 0,602 0,618 0,958

3 0,153 0,726 0,828

4 0,019 0,794 0,736

6.3 Semantic Relevance

The second set of experiments focuses on the determination of the semantic relevance of

the returned nodes, which measures the expected property of the distributional semantic

2 http://www.sc.cit-ec.uni-bielefeld.de/qald-1
3 http://bit.ly/1p3PmHr
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relatedness measure to serve as a heuristic measure for the selection of meaningful

paths.

A gold standard was generated by two human annotators which determined the set

of paths which are meaningful for the pairs of words using the following criteria: (i) all

entities in the path are highly semantically related to both the source and target nodes

and (ii) the entities are not very specific (unnecessary presence of instances, e.g. new

york) or very generic (e.g. place) for a word-pair context. Only senses related to both

source and target are considered meaningful.

The accuracy of the algorithm for different path lengths can be found in Table 1.

The high accuracy reflects the effectiveness of the distributional semantic relatedness

measure in the selection of meaningful paths. A systematic analysis of the returned

paths shows that the decrease in the accuracy with the increase on path size can be

explained by the higher probability on the inclusion of instances and classes with high

abstraction levels in the paths.

From the paths classified as not related, 47% contained entities which are too spe-

cific, 15.5% too generic and 49.5% were unrelated under the specific reasoning context.

This analysis provides the directions for future improvements of the approach (inclusion

of filters based on specificity levels).

6.4 Addressing information incompleteness

This experiment measures the suitability of the distributional semantic relatedness mea-

sure to cope with KB incompleteness (gaps in the KB). 39 < source, target > entities

which had paths with length 2 were selected from the original test collection. These

pairs were submitted as queries over the ConceptNet KB indexed on the V Sdist and

were ranked by the semantic relatedness measure. This process is different from the

distributional navigational algorithm, which uses the relation constraint in the selection

of the neighbouring entities. The distributional semantic search mechanism is equiva-

lent to the computation of the semantic relatedness between the query (source target)
and all entities (nodes) in the KB. The threshold criteria take the top 36 elements re-

turned.

Two measures were collected. Incompleteness precision measures the quality of the

entities returned by the semantic search over the KB and it is given by incompleteness

precision = # of strongly related entities / # of retrieved entities. The determination

of the strongly related entities was done using the same methodology described in the

classification of the semantic relevance. In the evaluation, results which were not highly

semantically related to both source and target and were too specific or too generic were

considered incorrect results. The avg. incompleteness precision value of 0.568 shows

that the ESA-based distributional semantic search provides a feasible mechanism to

cope with KB incompleteness, suggesting the discovery of highly related entities in the

KB in the reasoning context. There is space for improvement by the specialization of the

distributional model to support better word sense disambiguation and compositionality

mechanisms.

The incompleteness coefficient provides an estimation of the incompleteness of the

KB addressed by the distributional semantics approach and it is determined by incom-

pleteness coefficient = # of retrieved ConceptNet entities with an explicit association / #
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Fig. 2: Contextual (selected) paths between battle and war.

of strongly related retrieved entities. The average incompleteness value of 0.039 gives

an indication of the level of incompleteness that commonsense KBs can have. The avg.

# of strongly related entities returned per query is 19.21.

An example of the set of new entities suggested by the distributional semantic relat-

edness for the pair < mayor, city > are: council, municipality, downtown, ward, in-

cumbent, borough, reelected, metropolitan, city, elect, candidate, politician, demo-

cratic.

The evaluation shows that distributional semantics can provide a principled mecha-

nism to cope with KB incompleteness, returning highly related KB entities (and asso-

ciated facts) which can be used in the reasoning process. The level of incompleteness

of an example commonsense KB was analyzed and found to be high, confirming the

relevance of this problem under the context of reasoning over commonsense KBs.

7 Analysis of the Algorithm Behavior

Figure 2 contains a subset of the paths returned from an execution of the algorithm

for the word pair < battle, war > merged into a graph. Intermediate nodes (words)

and edges (higher level relations) provide a meaningful connection between the source

and target nodes. Each path has an associated score which is the average of the se-

mantic relatedness measures, which can serve as a ranking function to prioritize paths

which are potentially more meaningful for a reasoning context. The output paths can be

interpreted as an abductive process between the two words, providing a semantic justi-

fication under the structure of the relational graph. Table 2 shows examples of paths for

lengths 2, 3 and 4. Nodes are connected through relations which were ommited.

The selectivity provided by the use of the distributional semantic relatedness mea-

sure as a node selection mechanism can be visualized in Figure 3 (A), where the dis-

tribution of the # of occurrences of the semantic relatedness values (y-axis) are shown

in a logarithmic scale. The semantic relatedness values were collected during the nav-

igation process for all comparisons performed during the execution of the experiment.
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Table 2: Examples of semantically related paths returned by the algorithm.

Paths - Length 2 Paths - Length 3 Paths - Length 4

daughter, parent, child club, team, play, football music, song, single, record, album

episode, show, series chancellor, politician, parliament, government soccer, football, ball, major league, league

country, continent, europe spouse, family, wed, married author, write, story, fiction, book

mayor, politician, leader actress, act in play , go on stage, actor artist, create art, work of art, art, paint

video game, computer game, software film, cinema, watch movie, movie place, locality, localize, locate, location

long, measure, length spouse, wife, marriage, husband jew, religion, ethnic group, ethnic, ethnicity

husband, married man, spouse aircraft, fly, airplane, pilot war, gun, rifle, firearm, weapon

artist, draw, paint country, capital, national city, city pilot, fly, airplane, plane, aircraft

city, capital, country chancellor, head of state, chancellor, member, cabinet,

jew, temple, religion prime minister, government prime minister, government

A B

Fig. 3: # of occurrences for pairwise semantic relatedness values, computed by the navigational

algorithm for the test collection (paths of length 2, 3, 4). Semantic relatedness values for nodes

from distances 1, 2, 3 from the source: increasing semantic relatedness to the target.

The graph shows the discriminative efficiency of semantic relatedness, where just a tiny

fraction of the entities in paths of length 2, 3, 4 are selected as semantically related to

the target.

In Figure 3(B) the average increase on the semantic relatedness value as the navi-

gation algorithm approaches the target is another pattern which can be observed. This

smooth increase can be interpreted as an indicator of a meaningful path, where seman-

tic relatedness value can serve as a heuristic to indicate a meaningful approximation

from the target word. This is aligned with the increased selectivity of the ∆ (semantic

relatedness differential) criteria.

In the DNA algorithm, the semantic relatedness was used as a heuristic in a greedy

search. The worst-case time complexity of a DFS is O(bl), where b is the branching

factor and l is the depth limit. In this kind of search, the amount of performance im-

provement depends on the quality of the heuristic. In Table 1 we showed that as the

depth limit increases, the selectivity of DNA ensures that the number of paths does not

increase in the same amount. This indicates that the distributional semantic relatedness

can be an effective heuristic when applied to the selection meaningful paths to be used

in a reasoning process.
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8 Related Work

Speer et al. (2008) introduced AnalogySpace, a hybrid distributional-relational model

over ConceptNet using Latent Semantic Indexing. Cohen et al.(2009) proposes PSI, a

distributional model that encodes predications produced by the SemRep system. The τ -

Space distributional-relational model is similar to AnalogySpace and PSI. Differences

in relation to these works are: (i) the supporting distributional model (τ -Space is based

on Explicit Semantic Analysis), (ii) the use of the reference corpus (the τ -Space distri-

butional model uses an independent large scale text corpora to build the distributional

space, while PSI builds the distributional model based on the indexed triples), (iii) the

application scenario (the τ -Space is evaluated under an open domain scenario while PSI

is evaluated on the biomedical domain ), (iv) the focus on evaluating the selectivity and

ability to cope with incompleteness. Cohen et al.(2012) extends the discussion on the

PSI to search over triple predicate pathways in a database of predications extracted from

the biomedical literature by the SemRep system. Taking the data as a reference corpus,

Novacek et al.(2011) build a distributional model which uses a PMI-based measure over

the triple corpora. The approach was evaluated using biomedical semantic web data.

Freitas et al.(2011) introduces the τ -Space under the context of schema-agnostic

queries over semantic web data. This work expands the discussion on the existing ab-

straction of the τ -Space, defined in [1], introducing the notion of selective reasoning

process over a τ -Space.

Other works have concentrated on the relaxation of constraints for querying large

KBs. SPARQLer (Kochut et al. [10]) is a SPARQL extension which allows query and

retrieval of semantic associations (complex relationships) in RDF. The SPARQLer ap-

proach is based on the concept of path queries where users can specify graph path

patterns, using regular expressions for example. The pattern matching process has been

implemented as a hybrid of a bidirectional breadth-first search (BFS) and a simulation

of a deterministic finite state automaton (DFA) created for a given path expression.

Kiefer et al.(2007) introduce iSPARQL, a similarity join extension to SPARQL, which

uses user-specified similarity functions (Levehnstein, Jaccard and TF/IDF) for poten-

tial assignments during query answering. Kiefer et al.(2007) considers that the choice

of a best performing similarity measure is context and data dependent. Comparatively

the approach described on this work focuses a semantic matching using distributional

knowledge embedded in large scale corpora while iSPARQL focuses on the application

of string similarity and SPARQLer on the manual specification of path patterns.

9 Conclusion

This work introduced a selective reasoning mechanism based on a distributional-relational

semantic model which can be applied to heterogeneous commonsense KBs. The ap-

proach focuses on addressing the following problems: (i) providing a semantic selection

mechanism for facts which are relevant and meaningful in a specific querying and rea-

soning context and (ii) allowing coping with information incompleteness in large KBs.

The approach was evaluated using ConceptNet as a commonsense KB and ESA as the

distributional model and achieved high selectivity, high selectivity scalability and high
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accuracy in the selection of meaningful paths. Distributional semantics was used as a

principled mechanism to cope with information incompleteness. An estimation of in-

formation incompleteness for a real commonsense KB was provided and the suitability

of distributional semantics to cope with it was verified. Future work will concentrate on

improving the accuracy of the proposed approach by refining the distributional semantic

model for the selective reasoning problem.
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