
Parallel, Asynchronous and Decentralised Ant Colony System

Enda Ridge?

?Department of Computer Science
University of York

ERidge@cs.york.ac.uk

Edward Curry†

†Department of Information Technology
National University of Ireland, Galway

EdCurry@acm.org

Daniel Kudenko?

Kudenko@cs.york.ac.uk
Dimitar Kazakov?

Kazakov@cs.york.ac.uk

Abstract

This paper describes a multi-agent system architecture that would permit implementing an established
and successful nature-inspired algorithm, Ant Colony System (ACS), in a parallel, asynchronous and
decentralised environment. We review ACS, highlighting the obstacles to its implementation in this sort
of environment. It is suggested how these obstacles may be overcome using a pheromone infrastructure
and some modifications to the original algorithm. The possibilities opened up by this implementation
are discussed with reference to an elitist ant strategy. Some related exploratory work is reported.

1 Introduction and Motivation
It is often desirable to design large scale distributed
applications in a parallel, asynchronous and decen-
tralised (PAD) fashion. Furthermore, many emerging
and proposed applications such as Grids and Peer-to-
Peer systems will be constrained to operate in such
environments. However, despite several notable suc-
cesses (Brueckner, 2000), designing such systems
still presents formidable challenges.

How do we enable decentralised control? How
do we coordinate large numbers of agents? How do
we communicate efficiently between so many agents?
Natural systems of flocks and swarms provide evi-
dence that these questions can be addressed. How-
ever, with some exceptions, the majority of estab-
lished and successful applications based on nature are
sequential, synchronous and centralised (e.g. the ge-
netic algorithm, ant colony optimisation). Can we
harness the power of these established algorithms in
PAD environments and so help address these chal-
lenges?

This paper proposes an architecture for implement-
ing a well-known and successful nature-inspired al-
gorithm, Ant Colony System (ACS) in a parallel,
asynchronous and decentralized environment.

The next section reviews the ACS algorithm for
completeness. Section 3 describes how to implement
this algorithm in a parallel, asynchronous and decen-
tralised environment. Section 5 reviews related work.
Section 6 concludes with a summary of some ongoing
exploratory research and an outline of future work.

2 ACS Algorithm
The original ACS algorithm was applied to the Trav-
elling Salesperson Problem (TSP). The TSP involves
finding the shortest route between a set of cities such
that no city is visited more than once. The TSP is
often represented as a graph structure (Figure 1).

Figure 1: Illustrative TSP graph (some edges omitted
for clarity). Darker edges illustrate a tour.

The Ant Colony System (ACS) algorithm is sum-
marized in Figure 2. The ‘pheromone’ applied to
edges is an abstraction of the chemical markers used
by real ants. Edges with high pheromone levels are
more attractive to ants. All ants build their tours using
a probabilistic decision rule., The local pheromone
update involves decaying the pheromone level on an
edge traversed by an ant by a small amount. Once all
ants have built a tour, pheromone is deposited along
the best ant’s tour in a global pheromone update. The
whole process then repeats.

174



End While

While (stopping criterion is not yet met)

Initialise pheromone on all edges

Place each ant on a random city such that
no two ants are placed on the same city

For (each ant)
Choose the next city to visit according
to a probabilistic decision rule

End For

For (each ant)

Apply a local pheromone update to the
chosed edge

Compute the length of tour found

If an improved tour was found, update
the record of the best tour and its
associated cost

End For

For (each edge on the best tour found)

Perform a global pheromone update by
depositing pheromone on the edge

End For

Tour
Building
& local
update

Update
best tour

Global
update

Main
Loop

Figure 2: Pseudocode for ACS

2.1 Issues
This paper addresses the two major obstacles to im-
plementing this algorithm in a parallel, asynchronous
and decentralised fashion.

• Firstly, the algorithm is highly synchronous.
Each ant performs its own tour and local
pheromone update in turn 1. The algorithm
waits for all ants to finish this phase before a
global pheromone update is performed. Once
the global pheromone update is complete, all
ants begin the tour building phase again.

• Secondly, the global pheromone update requires
a centralised comparison of all the ant tours to
acquire the global knowledge of the system’s
best tour.

Clearly, a direct implementation of this algorithm
would be expensive and inefficient in a parallel, asyn-
chronous and decentralised environment. The next
section proposes how these obstacles can be over-
come.

1 We have seen conflicting pseudocodes in the literature. Some
ACS implementations construct solutions in parallel and not one
after the other as seen here. We are currently investigating whether
these differences have an effect on performance.

3 Parallel, Asynchronous, De-
centralised ACS

We propose a Multi-Agent System (MAS) platform
as the basic framework on which the algorithm should
be implemented. Common MAS platforms (Bel-
lifemine et al., 2001) provide a convenient means of
distributing computation over machines while coor-
dinating with asynchronous messaging.

3.1 Pheromone Infrastructure for ACS
Brueckner first introduced the concept of a
pheromone infrastructure in the context of man-
ufacturing control (Brueckner, 2000). Briefly, this
approach involves representing the environment by a
topology of Place agents. These Place agents manage
4 pheromone functions: aggregation, evaporation,
propagation and sensing (Parunak et al., 2004). Such
an infrastructure can be used to methodically move
the ACO algorithm into a PAD environment (Ridge
et al., 2005).

Each city in the TSP (Figure 1) is represented by
a Place agent. Each ant from ACO becomes a Solu-
tion agent that interacts with this pheromone infras-
tructure. Figure 3 is a schematic of our architecture
overlaying the previous TSP graph of Figure 1.

MAS Platform B

MAS Platform C

MAS Platform A

DF

DF

DF

Place agent
other Place
agent IDs

pheromones

deposited
tours

Solution
agent

Current tour

Better tours
encountered

Own best tour

Figure 3: Architecture showing 3 MAS platforms.
Nodes in the previous TSP graph are now Place
agents distributed on the platforms. Some platforms
are also hosting Solution agents.

3.2 Agent Interactions
In this scenario, all Place agents register with one
another using a service description containing their
city’s coordinates. Place agents can then calculate the
distance to any other Place agent. Place agents main-
tain a record of the pheromone levels on each link
connecting to other Place agents.

175



The Solution agent lifecycle consists of the fol-
lowing interactions with the pheromone infrastruc-
ture (Figure 4).

1. A Solution agent ‘arrives’ at a given Place agent
with an INFORM message containing details of
where the Solution agent has come from.

2. The Place agent performs a local pheromone de-
cay on the relevant link.

3. The Place agent responds with (1) a list of
other Place agent IDs (acquired from the Place
agent registrations), (2) the calculated cost to
each of the other Place agents and (3) the lat-
est pheromone level on the links to each of the
other Place agents.

4. The Solution agent uses this information to de-
cide which Place agent to visit next.

5. The Solution agent informs the Place agent of
its decision to move to a given destination Place
agent.

6. The Place agent updates its pheromone value for
that link using the equivalent of the algorithm’s
local pheromone update.

7. Life cycle returns to step 1, with the Solution
agent arriving at the destination Place agent

Solution Agent
(Ant)

Place Agent
(Node)

INFORM

Where from
Best tour cost

local pheromone
decay on r elevant
edge

Calculate costs
to other Place
agents

Update stored
best tour cost

INFORM

List of Place agents
Cost to each Place agent
Pheromone to each
Best stored tour cost

INFORM

Where going next

Local pheromone
decay

Decide next
city to visit

Update best
tour sampled

1

2

3

4

5

6

Figure 4: Solution agent interactions

3.3 Global Pheromone Update
Global pheromone updates are performed by Solu-
tion agents as follows. When a solution agent moves
between Place agents (Step 4), it keeps track of the
cost associated with that move and the Place agents
involved in that move. Once it has visited all Place
agents, it has a total cost for the tour it has com-
pleted. The Solution agent can then deposit the as-
sociated amount of pheromone with the Place agents
and the Place agents can adjust their pheromone lev-
els accordingly.

Thus far, we have described the mechanisms and
interactions that permit a direct implementation of
ACS on a pheromone infrastructure. Recall the two
main issues identified previously: that of the syn-
chronous tour building and global update phases and
that of a global update that depends on the centralised
global information of the best tour produced. We now
address these issues with suggested modifications to
the architecture and algorithm.

3.4 Modifications
Let each Place agent be capable of storing a de-
scription of a tour and that tour’s cost. When So-
lution agents ‘move’ between Place agents (Steps 1
to 3), they deposit with the destination Place agent
the cost of the best tour the Solution agent has ever
performed. If the Place agent’s current stored cost is
worse (higher cost) than the deposited cost, the Place
agent overwrites its stored cost. The Place agent in-
forms the Solution agent of its stored cost. In this
way, a measure of the globally best tour is distributed
around the pheromone infrastructure of Place agents.
There is no longer a centralised comparison requir-
ing the global knowledge of all tours. Triggering a
global update is a small addition to this procedure.
When a Solution agent completes its tour, it checks
to see what the lowest tour cost encountered was. If
the Solution agent’s best ever tour cost is less than the
lowest tour encountered in the environment, the Solu-
tion agent knows its has the best tour. That Solution
agent then performs a global update.

3.5 Further Possibilities
When we relax the constraint of remaining as true
as possible to the original algorithm, our idea of de-
positing tour information in the environment intro-
duces many possibilities. The ‘Elitist’ ant strategy
has been found to improve Ant System, the precur-
sor to ACS. This strategy permits e elitist ants to per-
form a global update on the best tour found so far. In

176



our framework, Solution agents can count the number
of better tours encountered in the environment and
perform a global update if they are within the top t
tours encountered. Alternatively, they could track the
percentage difference between their own tour and the
best tour encountered and perform a global update ac-
cordingly.

4 Preliminary Results
Currently, we are testing the effect of asynchronicity,
parallelism and concurrency on the performance of
the original Ant Colony System algorithm. There is
an inherent bias in its standard implementation (Fig-
ure 2) in that ants build full tours one at a time and
this process order is repeated for the lifetime of the
algorithm. For the implementation investigated with
this research, we should like to rule out that asyn-
chronous and parallel tour building have any effect on
algorithm performance. We should not assume this
is the case. Recall that stigmergic mechanisms such
as pheromones rely on sensing signals previously de-
posited in the environment.

In our experiments, we tested two independent
variables—the process order used by ants when build-
ing tours and the number of steps towards a full tour
during an ant’s turn. We used two levels of process
order—fixed and random. We also used two levels of
the process size—an ant solves the whole problem on
its turn or an ant makes one step towards solving the
problem on its turn. The accuracy, speed and reliabil-
ity of the algorithm were measured. We found no sta-
tistically significant difference in ACS’s performance
between all combinations of all levels of the indepen-
dent variables. We are now performing similar ex-
periments on the effect of the number of concurrently
active ants on the original algorithm’s performance.

5 Related Work
Randall and Lewis (Randall and Lewis, 2002) applied
a parallelisation strategy to 8 TSPLIB problems rang-
ing in size from 24 to 657 cities. Their results showed
an improvement in speedup and efficiency of solution
for problem sizes greater than 200 cities. However,
their scheme had a high communication cost.

Stützle has experimented with parallel independent
runs of Max-Min Ant System on 7 instances from
TSPLIB ranging in size from 198 to 1291 cities (Stut-
zle, 1998). These experiments showed performance
improvements over a single sequential run. Both
Stützle’s and Randall and Lewis’ experiments were

in the vein of a traditional parallel computing mas-
ter/slave approach as opposed to the completely de-
centralised MAS approach described by this paper.
The reader is referred to the literature (Janson et al.,
2005) for a comprehensive overview of approaches to
parallelisation of ACO.

6 Future Work
Our immediate future work will involve building and
testing the architecture and ACS implementation de-
scribed in this paper. We would also like to consider
other ant colony variants such as Max-Min Ant Sys-
tem and other nature-inspired approaches such as Par-
ticle Swarm Optimisation.

References
F. Bellifemine, A. Poggi, and G. Rimassa. JADE: a

FIPA2000 compliant agent development environ-
ment. In Proceedings of the Fifth International
Conference on Autonomous Agents, pages 216–
217. 2001.

S. Brueckner. Return from the Ant: Synthetic Ecosys-
tems for Manufacturing Control. Phd, Humboldt
University, 2000.

S. Janson, D. Merkle, and M. Middendorf. Parallel
Ant Colony Algorithms. In Parallel Metaheuris-
tics. Wiley, 2005.

H. V. D. Parunak, P. Weinstein, P. Chiusano, and
S. Brueckner. Agents Swarming in Semantic
Spaces to Corroborate Hypotheses. In Proceedings
of the Third International Joint Conference on Au-
tonomous Agents and Multi-Agent Systems, pages
1488–1489. 2004.

M. Randall and A. Lewis. A Parallel Implementa-
tion of Ant Colony Optimization. Journal of Paral-
lel and Distributed Computing, 62(9):1421–1432,
2002.

E. Ridge, D. Kudenko, D. Kazakov, and E. Curry.
Moving Nature-Inspired Algorithms to Parallel,
Asynchronous and Decentralised Environments.
In Self-Organization and Autonomic Informatics,
pages 35–49. IOS Press, 2005.

T. Stutzle. Parallelization Strategies for Ant Colony
Optimization. In Proceedings of the Fifth Inter-
national Conference on Parallel Problem Solving
from Nature, volume 1498 of Lecture Notes in
Computer Science. 1998.

177




