
Book Title
Book Editors
IOS Press, 2003

1

Moving Nature-Inspired Algorithms to
Parallel, Asynchronous and Decentralised

Environments

Enda Ridge a,1, Daniel Kudenko a , Dimitar Kazakov a and Edward Curry b

a The Department of Computer Science, The University of York, U.K.
b The Department of Information Technology, The National University of Ireland,

Galway

Abstract. This paper motivates research into implementing nature-inspired algo-
rithms in decentralised, asynchronous and parallel environments. These character-
istics typify environments such as Peer-To-Peer systems, the Grid and autonomic
computing which demand robustness, decentralisation, parallelism, asynchronicity
and self-organisation. Nature-inspired systems promise these properties. However,
current implementations of nature-inspired systems are only loosely based on their
natural counterparts. They are generally implemented as synchronous, sequential,
centralised algorithms that loop through passive data structures. For their successes
to be relevant to the aforementioned new computing environments, variants of these
algorithms must work in truely decentralised, parallel and asynchronous Multi-
Agent System (MAS) environments. A general methodology is presented for engi-
neering the transfer of nature-inspired algorithms to such a MAS framework. The
concept of pheromone infrastructures is reviewed in light of emerging standards
for agent platform architecture and interoperability. These ideas are illustrated us-
ing a particularly successful nature-inspired algorithm, Ant Colony System for the
Travelling Salesman Problem.

Keywords. Ant Colony Algorithms, Ant Colony System, decentralised, parallel,
asynchronous, Multi-Agent System, pheromone infrastructures

1. Introduction and Motivation

Nature-inspired algorithms such as genetic algorithms [1], particle swarm optimisation
[2] and ant colony algorithms [3] have achieved remarkable successes. Indeed, they are
the state-of-the-art solution technique for some problems. The algorithms share the char-
acteristic of being loosely based on a natural metaphor such as evolution’s search through
the vast space of potential organisms, the movement of flocks of birds through a 3D space
or the self-reinforcing chemical trails laid by ants while searching for a route through a
2D space.

The natural systems on which these algorithms are based possess many desirable
properties that we would like to transfer to our computer systems.

1Correspondence to: Enda Ridge, The Department of Computer Science, The University of York,
Heslington, York YO10 5DD, UK. Tel.: +44 1904 43 2722; Fax: +44 1904 43 2767; E-mail:
ERidge@cs.york.ac.uk.

eridge
Rectangle

eridge
Rectangle



• They typically contain large numbers of relatively simple participants.
• They are completely decentralised.
• They operate in parallel and asynchronously.
• They use relatively simple signals
• Their desired functionality emerges from the interactions of their participants.

This is achieved despite (and because of) their simple participants that have no
global information.

These characteristics make natural systems robust to loss of members, parallel in
‘execution’, and adaptable to a changing problem domain.

However, the efficient pursuit of increasingly accurate nature-inspired solutions that
can compete with more traditional algorithms has lead researchers to resort to quite ‘un-
natural’ designs for their nature-inspired algorithms. The result is that the most success-
ful versions of these algorithms are often centralised and sequential implementations that
are highly tuned to a particular problem. They bear only a tenuous resemblance to their
successful counterparts in nature. This renders them brittle in the face of the dynamism
of changing problem specifications and operating conditions and limits their usefulness
to industry’s direction of increasing distribution, decentralisation and adaptability.

The pursuit of improved performance at optimisation and search is a very worthwhile
endeavour. Yet the pursuit of these goals in a nature-inspired algorithm, to the exclusion
of all else, sacrifices the real strengths of natural systems—their robustness, adaptability,
decentralisation and parallelism.

It is these very properties that are coming to the fore in emerging computer envi-
ronments such as autonomic computing [4], ubiquitous and pervasive computing, Peer-
to-Peer systems, the Grid [5] and the Semantic Web [6]. These environments demand
systems that are robust to failures, adaptable to changing requirements and deployment
scenarios, composed of relatively simple components for ease of development and main-
tenance and are preferably decentralised and parallel.

Multi-agent Systems (MAS) [7] provide a platform on which many independent,
parallel and asynchronous software entities can interact using standard protocols and on-
tologies. It is clear that if nature-inspired algorithms are to be useful in the aforemen-
tioned environments, then they must embrace the characteristics of a MAS-type plat-
form. It is not sufficient for researchers to claim their algorithms are robust or parallel
while implementing them as sequential, synchronous and centralised loops through pas-
sive data structures. For example, cellular automata, which can be considered a sequen-
tial abstraction of MASs, yield different results when different approximations to paral-
lel update are used [8]. It is reasonable to suspect that approximations of other charac-
teristics such as asynchronicity do not accurately predict the true system behaviour but
merely hint that asynchronicity may be a factor in performance. Approximations are not
sufficient for drawing conclusions. They are only the first stage of a complete research
process [9]. Furthermore, decentralised agents can exhibit other phenomena such as hy-
peractivity [10] and diversity [11] and their designers must address the real-world costs
of messaging [12]. Experiments with MAS implementations of a genetic algorithm have
yielded unexpected results that were partly due to the cost of messaging [13]. Equally
unexpected results may be uncovered with asynchronous and parallel implementations
of other nature-inspired algorithms.



The similarities between natural environments and emerging computing environ-
ments motivate disciplined scientific and engineering investigations into the successful
transfer of these algorithms, techniques and infrastructures into such environments.

This paper studies Ant Colony System (ACS) [14], a very successful nature-inspired
algorithm from the ant colony family of algorithms. It explores how ACS might be trans-
ferred to such emerging computing environments as can be represented by a truly de-
centralised, asynchronous and parallel Multi-Agent System, in a way that complies with
emerging standards for agent interaction and architecture [15].

The next section gives an overview of the ACS algorithm for the Travelling Salesman
Problem. Section 3 reviews the idea of pheromone infrastructures in light of maturing
agent standards. Section 4 presents a general strategy for transferring nature-inspired al-
gorithms to MAS-type platforms and illustrates this with reference to the ACS algorithm.
The paper concludes with a review of related work, our conclusions and our direction for
future work.

2. Ant Colony System for the Travelling Salesman Problem (ACS-TSP)

We briefly review Ant Colony System for the Travelling Salesman Problem (ACS-TSP)
for completeness and to draw attention to the issues with centralised, sequential and
synchronous nature-inspired algorithms. The reader is directed to other works [3,16] for
a comprehensive background, description and discussion of this algorithm.

The Travelling Salesman Problem (TSP) [17] involves finding the shortest route
through a given set of cities such that no city is visited twice. The graph representation of
the problem is constructed as a set of nodes and edges where nodes represent the cities
and edges join every node (city) to every other node. Activities of the ants then select a
subset of these edges that represents a valid travelling salesman tour. The TSP is heavily
researched and has a well-established set of benchmark problems with solutions [18].
Furthermore, it is an abstraction of a large class of discrete combinatorial optimisation
problems that is easily visualised and understood by non-experts. These types of prob-
lems are particularly relevant to Grid and Autonomic computing as efficient task and
resource allocation are recurring themes in these environments.

The Ant Colony System algorithm [14] for solving the TSP is loosely based on
natural ant colony behaviour when foraging for food. Ants wander away from their nest
in search of food. After finding food, they return to their nest, laying a chemical marker
called a pheromone. Subsequent ants leaving the next are more inclined to follow strong
pheromone trails. This positive reinforcement builds efficient trails to food sources in a
decentralised fashion. The Ant Colony System algorithm adapts this process to a graph
structure. Figure 1 gives the pseudocode for the algorithm.

Initially, every edge in the problem is given the same pheromone level τ0. A num-
ber of ants m are randomly assigned to their starting cities such that no more than one
ant occupies any city. The following main loop then proceeds for a maximum of tmax
iterations where t is the count of the current iteration. Each ant builds its own tour by
repeatedly applying a decision rule to determine the next city it will visit. The ant’s list
of cities that remain to be visited is stored in a list J. The ant first creates a random
number q. This q is compared to an exploration/exploitation threshold q0. When q ex-
ceeds the threshold, the ant’s choice of next city favours choosing less frequented trails



Figure 1. Pseudocode for ACS-TSP algorithm (adapted from [3])



(exploration). When q does not exceed the threshold, the ant favours well-established
trails (exploitation). When at a current city i, the decision rule for a possible next city
j is a function of the pheromone intensity τij on the edge (i, j) and ηij , the inverse of
the length of edge (i, j). Each city has a candidate list of preferred cities to which the
decision rule is applied. If all cities in the candidate list have already been visited, an ant
does not use its decision rule and simply chooses the next nearest city. The decision rule
to choose the next unvisited city j ∈ Ji from the candidate list is given by

j =
{

P if q > q0

arg maxu∈Ji

{
[τiu]α · [ηiu]β

}
if q ≤ q0

where P is chosen from the candidate list using probabilities pij generated with the
following function:

pij =
[τij ]α · [ηij ]β∑

l∈Ji

[τil]α · [ηil]β

When an ant moves between two cities, it immediately performs a local pheromone
update on the edge joining those two cities. Once all ants have built their tours, any im-
provement on the best tour found is recorded. A global pheromone update is then per-
formed on the current best tour. This is one of the most obvious centralised components
of the ACS algorithm. The main loop then repeats.

ACS-TSP was competitive at finding shorter tours than other techniques such as a ge-
netic algorithm, evolutionary programming and simulated annealing [14]. Comparisons
were made on three benchmark problems [18] of size 50, 75 and 100 cities. However, for
larger problems, a local search technique had to be introduced to the algorithm (ACS-3-
opt) [14]. Again, we see the tendency for nature-inspired algorithms to drift away from
their original natural counterparts. This research uses the original ACS-TSP.

3. Pheromone Infrastructures

In this section, we suggest how to implement a pheromone infrastructure suitable for
the TSP and relate it to emerging agent standards for interoperability and architecture
[15]. Pheromone infrastructures provide a truly parallel, asynchronous and decentralised
environment that can support an ant colony nature-inspired system. The adoption of agent
standards is an identified short-term goal of the agent community [19].

3.1. Overview of Pheromone Infrastructures

The idea of a ‘pheromone infrastructure’ has been proposed in the literature in the con-
text of manufacturing control [20]. A pheromone infrastructure is an agent environment
that supports some, if not all, of the 4 basic pheromone operations of aggregation, evap-
oration, propagation and sensing [21]. The environment is represented by a collection of
environment agents restricted to local information and interaction. This facilitates build-
ing a distributed and decentralised environment that can run its own environment pro-
cesses independently. These environment agents are termed Place Agents in keeping with



the original literature [20]. Place agents manage the topology of the problem and the
pheromone functions.

We term the other agents in the system Solution Agents. Solution agents move about
on the pheromone infrastructure, interacting with the Place agents to perform pheromone
operations such as sensing, deposition and perhaps pheromone removal.

3.2. FIPA-compliant Pheromone Infrastructures

Maturing agent standards facilitate applying standard protocols and ontologies to the
original pheromone infrastructure idea. The Foundation for Intelligent Physical Agents
(FIPA) is an ‘IEEE Computer Society standards organization that promotes agent-based
technology and the interoperability of its standards with other technologies.’ This stan-
dardisation is necessary to fulfil one of autonomic computing’s 8 requirements1 [4]. Cal-
culations show that there is a significant messaging cost in enforcing such standards.

3.2.1. Directory Facilitators as Place Agents

The FIPA Agent Management Specification [22] provides for so-called Directory Facil-
itator (DF) agents. These offer a ‘yellow pages’ service by allowing other agents to ad-
vertise their particular service(s) with the DF. Other agents can then query a DF about its
advertised services and subscribe for notification about the appearance of new services.

We can use a collection of DF agents to build a decentralised pheromone infras-
tructure of Place agents. Each Place (DF) agent offers its own service description as a
Place agent. This description includes a description of its location in the environment.
Neighbouring Place agents register their service descriptions with one another. These
registrations between place agents form the topology of the environment.

Solution agents occupy a location in the environment by registering themselves with
the Place agent representing that location. The solution agents can query their current
Place agent for its advertised neighbours. This provides Solution agents with a ‘visibility’
of the environment. The Solution agents ‘move’ by deregistering from their current Place
agents and registering with one of its advertised Place agent neighbours.

Each Place agent maintains a record of the deposited pheromone types and their
associated concentrations. Solution agents can query this pheromone record and modify
it by depositing and removing pheromones. The Place agents perform the pheromone
functions of evaporation and propagation independently of the Solution agents.

3.2.2. Flexibility of Pheromone Infrastructures

This pheromone infrastructure approach is flexible enough to represent both graph-type
and discrete space environments, the typical problem representations to which ant colony
algorithms are applied. These environments are illustrated in Figure 2. In a discrete space
partitioned into tiles, each Place agent represents a tile in the space. Adjacent tiles are
listed in the registered service descriptions of the Place agents. Tiles typically describe
themselves with an index. The approach for a graph-type environment is very similar.
Each Place agent represents a node in the graph. ‘Adjacent’ nodes that share a common
edge with the given node register their Place agent service.

1 “An autonomic computing system cannot exist in a hermetic environment. While independent in its ability
to manage itself, an autonomic computing system must function in a heterogeneous world and implement open
standards—in other words, an autonomic computing system cannot, by definition, be a proprietary solution.” ..



Figure 2. Graph-type (left) and discrete tile (right) environments

3.2.3. General Protocols

From the previous discussion, we can identify the necessary protocols and ontological
concepts that would be common across pheromone infrastructures for all ant colony
systems. These are summarised in Table 1.

4. A Methodology for Transferring Nature-Inspired Algorithms to Parallel,
Asynchronous and Decentralised Environments

In this section, we describe a general methodology for transferring a nature-inspired
algorithm to a truly parallel, asynchronous and decentralised MAS-type environment.
The strategy is illustrated with reference to the ACS-TSP algorithm described in Section
2. The steps in the methodology are as follows:

• Identifying solution agents
• Identifying global components
• Identifying parameters
• Identifying standard protocols
• Estimating messaging cost
• Deciding on ‘termination’ criteria



Table 1. FIPA standard protocols for a general pheromone infrastructure

Initiator Participant Scenario Standard Protocol Comments
Place agent Place agent Place agents register their

Place service description
with one another. This is a
standard DF registration

FIPA Request Interaction Protocol [23]

Place agent Place agent Place agents deregister
their Place service de-
scription from one an-
other. This is a standard
DF deregistration.

FIPA Request Interaction Protocol [23]

Solution
agent

Place agent A Solution agent asks its
current Place agent for a
list of neighbouring Place
agents. This is a standard
DF search.

FIPA Request Interaction Protocol [23]

Solution
agent

Place agent A Solution agent asks its
current Place agent for
information on the local
pheromone infrastructure.

FIPA Query Interaction Protocol
[24]

query-ref and inform-result
version is used.

Solution
agent

Place agent A Solution agent deposits
pheromone with its cur-
rent Place agent.

FIPA Request Interaction Protocol [23] agree is omitted. inform-
result is used to conclude.

4.1. Identifying Solution Agents

The first step is to identify the Solution Agents in the system. This identification should
try to map agents to ‘physical entities’ rather than system functions [25]. This is because
physical entities are relatively simple and have a locality of interaction and information
whereas functions can be complicated and are usually defined globally. Other authors
use the example of factory scheduling and draw the distinction between the physical
machines on a factory floor and the global function of machine scheduling for the en-
tire factory [25]. Solution agents must support the fipa-agent-management ontology and
the associated protocols (Table 1) so that they may interact with and move around the
pheromone infrastructure described in Section 3.2.

In ACS-TSP, the obvious assignment is a Solution Agent for each ant.

4.2. Identifying Global Components

As mentioned in the motivation, many nature-inspired algorithms have a centralised
global component. The exact nature of such a component varies hugely between vari-
ous algorithm implementations. However, it very presence prevents a decentralised im-
plementation. This component must be removed or replaced with some decentralised
equivalent.

In ACS-TSP, there is a global pheromone update stage after all the ants have com-
pleted their tours. This is global in two ways. Firstly, the ants must share some knowl-
edge of the best tour found between them. Secondly, the ants must know that they have
all finished their tours.



This can be avoided in a decentralised MAS by having ant Solution agents write
their trails to some common blackboard. If the Solution agent sees that its tour is the best
so far, the agent backtracks over that trail performing the ‘global’ update procedure.

4.3. Identifying Parameters

The categorisation of parameters is important. It allows us to clearly determine how
decentralised our implementation can be while remaining true to the original algorithm.

Agent model parameters divide into three categories: problem parameters, solution
parameters and environmental parameters [26]. We propose further dividing the Solution
parameters category into Global and Agent Solution parameters.

1. Problem parameters: these vary the problem for which the algorithm is devel-
oped. For example, in the Travelling Salesman Problem, the number of cities is a
problem parameter.

2. Solution parameters: these vary the characteristics of the algorithm itself. They
are tailored during deployment.

(a) Global Solution parameters: Global solution parameters can only be seen
and modified from an omniscient viewpoint. For example, in a swarm, the
number of agents is a global solution parameter.

(b) Agent Solution parameters: Agent parameters could conceivably be ap-
plied to each individual agent and have different values for each agent. These
parameters determine the diversity of swarm members.

3. Environmental Parameters: these vary the deployment scenario. Examples
might include communication delays and computation node failures.

Preferably, as many solution parameters as possible should fall into the Agent cate-
gory rather than the Global category. The ultimate goal of a fully decentralised system
demands no global solution parameters. Table 2 and Table 3 summarise the global and
agent solution parameters respectively for ACS.

Table 2. Global Solution Parameters in Ant Colony System

Symbol Description Comments
m Number of ants

N/A Maximum number of ants per
city initially

This was not an explicit parameter in the original ac-
count of ACS [14]

Note that although the ACS algorithm mentioned a single parameter ρ for use in
both local and global pheromone updates, we distinguish between two respective values
of ρ in keeping with our research motivation. Note also that all but one of the agent
solution parameters is assigned to the Solution agents rather than the Place agents. This
is desirable because it keeps the Place agents as general as possible.



Table 3. Agent Solution Parameters for Ant Colony System

Symbol Description Comments
NCmax Max number of cycles of the al-

gorithm
A Solution agent builds this number of solutions before
reporting its best solution found.

α Trail importance. The relative
importance of trail intensity in
the transition probability.

This was not explicitly used in Ant Colony System. We
include it in this research with a value of 1.0 for consis-
tency with related algorithms like Ant System [27].

Q Global pheromone deposition
constant.

Again, this was not explicitly used in ACS so we set it
to a value of 1.0.

β Visibility importance. The rela-
tive importance of visibility in
the decision probability.

q0 Exploitation probability thresh-
old. A parameter between 0 and
1 that determines the relative
importance between exploration
and exploitation in the decision
rule.

ρlocal Decay constant used in local
pheromone updates.

ρglobal Decay constant used in global
pheromone updates.

τ0 The initial intensity of trail set on
all edges at the start of a trial.

This is a parameter for the Place agents in the
pheromone infrastructure.

4.4. Protocols

The use of agents and their associated messaging introduces the need for protocols.
Preferably, these protocols should conform to published standards such as those of FIPA.

Since ants in the ACS algorithm interact only with the environment and not with one
another, there is no need to add to the protocols provided with the Place agents and their
pheromone infrastructure (Section 3.2). This simplicity of protocols is a clear advantage
of nature-inspired MASs over MASs that rely on complicated market mechanisms and
negotiations to self-organise.

4.5. Messaging Cost

The cost of messaging and its effect on MAS dynamics is a real engineering concern.
This has been highlighted in related work with a MAS implementation of a genetic algo-
rithm [13].

Table Table 4 and 5 present an estimation of the messaging needed in a MAS imple-
mentation of ACS for a problem of size n = 50 cities with m = 20 Solution agents. This
is typical of the type of problem size on which ACS was first tested [14]. Table Table 4
shows the messaging required by the setting up of the pheromone infrastructure. Table 5
is one iteration of the main loop. Furthermore, there will occasionally be a further step
where a Solution agent must backtrack to perform the ‘global’ update.

In the concrete example, setting up the pheromone infrastructure requires 5180 mes-
sages. The equivalent of one iteration of the main loop requires 8040 messages. ACS was



Table 4. Estimated Messaging for setting up the pheromone infrastructure

Stage Item Protocol Msgs per
protocol

Total msgs Value

1 Each Place agent registers with the global DF
so that other Place agents can find it.

Request Interac-
tion

2 2× n 100

2 Each Place agent searches the global DF for
its neighbouring Place agents

Request Interac-
tion

2 2× n 100

3 Each Place agent registers its Place service
with its neighbouring Place agents in the
topology.

Request Interac-
tion

2 2× n× (n− 1) 4900

4 Each Solution agent searches the global DF
for its starting Place agent.

Request Interac-
tion

2 2×m 40

5 Each Solution agent registers with its starting
Place agent

Request Interac-
tion

2 2×m 40

Table 5. Estimated Messaging for the equivalent of a single run of the ‘main loop’

1 Each Solution agent queries its current
Place agent for representation of the local
pheromone infrastructure.

Query Interaction 2 2×m× n 2000

2 Each Solution agent begins its move by
deregistering from its current Place agent.

Request Interac-
tion

2 2×m× n 2000

3 Each Solution agent finishes its move by reg-
istering with its destination Place agent

Request Interac-
tion

2 2×m× n 2000

4 Each Solution agent performs a local
pheromone update.

Request Interac-
tion

2 2×m× n 2000

5 Each Solution agent reports its tour and re-
ceives the length of the best tour.

Request Interac-
tion

2 2×m 40

run for iterations of the order of 1200. For the given problem example, this would re-
quire approximately 9.6 million messages. This is clearly a heavy messaging load. Some
of our exploratory studies of messaging in JADE [28], a popular MAS platform, on a
desktop machine2 yielded an average message rate of 550 per second. This would mean
an equivalent MAS runtime of about 5 hours. . This is the discouraging reality of a direct
MAS implementation of a nature-inspired algorithm when restricted to a single machine.
We emphasise that we are investigate nature-inspired systems that will run on large num-
bers of machines at a scale that can harness the power of real ant colonies. There is no
way to predict whether such an implementation will require either a smaller or greater
number of ‘runs’ to achieve a similar solution quality to its algorithm equivalent. This
justifies our motivation for studying implementations in truly parallel, asynchronous and
decentralised environments.

It is also worth noting the effect of not using the standard Request Interaction pro-
tocol. If Solution agents did not require an agree return message then the number of
messages per protocol would drop to 1 in steps 2-4 of Table 5. This reduces the corre-

2 Intel Pentium 4, 2.80 GHz, 512 Mb RAM



sponding total message load to 6 million and the run time to 3 hours. There is a cost to
conforming to standards.

4.6. Termination

A fundamental difference between an algorithm and a MAS is the idea of open-
endedness. An algorithm typically steps through a number of instructions and either ter-
minates or loops. Termination criteria include executing a certain number of iterations
or reaching an acceptable level of solution quality. MASs, by contrast, are intended to
be continually running systems. This poses the question of how we can know when our
MAS has done an equivalent amount of work to the algorithm on which it was based.

This is easily solved in ACS by having each Solution Agent track the number of
tours it has built and by giving the agent a maximum number of tours to build as an Agent
solution parameter. Agents then know when to report their result. Agents deactivate after
performing the required number of runs. This is, of course, a contrived situation so that
a valid comparison can be made with the original ant algorithm. The ultimate goal is to
realise a continuously running and adapting system. In such circumstances, it would be
more realistic for agents to report their best solutions at some regular interval.

5. Related Work

There has been some related work on the transfer of nature-inspired algorithms to MAS-
type platforms, infrastructures for nature-inspired MASs, and the issues when approxi-
mating parallelism in sequential and synchronous systems.

Several authors have investigated parallel implementations of Ant Colony algorithms
[29,30]. However, these were in the vein of a master/slave type approach. A similar tactic
is well established in the Evolutionary Computation community’s use of the ‘Island’
genetic algorithm. Clearly, the master node in these implementations is a centralised
component with global knowledge. This approach does not make sense in the context of
the Peer-to-Peer type systems for which we are developing.

Smith et al [13] have investigated an implementation of a genetic algorithm using
IBM’s Aglets platform3. This approach is different from the vast majority of evolution-
ary computation (EC) work. Generally, EC algorithms are a centralised program stor-
ing individuals as data structures and imposing genetic operations to generate successive
populations. In an agent system, there is no concept of a generation since agents interact
asynchronously and in parallel. In Smith et al’s framework, agents exchange genetic in-
formation with messaging and can perform their own internal genetic operations on that
information. The authors implemented equivalents of tournament selection and an elitist
strategy. The authors tested their framework on the OneMax problem—a simple stan-
dard problem in the EC field. Counter to EC intuition, the elitist scheme converged much
more slowly than the tournament scheme in real time due to the overhead of the greater
number of message exchanges required. We have seen such a message overhead in our
calculations on a MAS implementation of ACS (Section 4.5). This highlighted the gen-
eral point that established conclusions of traditional EC research might not necessarily
transfer to a MAS implementation.

3 www.trl.ibm.com/aglets/



Brueckner’s PhD dissertation proposed the original idea of pheromone infrastruc-
tures [20]. A decentralised MAS for manufacturing control was built on top of this in-
frastructure. Although there was a clear mention of a yellow pages service and certain
ontological concepts, these were not related to any agent standards.

Cornforth has experimented with different update schemes in cellular automata (CA)
[8,31]. Cellular automata can be considered as highly abstract MASs. A cellular automa-
ton is a lattice of discrete sites such that each site has a finite set of possible values. Sites
change in discrete time steps according to the same deterministic rules and these rules
incorporate information from a limited neighbourhood of sites. Cornforth investigated 6
update schemes for site changes in a 1 dimensional cellular automaton. These schemes
were: synchronous, random independent, random order, cyclic, clocked and self-sync.
Each scheme produced dramatically different results in the cellular automaton. This em-
phasised that the update scheme in a sequential system is a factor in the system’s perfor-
mance and raises the question of which, if any, of the schemes is the best at approximat-
ing a truly parallel and asynchronous system.

6. Conclusions

We have argued the need for disciplined scientific and engineering research into how
the successes of nature-inspired algorithms might be transferred to emerging comput-
ing environments such as the Grid, Peer-to-Peer systems, Autonomic Computing and the
Semantic Web. Such research is of benefit to two communities. On the one hand, re-
searchers of nature-inspired algorithms might see some performance benefits in the par-
allelism, asynchronicity, decentralisation and distribution of such environments. Further-
more, it gives these researchers a new and very relevant application domain for their algo-
rithms. On the other hand, researchers looking for robust, decentralised, self-organising
systems to operate in emerging computing environments should be interested in the
promise of nature-inspired methods. These methods have been dramatically successful
in their original application domains.

We have framed the idea of pheromone infrastructures within maturing agent stan-
dards, making specific reference to the protocols proposed by FIPA [15].

We then outlined a general methodology for transferring nature-inspired algorithms
to emerging computing environments using pheromone infrastructures. This involved
6 steps that were illustrated by reference to a suggested MAS implementation of Ant
Colony System. The Solution agents that operate on the pheromone infrastructure are
identified. The global components of the original algorithm are removed or replaced. The
parameters of the algorithm are categorised as solution parameters, problem parameters
or environment parameters. We proposed a refinement of the solution parameter category
to distinguish between agent and global solution parameters. The necessary protocols
are chosen, preferable from suitable existing standard protocols. The cost of messaging
is estimated. Some decision is made on when the MAS would have done an ‘equiva-
lent’ amount of work to its algorithm counterpart. The estimate of the cost of messaging
highlighted the price to be paid for the use of standard protocols for interoperability.



7. Current and Future Work

We are currently verifying our program code for our exploratory studies of the ACS
algorithm. These experiments begin shortly. We expect these studies to reveal parallelism
and asynchronicity as factors in the algorithm’s performance and to provide quantitative
data that will justify testing a fully-fledged MAS implementation.

Our longer-term goal is to develop a FIPA compliant set of Place agents that can
support a pheromone infrastructure using standard protocols and ontologies. We would
like to develop ant colony systems to run on this infrastructure and make well defined
and statistically grounded assessments of the benefits and costs of such implementations.
This will determine bounds on the usefulness of established results from the ant colony
algorithm community when transferred to emerging computing environments.

References

[1] John H. Holland. Adaptation in Natural and Artificial Systems: An Introductory Analysis
with Applications to Biology, Control, and Artificial Intelligence. The MIT Press, Cambridge,
Massachusetts, USA, 1995.

[2] J. Kennedy, R. C. Eberhart, and Y. Shi. Swarm Intelligence. Morgan Kaufmann, 2001.
[3] Eric Bonabeau, Marco Dorigo, and Guy Theraulaz. Swarm Intelligence. Oxford University

Press, 1999.
[4] IBM. Autonomic Computing: IBMs Perspective on the State of Information Technology.

Technical report, IBM Research, October 2001.
[5] Ian Foster and Carl Kesselman, editors. The Grid: Blueprint for a New Computing Infras-

tructure. Morgan Kaufmann Publishers, 1999.
[6] Dieter Fensel, Wolfgang Wahlster, Henry Lieberman, and James Hendler, editors. Spinning

the Semantic Web: Bringing the World Wide Web to Its Full Potential. The MIT Press, 2002.
[7] Gerhard Weiss, editor. Multiagent Systems: A Modern Approach to Distributed Artificial

Intelligence. The M.I.T. Press, Cambridge, Massachusetts, U.S.A.
[8] David Cornforth, David G. Green, and David Newth. Ordered asynchronous processes in

multi-agent systems. Physica D, 2005.
[9] Paul R. Cohen. Empirical Methods for Artificial Intelligence. The MIT Press, Cambridge,

Massachusetts, 1995.
[10] H. Van Dyke Parunak, Sven A. Brueckner, Robert Matthews, and John Sauter. Pheromone

Learning for Self-Organizing Agents. IEEE Transactions on Systems, Man and Cybernetics,
Part A, 35(3):316– 326, 2005.

[11] Tucker Balch. Hierarchic Social Entropy: An Information Theoretic Measure of Robot Group
Diversity. Autonomous Robots, 8:209–237, 2000.

[12] Krzysztof Chmiel, Dominik Tomiak, Maciej Gawinecki, Pawel Karczmarek, Michal Szym-
czak, and Marcin Paprzycki. Testing the Efficiency of JADE Agent Platform. In Proceedings
of the Third International Symposium on Parallel and Distributed Computing, pages 49–56.
IEEE Computer Society, 2004.

[13] Robert E. Smith, Claudio Bonacina, Paul Kearney, and Walter Merlat. Embodiment of Evo-
lutionary Computation in General Agents. Evolutionary Computation, 8(4), 2000.

[14] Marco Dorigo and Luca Maria Gambardella. Ant Colony System: A Cooperative Learning
Approach to the Traveling Salesman Problem. IEEE Transactions on Evolutionary Compu-
tation, 1(1):53–66, 1997.

[15] The Foundation for Intelligent Physical Agents, 2005. Available from: www.fipa.org/.
[16] Marco Dorigo and Thomas Stutzle. Ant Colony Optimization. The MIT Press, Massachusetts,

USA, 2004.

www.fipa.org/


[17] E. L. Lawler, J. K. Lenstra, A. H. G. Rinooy Kan, and D. B. Shmoys, editors. The Traveling
Salesman Problem - A Guided Tour of Combinatorial Optimization. Wiley Series in Discrete
Mathematics and Optimization. John Wiley and Sons, New York, USA.

[18] Gerhard Reinelt. TSPLIB - A traveling salesman problem library. ORSA Journal of Comput-
ing, 3:376–384, 1991.

[19] Michael Luck, Peter McBurney, Onn Shehory, and Steve Willmott. Agent Technology
Roadmap: Overview and Consultation Report. Technical report, AgentLink, December 2004.

[20] Sven Brueckner. Return from the Ant: Synthetic Ecosystems for Manufacturing Control. Phd,
Humboldt University, 2000.

[21] H. Van Dyke Parunak, Sven A. Brueckner, Robert Matthews, and John Sauter. How to Calm
Hyperactive Agents. In Proceedings of the Second International Joint Conference on Au-
tonomous Agents and Multiagent Systems, pages 1092–1093. ACM Press, 2003.

[22] FIPA Agent Management Specification. FIPA Specification SC00023K, Foundation for In-
telligent Physical Agents, 18 March 2004.

[23] FIPA. FIPA Request Interaction Protocol Specification. Technical report, Foundation for
Intelligent Physical Agents, 2002.

[24] FIPA. FIPA Query Interaction Protocol Specification. Technical report, Foundation for Intel-
ligent Physical Agents, 2002.

[25] H. Van Dyke Parunak and Sven A. Brueckner. Engineering Swarming Systems. In Federico
Bergenti, Marie-Pierre Gleizes, and Franco Zambonelli, editors, Methodologies and Software
Engineering for Agent Systems, volume 11 of Multiagent Systems, Artificial Societies, and
Simulated Organizations. Kluwer, 2004.

[26] Sven A. Brueckner and H. Van Dyke Parunak. Information-driven Phase Changes in Multi-
Agent Coordination. In Poster in the Proceedings of the second international joint conference
on Autonomous Agents and Multi-Agent Systems, pages 950–951. ACM Press, New York,
NY, USA, 2003.

[27] Marco Dorigo and Alberto Colorni. The Ant System: Optimization by a colony of coop-
erating agents. IEEE Transactions on Systems, Man, and Cybernetics Part B, 26(1):1–13,
1996.

[28] Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa. JADE: a FIPA2000 compliant
agent development environment. In Proceedings of the Fifth International Conference on
Autonomous Agents, pages 216–217. ACM Press, New York, NY, USA, 2001.

[29] Marcus Randall and Andrew Lewis. A Parallel Implementation of Ant Colony Optimization.
Journal of Parallel and Distributed Computing, 62(9):1421–1432, 2002.

[30] Thomas Stutzle. Parallelization Strategies for Ant Colony Optimization. In A. E. Eiben,
Thomas Back, Marc Schoenauer, and Hans-Paul Schwefel, editors, Proceedings of the Fifth
International Conference on Parallel Problem Solving from Nature, volume 1498 of Lecture
Notes in Computer Science, page 722. 1498 edition, 1998.

[31] David Cornforth, David G. Green, David Newth, and Michael Kirley. Do Artificial Ants
March In Step? Ordered Asynchronous Processes and Modularity in Biological Systems. In
Standish, Bedau, and Abbass, editors, Proceedings of the Eighth International Conference on
Artificial Life, pages 28–32. 2002.


