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Abstract—A high-volume of data generated nowadays by the
rise of Smart Cities and Internet of Things can be represented
as graph streams. While many graph processing algorithms
could analyse small graphs when challenging real-world graphs
occur in distributed settings like sensor-based ones, a more
suitable analysis is needed. Specifically, challenges like dynamism,
heterogeneity, continuity and high-volume of these graph streams
could benefit from real-time analysis. This analysis should happen
with reduced network traffic and latency while maintaining high
data expressibility and usability. Therefore, our key question is:
Can we define a dynamic graph stream summarisation system that
provides expressive graphs while ensuring high usability and limited
resource usage?

In this paper, we explore this question and propose a multi-
source system with windowing, data fusion, conceptual clustering
and top-k scoring that can result in expressive, dynamic graph
summaries with limited resources at no expense of usability. Our
results show that sending top-k fused diverse summarisation,
results in 34% to 90% reduction of forwarded messages and
redundancy-awareness with an F-score ranging from 0.57 to
0.88 depending on the k compared to sending all the available
information. Also, the summaries’ quality follows the agreement
of ideal summaries determined by human judges. Nevertheless,
these results occur at the expense of higher latency ranging from
similar latency to the baseline up to 4 times more depending on
the approach; therefore, there is some trade-off between latency,
the number of forwarded messages, and expressiveness.

I. INTRODUCTION

With the rise of Smart Cities and Internet of Things, we are

surrounded by multiple sensors that produce a range of data

streams. This data could be more informative if represented

as structured graphs. For example, sensor data streams could

be represented as conceptual entities with associated relations.

These graph streams could then be processed for the needs of

users or applications [1].

Since these graph streams are coming from multiple sources,

they might present high semantic heterogeneity [2]. For exam-

ple, different words could describe conceptually similar things

(e.g. ”energy usage” vs ”energy consumption”). Furthermore,

due to the possibly high volume and the frequent sampling

rate of graph streams, they might contain identical information

for a time period resulting in duplication. Duplicates and

conceptually similar things result in redundant information.

This redundancy may lead to significant propagation, storage

overheads in a network of unnecessary data and slower pro-

cessing time [3].
On the other hand, users may have different levels of ability

to express their needs [4]. For example, their queries could

range from simple keyword-based to more complex SPARQL-

like queries. Where the information in question is coming

from multiple sources, the users may need to define complex

join queries to gather it from all sources. This complexity

may lead to low usability as the user is expected to be

aware of complex query languages and the structure of several

data sources. At the same time, simple queries may lead to

high usability; nevertheless, they may create an abundance of

redundant information [5].
The challenges above, when combined with the dynamism,

continuity and high volume of sources and users or sinks in

smart environments, need an efficient and effective processing

system of graph streams [6]. Therefore, our key question is:

Can we define a dynamic graph stream summarisation system
that provides expressive (non-redundant) graphs along with
high usability while using limited resources?

As approximate solutions [1] are acceptable as quick an-

swers [7] within a small error range with high probability

while using limited resources, we propose a dynamic diverse

summarisation system of heterogeneous graph streams with

the use of embeddings. In this way, we aspire not only to

increase the system performance by reducing the number of

data sent upstream but also to create a top-k diverse conceptual

data set that will not overwhelm the user with redundant

information. Nevertheless, graph summarisation suggests loss

of possibly useful information. Therefore, there is a trade-

off between latency, the number of forwarded messages, and

expressiveness.
Our main contributions are:

• A user-friendly diversity-aware query that allows users to

simply express whether they need to receive top-k diverse

filtered information of specific window size.

• Introduce a novel dynamic diverse summarisation system

for heterogeneous graph stream windows with the use

of embeddings that is based on user query relevance,

importance and diversity.

• An evaluation methodology for examining the trade-off

between latency, the number of messages, and expres-
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siveness within graph stream windows.

The rest of this paper is structured as follows. In Section

2 and Section 3 we present the problem analysis and the

preliminaries, respectively. Section 4 contains related work,

whereas Section 5 contains the approach. Evaluation and

results are in Section 6. Finally, conclusions are drawn in

Section 7.

II. PROBLEM ANALYSIS

A. Motivational Scenario

Imagine Houston is a smart city (shown in Fig. 1), and a

user is interested in information about Rice University. Sev-

eral sensor readings contain information about the university,

ranging from temperature to location. The user has no other

information apart from the university’s name, and one needs

to quickly gain knowledge about the university.

Fig. 1. A user is interested in information about Rice University and sources
generate timestamped information records. Here, the temperature information
is duplicate and the energy usage and energy consumption are conceptually
similar.

B. Problem Challenges

The aforementioned scenario faces many challenges:

• Heterogeneity: Multiple sources create heterogeneous

data about the university. Some of this data, like temper-
ature is duplicate, whereas other like energy usage and

energy consumption is conceptually similar. Duplicate

and conceptually similar information lead to redundancy

that may overwhelm the user.

• Low user expressibility: The user has limited informa-

tion about the university. One might also need to create

complex join queries to gather all the information from

the necessary sources. Nevertheless, the user is unable to

create a complex filtering query and is not an expert in

query languages. On the other hand, if the user creates

an abstract or general query, it may lead to redundant or

undesired information.

• Dynamism: The sources that generate information about

the university may be created or deleted at any time.

• Continuity: The sources constantly update the univer-

sity’s information, and the user needs the most recent

data [8].

• High data volume: The high volume of information that

is created by the sources needs to be properly filtered to

not overwhelm the user.

III. PRELIMINARIES

Knowledge graphs contain information regarding entities,

which are real-world or abstract things [9]. Within knowledge

graphs the nodes represent the entities, and the directed

labelled arcs constitute relations among them. In Fig. 1 the

sensor readings could be represented as structured graphs. For

example, Rice University, 15°C, 2kWh, Texas, United States,
Houston, and Division I (NCAA) could be entities or literals,

whereas temperature, energy consumption, energy usage, state,
country, city, and athletics could be relations among the

connected entities or literals by the directed arc. Resource

Description Framework (RDF) is a data modelling language

that represents these representations as triples 〈subject, prop-

erty, object〉, where subject are entities, object are entities or

literals and property is their relation. RDF triples with the

same subject form an RDF star-like graph. A summarisation

of an entity e that is represented by a node v in a knowledge

graph G is a subgraph of G that surrounds v [9].
By adopting and adapting definitions that were introduced

in Cheng et al. [10], we provide some definitions for com-

pleteness.
Let E be the set of all entities, L the set of all literals, P

the set of all properties, Tr the set of all triples and T the set

of all timestamps.
Definition 1 (Data Graph). A data graph is a digraph G =

〈V,A, LblV , LblA〉, where V is a finite set of nodes, A is a

finite set of directed edges where each a ∈ A has a source

node Src(a) ∈ V and a target node Tgt(a) ∈ V , and LblV :
V �→ E ∪ L and LblA : A �→ P are labelling functions that

map nodes and edges to entities or literals, and properties,

respectively.
Definition 2 (Triple). A triple tr is a sequence of 〈subject,

property, object〉 defined as tr = 〈sub(tr), p(tr), obj(tr)〉,
where sub(tr) ∈ E, p(tr) ∈ P and obj(tr) ∈ E ∪ L.

Definition 3 (Graph Stream). A graph stream Gs =
〈(tri, ti)|i ∈ N〉 is a sequence of pairs where each pair consists

of a triple tr ∈ Tr and its timestamp t ∈ T .
Definition 4 (Dynamic Diverse Entity Summarisation).

Given a snapshot of Gs and a positive integer k < |Gs|,
the problem of dynamic diverse entity summarisation is to

select Summ = 〈Trsum, t〉 where Trsum ⊂ Tr such that

|Summ| = k. In other words, Summ is called a dynamic

diverse summary of an entity e and it contains a set of unique

and conceptually diverse triples that belong to the snapshot of

Gs, as well as its timestamp t ∈ T .
To support high usability, we do not assume that users have

high expressibility, that is they are experts in complex query

languages, like SPARQL. Therefore, a query should ideally

be a keyword-based one [9]. Nevertheless, keyword-based

queries are too abstract, which may lead to receiving undesired

information. Therefore, a high-level ranking policy should be

defined by the user that could filter some of the undesired

information. The user can select from complex ranking (e.g.

diverse) to no ranking at all (e.g. none).
Definition 5 (Diversity-aware Query). A diversity-aware

query DAQ is a sequence of 〈entity, k, window size, ranking
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policy〉 defined as DAQ = 〈e, k, ws, r〉, where e ∈ E, k ∈ N,

ws ∈ N and r ∈ {Diversity,None}.
IV. RELATED WORK

A. Non-Streaming

1) Graph Summarisation: Many graph summarisation tech-

niques are covered by Liu et al. [11]. These are split into static

and dynamic graph summarisation techniques. In the static

case, plain graph summarisation examines only the graph’s

structure, whereas the labelled graph summarisation examines

the graph’s labels too. In the dynamic case, plain graph

summarisation examines the temporal structure. Currently,

there is no dynamic labelled graph summarisation. In our

understanding, plain entity summarisation is related to static

labelled graph summarisation, as both the structure and the

labels (subject, property, object values) are analysed. Our work

is aspiring to introduce dynamic entity summarisation that

could be related to dynamic labelled graph summarisation,

where both temporal structure and labels are considered.

2) Plain Diverse Entity Summarisation and Approximation:
Top-k diversity in entities by summaries that detect duplication

and conceptual similarity are tackled by several works that

also consider high usability via keyword-based queries. DI-

VERSUM [9] focuses on a per-property summarisation based

on novelty, importance, popularity and diversity by adapting

the document-based Information Retrieval to the knowledge

graphs. FACES [12] emphasises on summaries based on di-

versity, uniqueness, and popularity via hierarchical conceptual

clustering and the use of WordNet for related terms. FACES-E

[13] improves on FACES by also considering types in datatype

properties. Pouriyeh et al. [14] emphasise on summaries based

on topic modelling by considering properties as topics and use

of Word2Vec for related terms. Other works by Harth et al.

[15] and Pan et al. [16] emphasise on RDF approximation

(e.g. RDF sampling, histograms, compression). All of these

works contain static methodologies; therefore, they need to be

extended to support a complex dynamic environment.

B. Streaming

1) Stream Processing Frameworks: Existing stream pro-

cessing frameworks, like Apache Spark1, Flink2 and Kafka3 do

not support entity summarisation techniques; therefore, they

need to be extended. Also, their constraints in supporting

specific non-graph-based data formats or SQL-like queries

could lead to low usability if the user has low expressibility.

2) Stream Approximation: Work has been done in dynamic

stream approximation, but mostly for numerical or string data.

These include synopsis methods, frequent patterns, clustering

or dimensionality reduction mainly in Aggarwal et al. [17] and

Gupta et al. [18]. Tang et al. [19] focuses on synopsis in graph

streams, but without emphasising on labelled graphs. Le-Phuoc

et al. [20] focuses on RDF stream processing, but without

1https://spark.apache.org/
2https://flink.apache.org/
3https://kafka.apache.org/

emphasising on summaries. Dia et al. [21] extend SPARQL

for supporting RDF stream sampling, which is different from

diverse entity summarisation.

In conclusion, no existing approach covers the requirements

of our problem.

V. APPROACH

A. Architecture

Our architecture is illustrated in Fig. 2. Sources create

graph streams concerning entities and users create diversity-

aware queries concerning these entities. All graph streams and

queries enter the Summarisation System, which analyses the

graph streams and notifies the users.

Fig. 2. Architecture of the Dynamic Diverse Summarisation System.

All graph streams enter the Window Partitioning that creates

tumbling Count Windows for each user-required entity. Each

window, then, is populated with triples from all sources

concerning a specific entity and through Triple Pre-processor
all of their content is extracted. Duplicate triples are discarded

at this stage. A Word2Vec Model [22] is then used to create

a Word2Vec Index that creates vectors related to each triple.

Once the window reaches its full capacity based on the user-

defined window size ws, all vectors are fused and undergo

DBSCAN Clustering [23]. Conceptual clusters are then created

that are ranked through Ranking based on the importance of

the triples in each cluster. The top-k triples are then selected by

the resulting scored triples via Top-k Selection and this diverse

set is sent as a notification to the users. Then the process starts

again.

B. Dynamic Diverse Summarisation Algorithm

Our algorithm is divided into two stages: 1) conceptual

clustering of triples and 2) ranking of triples. The first stage

is done by the combination of embeddings and density-based

clustering. The second stage is a combination of similarity

metrics and some pre-defined rules. A simplified illustration

of the algorithm is provided in Fig. 3.
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Fig. 3. The sources of Fig. 1 generate information that is represented as structured graphs. A user asks for the top-4 diverse information items for Rice
University from a window that contains the last 8 facts of the entity. The Summarisation System pre-processes all triples (we see an example for triple 5), and
all vectorised triples are depicted in the vector space. There, conceptual clusters are found, which are shown in orange circles, and the triples are ranked for
each cluster based on their distance with the cluster centroid (red asterisk). The red vectors are the triples closest to the centroids. The top-4 triples are selected
and sent as notification to the user. In the example, t1:{Rice University, temperature, 15°C}, t2:{Rice University, temperature, 15°C}, t3:{Rice University,
energyConsumption, 2kWh}, t4:{Rice University, energyUsage, 2kWh}, t5:{Rice University, country, United States}, t6:{Rice University, city, Houston},
t7:{Rice University, athletics, Division I (NCAA)}, t8:{Rice University, state, Texas}.

1) Word2Vec: Word embeddings are often used in Natural

Language Processing (NLP) to represent words into vectors so

that a word can be visualised in a vector space. Afterwards,

several analysis methodologies can take place to detect, for

example, semantically similar or related words. Word2Vec [22]

is one of the most successful models in this category. In this

model, a neural network is trained by raw text either by the

use of Continuous Bag of Words (CBOW) or by Skip-Gram.

CBOW predicts a word given surrounding words, whereas

Skip-Gram estimates the surrounding words for a single word.

Different studies have used different parameters and datasets

for the model, but we are using the pre-trained GoogleNews,

Vectors and VectorsPhrase models4. The first model has been

trained on Google News, and it has proved rather successful,

whereas the other two models have been trained in a much

smaller dataset. The reasons for choosing Word2Vec are: a)

no need to extend existing words of triples with synonyms or

hypernyms from thesauri to catch their conceptual meaning,

b) words are represented based on context, therefore, semanti-

cally opposite words (antonyms), but conceptually similar (e.g.

death place - birthplace) are represented closely in the vector

space and c) phrases can also be trained.

2) DBSCAN: DBSCAN [23] is a density-based clustering

algorithm that has been widely used in research. The algorithm

starts by discovering the core points based on their neighbour-

hood. Then the density-reachable points from these core points

are discovered iteratively to define the clusters. The algorithm

terminates when no new point can be added to a cluster. The

points that belong to no cluster are considered noise. There

are two parameters for the algorithm, the minimum points

4https://code.google.com/archive/p/word2vec/

minPts in a neighbourhood for a point to be considered as a

core one, including the point itself and the maximum distance

ε between two points for them to be considered as in the same

neighbourhood.

The reasons of choosing DBSCAN are: a) a strict density-

based clustering is efficient for identifying regions of similar

or related words in a vector space, b) there is no restriction on

the size and the shape of the clusters and c) there is no need

of specifying the number of clusters (number of conceptual

clusters should not be known a priori).

3) Conceptual Clustering: The stages of conceptual clus-

tering per count window are described below:

I) Triple to Sequence: For each graph stream that corresponds

to an entity, we need to extract all its triples and define their

position in a vector space for future clustering. A Word2Vec

model can be used in this case, but not directly in graphs, as it

would in a document. RDF2Vec [24] proposed to convert an

RDF graph into a sequence of subjects, properties and objects

that could be equivalent to a document sentence and then to

use Word2Vec in the sequence. Therefore, in our case, each

triple is converted into a sequence of property, object since

the subject is the same for all present or future triples in a

window. If a triple has already been processed (duplicate),

then it is deleted and not further analysed. In this way, the

user is not presented with duplicate information.

II) Pre-processing: Each property and object is pre-processed.

Pre-processing involves lower-casing (original word), tokenis-

ing (tokens), removing stop-words and concatenating each to-

ken with an underscore (concatenated word). For the property,

the pre-processing happens on the actual property, but for the

object, it happens on its type.

III) Word to Vector: The original word, the tokens and the

8

Authorized licensed use limited to: NATIONAL UNIVERSITY OF IRELAND GALWAY. Downloaded on January 04,2021 at 16:01:26 UTC from IEEE Xplore.  Restrictions apply. 



concatenated word are sent to the Word2Vec model to extract

their vector. If the vector does not exist (some words might

not exist, or they might not be present in the training set of

the model), then the word is not considered for further action.

If the vector of the original word exists, then its vector along

with the vectors of the tokens are considered for further action.

If it does not exist, then the vector of the concatenated word is

examined. If it exists then that vector together with the vectors

of tokens are considered; otherwise, the vectors of the tokens

are averaged, so that the original word is now represented by

the averaged vector and along with the token vectors they are

further used. The representation of a phrase (original word

or concatenated word) with this average vector might be risky

sometimes, as the meaning might be different, but only models

that have been trained on these phrases can be accurate. If the

word has been visited, then an index is created that contains

the words and their corresponding vectors, so that they will

not be visited again. If there are duplicate words among the

processed words of the property and the object, then they are

considered once.

IV) Triple to Vector: The vectors of all the remaining pre-

processed words are averaged, and now this constitutes the

vector of the triple.

V) Triple Clustering: All vectors are fed in DBSCAN, and

conceptual clusters are created, that is a cluster might contain

one or more triples.

In the implementation, for the RDF models and some

processing, we use Apache Jena5, for the Word2Vec model

we use deeplearning4j6 and for DBSCAN we use Smile7.

4) Ranking: The stages of ranking per count window are

described below:

I) Cluster Centroid: DBSCAN does not create centroids,

therefore, for each conceptual cluster created (with size greater

than 1), the average vector of all vectors of the triples

that belong to this cluster is calculated. This constitutes the

cluster’s centroid.

II) Triple Distance to Centroid: The cluster’s centroid is

considered to be the representative vector for each cluster.

Therefore, the Euclidean distance or the Cosine similarity

between each member of the cluster and its centroid is

calculated. Triples that are closer to the centroid are more

representative of the conceptual cluster than others.

III) Triple Selection from Cluster: Triple selection starts

from the biggest cluster to the smallest one. All clusters are

visited once in the first round. The triple that has the lowest

(for Euclidean distance) or the highest (for Cosine similarity)

distance/similarity is picked first for each cluster. If the cluster

is of size 1, then the only member is selected. If there are

ties among the distances/similarities, then a random selection

is made. If a triple has been selected in general, it is not

selected again. If a property has been selected once in a

cluster, then it is not selected again from this cluster in the

5https://jena.apache.org/
6https://deeplearning4j.org/
7https://haifengl.github.io/smile/nlp.html

next rounds, giving a chance to other properties to be selected

(more diversity in properties even among members of the

same conceptual cluster). If all properties for each cluster have

been selected, then the selection process starts again with the

remaining triples. The process continues until either all triples

have been visited or the k parameter has been reached. During

this selection, a score is given to each triple with descending

order, as they are selected.

VI. EVALUATION

To the best of our knowledge, no one has tackled dynamic

diverse entity summarisation in heterogeneous multi-source

systems. Therefore, we compare our approach with the non-

top-k fused approach, where the triples are fused in the

window, but they are not checked for redundancy.

All experiments were run for 5 times, and the average was

taken. All runs took place in a laptop with Intel(R) Core(TM)

i7-6600U CPU@2.60GHz 2.80GHz and 16GB of RAM.

A. Dataset

The FACES dataset8 has been selected for our evaluation,

which is based on DBpedia9 3.9. The dataset has 50 entities of

different domains (e.g. politician, actor, etc.) with 44 distinct

direct features on average per entity. We only focused on

resource-based objects and not literals as they provide richer

information, and we pre-processed the data by keeping only

the last part after a ”/” or ”#” in URIs so that the data makes

more sense from the user perspective.

All entities and their triples follow a uniform distribution in

the selection process by the sources. 50 sources are used, and

each one is responsible for generating a stream related to one

entity. There is only one sink that generates 50 queries, one

for each entity.

B. Metrics

Several metrics have been used to evaluate the efficiency

and effectiveness of our approach. These include correctness

that consists of the agreement, quality and redundancy-aware

F-score, and the end-to-end latency, as well as the number of

messages.

1) Correctness: Correctness consists of the agreement,

quality and redundancy-aware F-score metrics. We used the

ideal summaries of FACES, as we wanted to identify if our

approach produces correct and trustworthy summaries that are

appealing to the human judgement. These ideal summaries

have been created by asking 15 human judges with a back-

ground in Semantic Web to select ideal triples for specific

entities for k = 5 and k = 10 triples. Each entity has at least

7 ideal summaries from 7 different judges, which constitutes

the gold standard.

8http://wiki.knoesis.org/index.php/FACES
9https://wiki.dbpedia.org/
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a) Agreement and Quality: The agreement Agr defines

how consistent the ideal summaries are between one another,

and the quality Qt defines the commonalities between the

human-defined ideal summaries and the approach’s summaries

for each entity. We used the agreement metric of FACES and

RELIN [10] and we adapted a time-dependent version of their

quality metric defined below.

Agr =
2

n(n− 1)

n∑

i=1

n∑

j=i+1

|SummI
i (e) ∩ SummI

j (e)| (1)

Qt =
1

n

n∑

i=1

|Summt(e) ∩ (SummI
i (e) ∩WTrt(e))

SummI
i (e) ∩WTrt(e)

| (2)

where n is the number of summaries, SummI
i (e) is the i-th

ideal summary for an entity e, Summt(e) is the approach’s

summary in time t, and WTrt(e) are the triples of entity e

existing in the window in time t.

Our quality metric is dependent on time since this is a dy-

namic entity summarisation and static ideal summaries might

contain information that is not yet known to the system, that

is it has not been published yet. Therefore, each Summit
I(e)

contains only the common triples between the already known

triples in the system WTrt(e) and the ones selected from each

judge. Then each of these time-dependent ideal summaries

is checked for commonalities with the approach’s summary

Summt(e) that has been extracted at that specific time. In the

case of duplicate triples, these commonalities are only counted

once. In the quality metric in FACES and RELIN, there is no

use of a denominator, because, for example, k = 10 applies

for all ideal summaries (e.g. 2/10 or 8/10 common triples),

but in our case the k is dependent on the commonalities

between the WTrt(e) and the SummI
i (e). Therefore, we

might have diverse results (e.g. 2/8 or 5/6 common triples), so

the denominator is used for normalisation.
b) Redundancy-aware F-score: We are using the metrics

of redundancy-precision and redundancy-recall defined in [25],

and through these, we calculate the redundancy-aware F-score.

For our work, we define as ”redundant” the duplicate triples.

The score is defined as:

Red pr =
R−

R− +N− and Red rec =
R−

R− +R+
(3)

Red F − score = 2× Red pr ×Red rec

Red pr +Red rec
(4)

where R− is the set of non-delivered redundant triples, N−

is the set of non-delivered non-redundant ones and R+ is the

set of delivered redundant ones.
2) End-to-End Latency: The end-to-end latency is the time

it takes between the generation of a triple by a source until

its delivery to the sink. Since our summaries involve multiple

streams, our end-to-end latency is the time it takes between

the earliest triple in the fusion until the time of the fusion’s

delivery.

3) Number of Messages: This metric is split between the

number of forwarded messages, that is the number of triples

within the graph that is sent to the sink and the number of

redundant messages, that is the number of duplicates of the

graph.

C. Results

The results are shown in Fig. 4 for 50 sources that generate

500 triples each and 1 sink with 50 queries with window sizes

of 30 and 50.

1) Agreement: The agreement results are Agr = 1.96 and

Agr = 4.7 for k = 5 and k = 10, respectively. We observe

that there is a good agreement among judges with almost 2

out of 5 and 5 out of 10 triples being common. This proves

that there are different levels of expressiveness that are ideal

from one user to another or that their perception of what is

important or not is different. There is though some common

ground, which is shown in the agreement values.

2) Quality: In terms of DBSCAN parameters, we did

not observe much difference among ε = {0.1, ..., 3} in the

quality metric. However, with the increase in minPts, the

clustering becomes less efficient. This makes sense, as higher

minPts and lower ε result in highly dense clusters, which

is a strict criterion. Therefore, in our case, we emphasised

on ε = 1 and minPts = 1, as we wanted to relax the

latter parameter so that triples can form large, as well as

very small conceptual clusters. Also, the Euclidean distance

against the Cosine similarity, in the ranking, did not make

much difference; therefore, we used the Euclidean distance

for our results.

Fig. 4(a) shows that the quality gets better with higher k,

and it is analogous to the agreement for k = 5 and k = 10.

This means that the overlap among the ideal summaries and

the approach based ones followed the consensus among the

ideal summaries that the judges gave. We also observe that all

three Word2Vec models behave similarly, but the GoogleNews

one is slightly better. Also, the quality gets better for smaller

windows. This happens because the windows contain fewer

triples compared to bigger windows, so the commonality

between published and ideal triples is less probable.

3) Redundancy-aware F-score: Redundancy-aware F-score

in Fig. 4(b) depicts that by using top-k filtering, we result

not only in the elimination of duplicate redundant information

but in possibly valuable information. Nevertheless, we observe

that the F-score ranges from 0.57 to 0.88. Lower F-score

occurs for lower k as stricter content filtering is taking place,

whereas higher F-score is observed with the increase in

window sizes, as the bigger the window, the more probable

redundant information exists.

4) End-to-End Latency: In Fig. 4(c), we observe that the

slowest model is GoogleNews, followed by VectorsPhrase,

Vectors and non-top-k. This happens because the GoogleNews

model is a 3.5GB model that needs 150269ms to be loaded

once in our system. The other Word2Vec models are much

smaller (54.39 MB for Vectors and 519.81 MB for Vector-

sPhrase) and need far less time. Non-top-k is the best in terms

10

Authorized licensed use limited to: NATIONAL UNIVERSITY OF IRELAND GALWAY. Downloaded on January 04,2021 at 16:01:26 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 4. Results for 50 sources that generate 500 triples each and 1 sink with 50 queries.

of end-to-end latency since no processing is involved when

sending notifications, but it is not that much quicker compared

to the smaller Word2Vec models with Vectors being very close

to it.

There are no significant differences in the latencies for the

different k as the processing is done for all data independent

of k, but the latency increases with the window size. This

is expected as although the fusion and top-k diversity are

incremental within the window, the summary is sent after the

window is populated; therefore, the population time is also

considered.

The reason the latencies seem large is because they are end-

to-end, that is the summary that is created each time for an

entity is the accumulation of the top entity information in the

window that contains the times these facts were created. So

the timestamp of whichever fact contributed to the summary

affects the summary’s end-to-end latency.
5) Number of Messages: In Fig. 4(d), we see that the

number of forwarded messages is reduced within the ranges

of 90% to 60% depending on the k for the top-k approach

compared to the non-top-k for ws = 50 and 82.7% to 34.1%

for ws = 30 respectively. The decrease in percentage reduction

with the increase of k is expected, as with higher values of

k more information is sent. From these messages, non-top-k

showed that 34.3% and 48.6% were duplicates for ws = 30 and

ws = 50 respectively. The top-k approach can discard this du-

plicate information, therefore, reducing the overall forwarded

messages. We observe an increase of forwarded messages in

the top-k approach for smaller windows. This happens because

even though the number of forwarded messages is dependent

on k for all window sizes, for the same duration there are

more notifications produced for smaller windows compared to

bigger ones; therefore, more messages are sent in total.
6) Discussion: According to our results, we conclude that

non-top-k sends all the information to the user, that is an

abundance of facts that might contain all the information,

but will also contain duplicate or conceptually redundant one.

This scenario becomes worse with the increase of sources,

as more and more data related to the entity in question is

generated with different variations of conceptual similarity.

The top-k approach, on the other hand, decreases significantly

the amount of data that is sent as a summary to the user.

Even though this information might not be all possibly non-

redundant or ideal to the user, nevertheless, it manages to

follow the agreement among judges.

In terms of latency, non-top-k is more efficient compared

to top-k as no pre-processing is involved. The agreement,

though, among the Word2Vec models in terms of quality,

redundancy-aware F-score and number of forwarded messages

shows that even with smaller models that do not take much

more processing time than the non-top-k one, we can achieve

similar results.

Therefore, there is a trade-off between latency, the number

of forwarded as well as redundant messages, and expres-

siveness (represented by the quality and redundancy-aware

F-score) between a non-top-k scenario and a diverse top-

k one. This is because the latency is better in non-top-k,

but the number of forwarded as well as redundant messages
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and expressiveness are worse and vice verse for the top-k.

We conclude, then, that slightly more processing time for

finding diverse data, can lead to less data being sent upstream

for further processing, data that is seen as expressive as

the agreement among judges without containing redundant

information (duplicate or conceptual one).

VII. CONCLUSION AND FUTURE WORK

In this paper, we emphasised that with the rise of sensors,

there are data challenges involved in high-volume, hetero-

geneity, dynamism, continuity and usability. Therefore, we

need a system that can tackle these issues. We presented, to

the best of our knowledge, a novel dynamic diverse entity

summarisation in heterogeneous multi-source systems. The

approach uses conceptual clustering with a combination of

Word2Vec models, DBSCAN clustering, and ranking to score

entity information to provide users with top-k diverse entity

summaries. According to our findings, these summaries are ex-

pressive enough in terms of overlap with ideal summaries from

human judges, they are redundancy-aware, that is they do not

contain any duplicates and, therefore, they do not overwhelm

the user and the system, as only a small percentage is sent to

the sinks compared to sending all of the available information.

In terms of processing time, this can vary depending on the

size of the models used (smaller models demand less time),

but small models are not using much more resources compared

to non-top-k ones.

Future work could be related to a range of directions. One

direction could be connected to improving the quality metric

results by boosting expressiveness. This could involve a more

sophisticated ranking approach based on the graph properties

or bigger datasets that could provide more information on ideal

summaries or adapting existing static diverse entity summary

approaches to smart environments. Another direction could

be related to the actual graphs, that is the approach could be

extended for not only resource-based objects but literals or not

only star-like graphs but multi-depth graphs for discovering

relationships among entities. Furthermore, the extension of

simple user queries to preferential or complex ones, like

domain-specific or feature-specific or multi-entity could also

be explored. Finally, more windowing policies will be analysed

to check their suitability.
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